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This study focuses on imaging local changes in heterogeneous media. The method employed is

demonstrated and validated using numerical experiments of acoustic wave propagation in a

multiple scattering medium. Changes are simulated by adding new scatterers of different sizes at

various positions in the medium, and the induced decorrelation of the diffuse (coda) waveforms is

measured for different pairs of sensors. The spatial and temporal dependences of the decorrelation

are modeled through a diffuse sensitivity kernel, based on the intensity transport in the medium.

The inverse problem is then solved with a linear least square algorithm, which leads to a map of

scattering cross section density of the changes. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4906824]

[OU] Pages: 660–667

I. INTRODUCTION

Classical imaging techniques are based on the arrival

times of the direct or singly scattered waves. These techni-

ques are extensively used in many different areas (medical

imaging, nondestructive testing of materials, seismic imag-

ing) with different types of waves (electromagnetic, acous-

tic, elastic) at very different scales (mm to km).

However, in highly heterogeneous media, direct or

singly scattered waves are strongly attenuated and these

techniques are likely to fail. Strong heterogeneities are com-

mon in natural structures (volcanoes, fault zones), as well as

in man-made structures (concrete, composite materials), and

the difficulty to monitor them is an important concern

(Anugonda et al., 2001; Wegler and L€uhr, 2001).

The scattering mean free path ‘ is the distance that quan-

tifies the degree of heterogeneity of a material and is related

to the distance between two successive scattering events.

The higher the degree of heterogeneity, the shorter the mean

free path. This mean free path is defined as the characteristic

length of exponential attenuation of the coherent wave in ab-

sence of intrinsic absorption. The coherent wave is the wave

that resists ensemble averaging (when such an averaging is

practically possible). The energy of the direct wave is not

lost, but distributed to multiply scattered waves, also called

coda waves, that follow very complex trajectories. Indeed,

their propagation paths are similar to random walks and the

intensity transport can be described at first order by the solu-

tion of the diffusion equation. The growth of the diffusive

halo is controlled by the transport mean free path ‘? that is

equal to the scattering mean free path when the scattering is

isotropic. One usually says that the transport mean free path

is the distance after which the wave has lost the memory of

its initial direction of propagation.

When the probed medium has a size smaller than or of

the order of ‘, the single scattering regime applies and most

communication, imaging, and monitoring techniques work

fine. When the degree of heterogeneity of the medium

increases, the scattering mean free path becomes smaller

than the size of the probed medium and the waves are scat-

tered multiple times along their trajectories. The so-called

“mesoscopic” regime is reached and multiple scattering is

observed (Akkermans, 2007). This study focuses on this

regime, which concerns strongly heterogeneous media and

where standard techniques that work in the single scattering

regime are inefficient. The reader can refer to the review of

Lagendijk and Van Tiggelen (1996) for a global picture of

multiple scattering phenomena.

Imaging beyond a few scattering mean free paths has

been demonstrated by techniques aiming at filtering out mul-

tiply scattered events to denoise the coherent waves (Borcea

et al., 2006; Aubry and Derode, 2009; Rakotonarivo et al.,
2011). Our approach is fundamentally different as we try to

take advantage of the multiply scattered waves instead of

filtering them out. The present work deals with a simulated

heterogeneous medium where the distances between sensors

range from 5 to 20 ‘?. The heterogeneities of the medium are

also fixed and averaging over realizations of the disorder is

not possible. The coherent waves are not used and even not

expected to be retrievable in this case. We note that our

method is by essence differential as only changes can be

imaged as opposed to defects preexisting in the medium.

Because of their complex trajectories, multiply scattered

waves (coda waves) spend much more time in the medium
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than direct or singly scattered waves. Thanks to this prop-

erty, coda waves show a greater sensitivity to changes occur-

ring in the medium. Using the doublet and stretching

technique, very tiny velocity changes have been measured

with seismic waves in fault zones (Poupinet et al., 1984;

Wegler and Sens-Sch€onfelder, 2007; Brenguier et al., 2008),

volcanoes (Ratdomopurbo and Poupinet, 1995; Grêt et al.,
2005; Sens-Sch€onfelder and Wegler, 2006), and reservoirs

(Meunier et al., 2001). These techniques have been formal-

ized and developed under the denomination of coda wave

interferometry or CWI (Snieder, 2006). The CWI has been

later applied to concrete where minute changes have been

monitored using ultrasound (see the review of Planès and

Larose, 2013). Likewise, using the sensitivity of coda waves,

the diffusing (acoustic) wave spectroscopy technique (Pine

et al., 1988; Page et al., 2000; Cowan et al., 2002) allows

one to monitor collective movements of scatterers in a fluid

medium.

These techniques are designed to monitor global

changes taking place in the medium. But, locating/imaging

small defects appearing in these media remains a big chal-

lenge. During the last 20 years, few techniques have been

proposed to solve this problem, most of them using the fluc-

tuations of the intensity speckle (Feng and Sornette, 1991;

Nieuwenhuizen and van Rossum, 1993; Vanneste et al.,
1993; van Rossum and Nieuwenhuizen, 1999).

Recently, a new method was introduced to locate one

small structural change in a multiple scattering medium

using the decorrelation of coda waves. This technique was

demonstrated with an ultrasound experiment on a concrete

block (Larose et al., 2010). It relies on (i) the measurement

of the decorrelation of coda waves, (ii) a diffuse sensitivity

kernel, and (iii) a v2 grid-search type inversion. The tech-

nique was initially limited to the location of one single, local

defect appearing at a time. A detailed study of the forward

problem, i.e., how to relate the decorrelation of coda waves

to the characteristics of the change (position, cross section)

was recently addressed in Planès et al. (2014).

To match real life situations, the method should be able

to locate several defects appearing simultaneously and/or

spatially extended defects. In a volcano, changes like magma

injection may take place simultaneously at several distinct

locations in the edifice (Obermann et al., 2013). As for ultra-

sound, the growth of a crack in concrete under stress may be

spatially extended compared to the wavelength.

We dedicate the present study to the following problem:

how to locate several local changes appearing at the same

time? In the case of velocity changes, a classic linear least

square inversion algorithm was used by Froment (2011) to

compute a map of velocity changes induced by the 2008

Wenchuan earthquake in China. By weak changes, we imply

a relative velocity variation of up to a few percent. Here, we

adapt this algorithm (Tarantola and Valette, 1982) to the

case of several structural changes, i.e., strong changes corre-

sponding to velocity variations of several tens or hundreds of

percents. Contrary to weak velocity changes, structural

changes induce a modification of coda waves that cannot be

interpreted as a time-shift of the arrivals, but as a waveform

distortion or decorrelation. The decorrelation is related to the

scattering cross section of the changes through a linear

approximation.

We perform controlled numerical experiments to vali-

date the method, as well as the underlying linear approxima-

tion. This work also supports the recent applications of the

method to real seismic data (Obermann et al., 2013;

Obermann et al., 2014).

In Sec. II, we introduce the numerical simulation param-

eters and configurations. We also introduce the procedure to

measure the decorrelation of coda waves, as well as the

expression of the theoretical sensitivity kernel. In Sec. III,

we reformulate the forward problem to describe several local

changes before detailing and validating linear least-square

inversions.

II. DECORRELATION OF CODA WAVES

This section follows closely the first section of Planès

et al. (2014), as we use similar numerical simulations and

measurements. We refer the reader to the original publica-

tion for additional details on the numerical aspects.

A. Simulation parameters

To simulate the multiple scattering of waves in hetero-

geneous media, we perform numerical experiments of acous-

tic wave propagation in a medium with constant background

velocity, filled with thousands of impenetrable point scatter-

ers. To solve the wave equation of the pressure field, we use

a classic second order two-dimensional (2D) finite difference

scheme (Taflove and Hagness, 2005). In the following, tem-

poral (respectively, spatial) quantities are expressed in units

of s0 (respectively, k0), the central period (respectively,

wavelength) of the source wavelet. We consider a square

shaped lossless medium with reflective boundaries (Dirichlet

boundary condition) of length L¼ 200k0, constant velocity

c0¼ k0/s0, in which a point source sends a Gaussian impulse

of central frequency f0¼ 1/s0 and relative bandwidth

Df/f0¼ 30% (at �3 dB). The spatial gridstep is a¼ k0/15 and

the time step of the scheme is set to g ¼ a=ðc0

ffiffiffi
2
p
Þ

’ 0:0471s0, based on the Courant-Friedrichs-Lewy stability

condition (Courant et al., 1967).

We choose to work within the independent scattering

approximation that concerns dilute systems, i.e., where the

scattering mean free path is much larger than the central

wavelength, ‘� k0. This means that the correlations

between scatterers are negligible and that the different scat-

tering paths do not interfere with one another. The intensity

transport can then be described as the sum of the intensities

along each scattering path. This allows us to use analytic

intensity propagators to build the later introduced sensitivity

kernels. We determine the number of scatterers in the

medium so that ‘¼ 10k0. Each soft scatterer is defined by a

null-pressure condition at its grid point. As only one grid

point is modified for each scatterer, they do not have a

defined geometry, but are much smaller than the wavelength

(�k/15). We evaluated the scattering cross section of these

point scatterers, r¼ 0.174k0, through additional simulations.

To do so, only one of these scatterers was placed in a
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homogeneous medium and the scattered energy from an inci-

dent plane wave was evaluated.

The number N of scatterers to place in the medium is

then deduced from the usual relation ‘ ¼ 1=nr, where

n¼N/S is the density of scatterers and S¼ L2 is the surface

of the 2D medium. The scatterers are randomly positioned in

space and uncorrelated. Given their small size compared to

the wavelength, the scattering and transport cross sections of

the scatterers are similar (r’ r?). This means that the scat-

tering is isotropic, and it also implies the equality of the

scattering and transport mean free paths (‘ ’ ‘?). All the

relevant simulation parameters are summarized in Table I.

A typical realization of the random medium is shown in

Fig. 1(a) where the gray dots represent the point scatterers.

We arbitrarily place ten sensors in the medium that can act

either as a source or a receiver. In addition, three distinct

locations have been arbitrarily selected in the medium to

host the apparition of additional soft scatterers that we wish

to image. These defects appearing at locations A, B, and C
are disks of respective radius 0.2, 0.33, and 0.5k0. We insist

on the fact that the background scattering medium remains

unchanged throughout the study, as it would be the case for

real solid heterogeneous structures.

As an example, the impulse response /2,7 between sen-

sors 2 and 7 is displayed in Fig. 1(b). The impulse response

shows long-lasting wave trains constituted of multiply scat-

tered waves. Since the medium is lossless and bounded with

perfectly reflective boundaries, the amplitude of the coda

stabilizes after sufficient time without any decay.

B. Physical model of the decorrelation

To study the variations of the waveforms induced by

local changes in the medium, we compare impulse responses

acquired before and after the change(s). To simulate local

structural changes, we introduce a new scatterer in the me-

dium at one (or several) of the three candidate locations

selected [Fig. 1(a)]. At short lapse-times, the waveforms

acquired before and after the change are nearly identical to

each other. However, at long times, we observe slight differ-

ences in phase and amplitude of the coda waveforms. The

addition of a defect results in a distortion or decorrelation of

the waveforms.

To quantify the change between an initial state of

impulse response /0(t) and a final state of impulse response

/1(t) the experimental decorrelation coefficient is defined as

DCExp tð Þ¼1�

ðtþT=2

t�T=2

/0 t0ð Þ/1 t0ð Þdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtþT=2

t�T=2

/0 t0ð Þ2 dt0
ðtþT=2

t�T=2

/1 t0ð Þ2 dt0

s : (1)

The decorrelation corresponds to one minus the normalized

correlation coefficient. It is calculated in a time window of

length T and can be evaluated at different times t in the

coda. The size of the time window is typically a few tens of

central periods s0.

The decorrelation induced by the defect C for different

pairs of sensors is shown in Fig. 2. We observe that the

decorrelation always increases with the time in the coda.

Indeed, the longer the wave paths, the higher the chances to

interact with the change, which results in more pronounced

waveform distortions. Another key observation is that the

TABLE I. Dimensionless value of the simulation parameters.

Notation

Dimensionless

value Description

f0 1/s0 Central frequency

c0 k0/s0 Wave speed

k0 k0 Central wavelength

Df/f0 30% Relative bandwidth

a k0/15 Spatial grid step

g 0.0471s0 Temporal step

L 200k0 Medium length

r0 ’ r?0 0.174k0 Scattering and transport cross section

of a point scatterer

‘ ’ ‘? 10k0 Scattering and transport mean free path

N 23 000 Number of point scatterers in the medium

FIG. 1. (a) Example of a heterogeneous, disordered medium. The gray dots

represent the point scatterers, the crosses show the sensors, and the stars are

the three locations of the appearing defects. (b) The impulse response

between sensors 2 and 7 shows a long tail (coda) constituted by multiply

scattered waves.

662 J. Acoust. Soc. Am., Vol. 137, No. 2, February 2015 Planès et al.: Imaging local changes with diffuse waves

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  152.77.24.10 On: Thu, 03 Dec 2015 15:32:01



decorrelation strongly depends on the position of the change

relative to the position of the source and receiver: the closer

the defect to the source-receiver line, the stronger the varia-

tion of the waveforms.

When dealing with noisy data, the decorrelation is likely

to be overestimated using the expression above. A baseline

decorrelation level only due to noise can be estimated from

repetitive acquisitions of impulse responses during a quiet

period, i.e., when the medium does not change. This baseline

level is then deduced from the actual decorrelation measure-

ments to minimize the impact of noise on the method

(Obermann et al., 2013).

In previous studies (Rossetto et al., 2011; Planès et al.,
2014), we showed using diagrammatic techniques that the

decorrelation can be theoretically estimated as

DCTh r; tð Þ ¼
cr
2

K S;R; r; tð Þ;

K S;R; r; tð Þ ¼

ðt

0

p S; r; uð Þp r;R; t� uð Þ du

p S;R; tð Þ ; (2)

where r is the scattering cross section of the new defect, c is

the wave velocity, and K is a sensitivity kernel based on the

intensity propagator p(a,b,t) between a and b. The symbols

S, R, and r denote the position of the source, receiver, and

defect, respectively, and t is the time in the coda.

In strongly heterogeneous media, the intensity transport

can be described by different approximations as the diffusion

equation or the more accurate radiative transfer equation

(Ryzhik et al., 1996). For the case of isotropic scattering in

2D infinite media, an exact solution of the radiative transfer

equation has been derived independently by Shang and Gao

(1988), Sato (1993), and Paasschens (1997). The expression

for the intensity propagator reads

p r; tð Þ¼
e�r=‘

2prc
d t� r

c

� �
þ 1

4pDt
1� r2

c2t2

� ��1=2

� e
ffiffiffiffiffiffiffiffiffiffiffi
c2t2�r2
p

�ctð Þ=‘H ct� rð Þ; (3)

where the isotropic scattering implies the equality of the

scattering and transport mean free paths, ‘¼ ‘?. The diffu-

sion constant is D¼ c‘?/2 and the Heaviside function, H,

ensures the causality of the solution (the energy cannot travel

faster than the wave velocity). This solution is composed of

the coherent intensity term, decaying exponentially with the

mean free path, and a diffuse term that includes all the scat-

tering orders. It is, thus, also valid at short times and distan-

ces and one can verify that this solution converges toward

the diffusion solution for times t� ‘/c.
We use this solution along with the method of images to

take into account the reflections of the wave energy on the

boundaries. The method of images describes the total inten-

sity as the sum of the infinite medium intensity of the real

source plus the infinite medium intensities of virtual sources.

The positions of the virtual sources are obtained as mirror

images of the real source from the boundaries of the medium

(Crank, 1979).

The decorrelation is proportional to the ratio of the in-

tensity of the waves that interacted with the defect in r over

the total intensity propagated from S to R. The decorrelation

is shown to depend on the spatial location and scattering

cross section of the change, as well as on the coda time

where the measurements are performed. Our imaging tech-

nique relies on these key properties.

The expression (2) holds when a single defect is appear-

ing in the medium. The extension of this relation to several

defects appearing at the same time is discussed in Sec. III A.

III. WAVEFORM DECORRELATION: THE INVERSE
PROBLEM

The problem of locating one local structural change has

been addressed by Larose et al. (2010) and Rossetto et al.
(2011) using ultrasound experiments in a concrete block, as

well as numerical simulations. The inverse method

employed in these studies consisted of a grid search of the

location of the change using a v2 cost function. However,

this method is unable to locate several simultaneous changes

(Planès, 2013). In Sec. III A, we reformulate the forward

problem and in Sec. III B, we adapt a linear least square

inversion method to locate simultaneous structural changes

(Tarantola and Valette, 1982; Tarantola, 2005).

A. Reformulation of the forward problem

On a theoretical level, the decorrelation has only been

studied in the case of a single and local change appearing

in the medium (Rossetto et al., 2011; Planès et al., 2014).

In practice, several or extended changes can occur simulta-

neously in structures that one wishes to monitor: cracks in

concrete, magma intrusion in a volcano, active fault slip,

etc.

When the change is a weak velocity variation, the main

effect on coda waves is not a decorrelation, but a phase shift.

In this case, the forward problem can be linearly adapted to

multiple and extended defects (Pacheco and Snieder, 2005;

Planès et al., 2014). In general, this is not the case for the

decorrelation induced by structural changes.

FIG. 2. Decorrelation of coda waves induced by the addition of defect C for

different pairs of sensors. For each pair of sensor, the decorrelation DC
increases with coda time t. The closer the defect to the sensors line, the

higher the decorrelation: DC3,5>DC7,9>DC6,8.
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Here, we do not tackle the problem of extended defects,

but we focus on the simultaneous apparition of distinct local

defects. If these defects are weak and distant enough, we

assume that we may neglect their interactions and formulate

the effect of their apparition as a linear superposition of their

individual effect. This assumption of linearity is a significant

approximation that will be validated a posteriori.
Let us discretize the medium into P voxels of volume,

dV. To each voxel i centered on the position ri is associated

a scattering cross section density Ri. Ri corresponds to the

scattering cross section of the change taking place in the

voxel i divided by the voxel volume dV. The change at each

point of the medium is thus quantified by a column vector R
of length P, where the density of scattering cross section is

stored. Similarly, the N measured decorrelations (different

pairs of sensors and different coda times) are gathered in a

column vector DC of length N. These two vectors can then

be related through a discretized version of the kernel K [Eq.

(2)], as a N�P matrix Kij¼K(Si,Ri,rj,ti). Si, Ri, and ti are

the source position, receiver position, and center coda time

of the measurement i, respectively, and rj is the central posi-

tion of voxel j. The linear relation between DC and R is writ-

ten as a matrix product, which is an extension of the relation

(2) to multiple changes

DC ¼ cdV

2
KR; (4)

where c is the wave velocity. There exists a large variety of

methods to solve linear inverse problems (Nocedal and

Wright, 1999) of the form

d ¼ Gm; (5)

where d are the measured data (here DCExp), m is model that

we wish to estimate (here R), and G is the physics that

relates them [here ðcdV=2ÞK]. We detail the application of a

least square algorithm in Sec. III B.

B. Inversion algorithm

In this work, we adopt a least square method (Tarantola

and Valette, 1982; Tarantola, 2005) that leads to an explicit

solution through the inversion of matrices. Let us suppose

that we have a priori knowledge of the model mprior. We

also suppose that we know the covariance matrix of the

model CM and the covariance matrix of the data CD. A least

square misfit function S(m) is constructed as

SðmÞ ¼ ðGm� dobsÞTC�1
D ðGm� dobsÞ

þ ðm�mpriorÞTC�1
M ðm�mpriorÞ

¼ kGm� dobsk2
D þ km�mpriork2

M; (6)

where k � k2
D and k � k2

M are ‘2 norms weighted by C�1
D and

C�1
M , respectively. The cost function is composed of two

terms: the distance between the estimated model and the one

known a priori, and the distance between the measured data

and the response of the estimated model. The covariance

matrices CM and CD allow us to give weight to each term

according to the confidence in the a priori model and in the

measured data. In addition, the nondiagonal elements of

these matrices allow us to introduce correlations between

data and/or cells of the model.

According to Tarantola (2005), the estimated model ~m
that minimizes the cost function writes

~m¼mpriorþðGTC�1
D GþC�1

M Þ
�1GTC�1

D ðdobs�GmpriorÞ;
(7)

with the a posteriori covariance given by

~CM ¼ ðGTC�1
D Gþ C�1

M Þ
�1: (8)

We now detail the construction of the covariance matri-

ces and the application of the inversion algorithm to our

numerical experiment where three defects A, B, and C,

appear simultaneously in the medium. We used N¼ 566

measurements corresponding to the 45 possible distinct pairs

of sensors and an average of �12 non-overlapping measure-

ment time windows per sensor pair.

The covariance matrix CD describes the correlations and

errors on the measured data while the covariance matrix CM

corresponds to the expected deviations of the real model

from the one known a priori, as well as its correlations. The

construction and tuning of these matrices is the key point for

the success of the inversion.

For the sake of simplicity, we neglect the correlations

between the different measurements, making CD a diagonal

matrix. This assumption is reasonable for distant sensors and

non-overlapping measurement time windows. We also

assume that the relative error is the same for all measure-

ments. We note that a theoretical estimator of the measure-

ment error still needs to be developed. Estimating this error

from the actual measurements is challenging because it

would require having access to different realizations of the

disorder, which is not the case in practice.

As a workaround, we compare decorrelation measure-

ments performed in neighboring time windows, and roughly

evaluate the relative fluctuations of the measurements to be

�30%. Under the assumptions made, we actually notice that

this value can be arbitrary, as only the relative weight of the

matrices CM and CD influences the minimization of the mis-

fit function S(m). The matrix CD is defined as

CDij ¼ ð0:3diÞ2dij; (9)

where dij is the Kronecker symbol and di is the measurement

i. To reduce the under-determination of the problem, we

define an exponential correlation between the model cells,

following Froment (2011),

CMij ¼ rm
L0

Lc

� �2

e�kri�rjk=Lc ; (10)

where rm is a standard deviation from the a priori model

mprior, L0¼ 8k0 corresponds to the arbitrary linear size of a

model cell, chosen as a trade-off between resolution and

computation time, and Lc is a typical correlation distance

between cells.
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The inversion algorithm thus involves two free parame-

ters Lc and rm to be tuned. We follow the L-curve method

described by Hansen (1992), which allows one to tune the

free parameters as a trade-off between the quality of the fit

kdobs � G ~mk and a norm of the estimated model ~m.

Having no a priori information on the positions or

strength of the expected changes, we start with a null a priori
model mprior¼ 0. In regard to the range of validity of the

method, we suppose that the medium hardly changes

between the two series of acquisitions. To constrain the

inversion result to be simple, we choose to consider the ‘1

norm of the distance between the estimated model and the a
priori model

‘1ð ~mÞ ¼
X

i

j ~mi � mpriori
j: (11)

The a priori model being null, the norm is the ‘1 norm of the

estimated model.

To plot the L-curve, we define a range of potential values

for the two free parameters, Lc¼ 2–25k0 and

rm¼ 1� 10�4–1k0/‘*2, and perform as many inversions as

possible combinations of these values. For each inversion, we

calculate the corresponding residual kdobs � G ~mk and the ‘1

norm of the model. The L-curve is a parametric representa-

tion of the residual versus the ‘1 norm. An L-curve example

is represented on Fig. 3 for Lc¼ 16k0 � 1.5‘? (rm free). Only

one free parameter is shown for better visualization. L-curves

obtained for different Lc values actually show very similar

behaviors and the choice of a particular Lc is somewhat arbi-

trary and allows one to tune the smoothness of the inverted

map, i.e., to control the intensity of its spatial fluctuations.

Looking at the cost function composition (6), we note

that the tuning of rm allows giving more or less weight to

each of the two terms. A high rm gives more importance to

the term kGm� dobsk2
D and privileges the fit of the measured

data (small residue). To the contrary, a weak rm gives more

importance to the term km�mpriori
k2

M, and privileges the

fidelity to the a priori model (weak ‘1 norm).

The point of maximum curvature of the L-curve allows

us to select the free parameter(s) as a trade-off between the

simplicity of the estimated model and the quality of the fit

(Fig. 3). The simplicity (or complexity) of the estimated

model is understood as the intensity of its deviations from

the a priori model, as measured by the ‘1 norm. The covari-

ance matrix CM is here constructed from the parameters

rm¼ 5.6� 10�2k0/‘?2 and Lc¼ 16k0. The inversion algo-

rithm (7) is then applied to obtain the estimated model ~m.

The density of scattering cross section map ~R ¼ ~m
obtained is plotted in Fig. 4(a). This map seems to roughly

indicate the areas of change, but with a rather weak contrast.

In addition, negative cross section areas are present, despite

their lack of physical meaning.

The algorithm used here does not include a positivity

constraint on the model. To tackle this issue, we propose to

iterate the procedure, truncating the negative values of

FIG. 3. L-curve obtained for a correlation distance Lc¼ 16k0. For each

tested value of standard deviation from the a priori model rm, the relative

residual of the inversion is plotted versus the ‘1 norm of the estimated

model. The dark area shows a high error (high residue), but a simple model

(weak ‘1 norm). The light area shows a weak error (small residue), but a

complex model (high ‘1 norm). The gray area in between shows the best

trade-off between simplicity of the estimated model and quality of the fit of

the measured data. The standard deviation is thus chosen around rm¼ 5.6

� 10�2k0/‘*2.

FIG. 4. Scattering cross section density map obtained with the linear least

square inversion. The positions of the three defects of radius rs¼ k/5, k/3, k/

2, are indicated by the stars. (a) Map obtained after a single iteration, the

areas encompassing the defects are visible, but the contrast is weak. In addi-

tion, areas of negative cross sections (not physical) are found. (b) Map

obtained after about ten iterations. The defects are well localized, the posi-

tivity constraint is respected, and the scattering cross section density is in

qualitative agreement with the size of the defects.
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the model at each step. The model estimated at iteration n
is used as the a priori model for the iteration nþ 1. The

a posteriori covariance ~CM [Eq. (8)] at iteration n is also

used as the covariance of iteration nþ 1. The applied algo-

rithm has the form of a recurrence relation

~mnþ1 ¼ ~mn
0þðGTC�1

D Gþ ~C
n

M
�1Þ�1GTC�1

D ðdobs�G ~mn
0Þ;

(12)

where ~mn
0 is the estimated model at iteration n, from which

the negative elements have been set to zero. After about ten

iterations, the obtained map converges toward the result

shown in Fig. 4(b), where all three defects are well located

and for which the positivity constraint is respected. We note

that a positivity constraint could have been imposed by

inverting the logarithm or the square of the model. However,

this would have generated a non-linear forward problem and

required more advanced inversion techniques.

Because of the spatial smoothing, the cross sections of

the defects are spread in large areas around their real posi-

tions. To estimate their scattering cross sections, we inte-

grate the scattering cross section densities in disks of radius

5‘? around each of the three local maxima. The estimated

cross sections are given in Table II. The relative error in the

cross section estimation is larger for the bigger defects. This

might indicate that the model of the decorrelation that we

used starts to be inaccurate for these sizes of defects.

The quality of the inversion can be verified with the

resolution operator R defined as (Tarantola and Valette, 1982)

R ¼ I � ~CMC�1
M : (13)

For each cell i of the model, the averaging index

(Vergely et al., 2010) is given by RjRij. In the areas where

the averaging index is low, the estimated model remains

similar to the a priori model, and this independently of the

values of the true model in the area. This means that the

observed data provides poor information on these areas. To

the contrary, when the averaging index is close to 1, the esti-

mated model corresponds to a spatial average of the true

model. The averaging index of each cell of the model is

shown in Fig. 5. The averaging index is close to 1 for the

whole region covered by the sensors, indicating a good resolu-

tion in this area. The quality of the inversion is expected to be

low only near the boundaries, outside the instrumented area.

Using this inversion scheme, we located three defects of

different sizes that appeared simultaneously at distinct loca-

tions. This supports the validity of the underlying linear

approximation, at least regarding several local and distinct

defects. Trying to image extended and/or nearby appearing

defects would provide more insights into the regime of valid-

ity of this linear approximation.

IV. CONCLUSION

In this study, we addressed the problem of imaging sev-

eral defects appearing simultaneously in a multiple scatter-

ing medium. Using different pairs of sources and receivers,

we measured the decorrelation of the coda waves induced by

the new defects. Using a grid-search v2 technique, previous

studies were able to locate one defect appearing at a time,

but failed to locate several defects appearing simultaneously.

We reformulated the direct problem, assuming that the

effect of several small and distant defects appearing simulta-

neously may be modeled as a linear combination of their

individual effect. To solve this linear problem, we used a

linear least square inversion algorithm with regularization

parameters. We tuned these free parameters using the

L-curve method, which expresses the trade-off between the

quality of the fit and the simplicity of the estimated model.

In addition, we built an iterative procedure to add a positivity

constraint on the estimated model.

The estimated model is a map of scattering cross section

density that indicates the positions of the defects. The scat-

tering cross sections are also in qualitative agreement with

the size of the defects. These results validate the method and

the underlying linear approximation.

This work supports the recent applications of the

method to monitoring temporal changes on active volcanoes

(Obermann et al., 2013) and fault zones (Obermann et al.,
2014).

Several questions still need to be addressed. How to

model the decorrelation induced by a large defect? Is it pos-

sible to image the geometry of such changes? What is the

resolving power of the method? Studying more general

changes will likely require a reformulation of the direct

problem that might no longer be linearly dependent on the

TABLE II. Real and estimated cross sections of the defects in wavelength

unit. The linear least square method uses a single numerical experiment

where the three defects appear simultaneously. The cross sections are then

estimated by integrating the cross section density in distinct spatial areas.

Defect A B C

Radius (k0) 0.2 0.33 0.5

rreal (k0) 1.05 2.49 4.49

rinverted (k0) 0.93 1.68 3.35

Relative error (%) 11 33 25

FIG. 5. Map of the averaging index of the resolution operator R. The aver-

aging index is very high (>0.9) for the whole region covered by the sensors,

indicating a good resolution. The quality of the inversion is expected too be

low only near the boundaries where the averaging index drops down to 0.5.
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scattering cross sections of the defects. The problem might

possibly be solved using non-linear inversion algorithms.

The development of sensitivity kernels for the elastic case is

also of great importance for the applications. These kernels

should include the transport and conversion of the different

propagation modes (P, S, and surface waves).
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