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Imaging of Biomedical Data Using a Multiplicative
Regularized Contrast Source Inversion Method
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Abstract—In this paper, the recently developed multiplicative
regularized contrast source inversion method is applied to mi-
crowave biomedical applications. The inversion method is fully
iterative and avoids solving any forward problem in each iterative
step. In this way, the inverse scattering problem can efficiently be
solved. Moreover, the recently developed multiplicative regular-
izer allows us to apply the method blindly to experimental data.
We demonstrate inversion from experimental data collected by
a 2.33-GHz circular microwave scanner using a two-dimensional
(2-D) TM polarization measurement setup. Further some results
of a feasibility study of the present inversion method to the
2-D TE polarization and the full-vectorial three-dimensional
measurement will be presented as well.

Index Terms—Experimental data, medical applications, mi-
crowave tomography, nonlinear inversion, three-dimensional.

I. INTRODUCTION

M ICROWAVE imaging techniques for biomedical appli-
cations are much less developed than those based on

ultrasound, X-rays, nuclear magnetic imaging, or even elec-
trical impedance tomography. Standard diffraction tomography
methods have been shown to offer limited capabilities in terms
of quantitative reconstructions of the complex permittivity [1].
Fortunately, in the last decade, microwave tomography has
made a significant step with the development of various itera-
tive reconstruction algorithms providing serious expectations
in obtaining quantitative images (see [2]–[5]). Particularly,
the ability to handle the high complex permittivity targets
marked a sharp difference with previous standard diffraction
tomography algorithms. The latter algorithms provided only
qualitative results, namely, the equivalent current distribution
in the target. On the other hand, the quantitative algorithms
aim to a reconstruction of the complex permittivity of the
target delivered from the local field dependence involved in the
equivalent current distribution. As is well known, the price to
pay is to solve a nonlinear inverse problem, instead of a linear
one which can computationally be (very) expensive. Due to this
expensive computation requirement, the use of a noniterative
algorithm will not be feasible.

The most popular quantitative reconstruction algorithm used
for biomedical applications is the Newton–Kantorovich tech-
nique which aims to minimize iteratively the error between the
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measured scattered field by the targets and the scattered field
calculated from a numerical model (see [6] and [7]). In this
method, one has to solve the multiview forward problem in
each iterative step. This aspect will limit the applicability of
the method for the full-vectorial three-dimensional (3-D) case.
Another type of algorithm which avoids solving any forward
problem in each iterative step is introduced by van den Berg and
Kleinman [2] for the two-dimensional (2-D) case and extended
by Abubakar and van den Berg [8] to the full-vectorial 3-D static
case. In this method, the complex permittivity contrast and the
contrast sources (the product of the complex permittivity con-
trast with the total field) are iteratively reconstructed by min-
imizing a cost functional using conjugate gradient directions.
Recently, the method has been modified to include a multiplica-
tive regularization factor by van den Berget al.[9] and extended
by Abubakaret al.[10]. The multiplicative technique allows the
method to use a regularization factor without the necessity of de-
termining an artificial weighting parameter. This regularization
parameter is determined by the iterative process itself, which
makes the method suitable to invert experimental data as shown
by Bloemenkampet al. [11].

In this paper, the improved version of the method, the
so-called multiplicative regularized contrast source inversion
(MR-CSI) method, described in [12], has been modified to
carry out inversion of microwave biomedical data. Further
feasibility study results of the applications of the MR-CSI
method in 2-D TE-polarization and full-vectorial 3-D cases
(which up to now is known as a difficult case to handle [13])
are presented. This paper is organized as follows. First, the
integral representations and the inversion algorithm will be
described. Then, for the 2-D TM-polarization case, inversion
results of some experimental data collected at UPC Barcelona
using a circular microwave scanner at 2.33 GHz developed
by Broquetaset al. [14] will be presented. After that, some
comparisons of inversion of synthetic data for 2-D TM- and
2-D TE-polarization measurement will be discussed. Then, as a
final example, we present the inversion results of a simple 3-D
model using full-vectorial measurements.

II. I NTEGRAL REPRESENTATIONS

Let an incident electric field illuminate an inhomoge-
neous dielectric object of complex permittivity and ar-
bitrary shape. The complex permittivity and the shape of this
object is unknown, but they are known to lie within a bounded
simply connected object domain (see Fig. 1). This object do-
main is assumed to be embedded in a known background
medium of complex permittivity . For this biomedical appli-
cation, the background medium is known and is homogeneous.
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Fig. 1. Geometrical model for the scattering experiment.

The position vector is denoted by. We assume a time-harmonic
dependence , where , is angular frequency,
and is time.

A. 2-D TM-Polarization Case

For 2-D TM polarization, the electric field is parallel to ob-
jects. In our case, . We then deal with a scalar
problem. The quantity denotes an incident electric field
due to a line source located at with polarization in the di-
rection parallel to the cylindrical objects. The line sources are
located in a data domain surrounding the object domain,
where the measurements are made as well, . Then, for
this 2-D TM polarization, the scattered field can be represented
in an integral form

(1)

where the 2-D Green’s functionis given by

(2)

in which is the zeroth-order Hankel function of the second
kind and is the permeability in vacuum. In (1), the contrast

is given by

(3)

where

(4)

in which and are the relative permittivity and the
conductivity, and is the permittivity of vacuum. The total field

inside the object domain is known to satisfy the domain
integral equation

(5)

Equations (1) and (5) are the two basic equations to develop the
inversion procedure for the 2-D TM-polarization case.

B. 2-D TE-Polarization Case

For 2-D TE polarization, the electric field has two compo-
nents in the transversal plane of the objects. In our case,

, while denotes the incident electric field due to
a line source with polarization in the transversal plane located at

. The line sources are located in a data domainsurrounding
the object domain , where the measurements are made as well,

. Then, for this 2-D TE polarization, the scattered field
can be represented in an integral form

(6)

where is the spatial differentiation operator with respect to
. In this 2-D TE polarization, only the scattered electric field

tangential to the receiver aperture is measured. We then require
the integral representation in (6) to be satisfied for this tangential
component. This measurement setup is similar to the one used
by Bloemenkampet al. [11] for the 2-D TE-polarization case.
The total field inside the object domain is known to satisfy
the domain integral equation

(7)

Equations (6) and (7) are the two basic equations to develop the
inversion procedure for the 2-D TE-polarization case.

C. 3-D Full-Vectorial Case

In a 3-D full-vectorial problem, the electric incident
field is a three-components vector. For simplicity, we consider
a point magnetic dipole source directed in the vertical direction,
the direction, located at . This magnetic dipole source is
located in a data domain surrounding the object domain,
where the measurement is made as well. Then, for this
3-D full-vectorial case, the scattered field can be represented in
an integral form

(8)

where the 3-D Green’s function is given by

(9)

In this full-vectorial 3-D case, we measure all the components
of the scattered electric field. The total field inside the object
domain is known to satisfy the domain integral equation

(10)

Equations (8) and (10) are the two basic equations to develop
the inversion procedure for the full-vectorial 3-D case.
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III. I NVERSEALGORITHM

In order to discuss our solution of the inverse scattering
problem, we first write our basic equations in an operator
notation. We denote either the scalar electric field for the 2-D
TM-polarization case, the two-components electric field vector
for the 2-D TE-polarization case, or the three-components
electric field vector for the full-vectorial 3-D case by the
symbol . The data quantities either the scalar scattered electric
field, the two-component scattered electric field vector, or
the three-component vector scattered electric field vector are
denoted by .

We assume that the unknown object is illuminated succes-
sively by a number of known incident fields , .
For each incident field , the total field will be denoted by
and the measured scattered field data are denoted by. Then,
the integral representations of the measurement data in (1), (6),
and (8) are written as

(11)

while the domain integral equations in (5), (7), and (10) are
written as

(12)

The profile reconstruction problem is that of findingof the
object domain for given at the data domain, or solving the
data equation in (11) for , subject to the additional condition
that and on satisfy (12). This problem is nonlinear and
has to be solved iteratively.

We observed that the data equations contain the unknown
fields inside the scattering object and the contrast in the form
of a product; it can be written as a single quantity,viz. the con-
trast sources

(13)

which can be considered as equivalent sources that produce the
measured scattered fields. Using the definition of the contrast
sources in (13), we obtained the data equations in terms of the
contrast sources as follows:

(14)

Multiplying both sides of (12) with , and using (13), we define
in symbolic form the object equations as

(15)

We consider (14) and (15) as two equations from which we want
to determine the unknown contrastand the unknown contrast
sources in .

The MR-CSI method constructs alternatively sequences of
contrast sources for ( ) and the contrast
for ( ) by minimizing a cost functional

(16)

where

(17)

in which

(18)

(19)

The normalization factors are chosen as

(20)

(21)

In (16) is the weighted -norm total variation regular-
ization factor

(22)

where denotes the volume of the object do-
main . We have included the regularization factor as a
multiplicative constraint, with the result that the cost functional

is the weighting parameter, i.e., determined by the inversion
problem itself. This eliminates the choice of the artificial regu-
larization parameters completely. In (22), is chosen as

(23)

where denotes the reciprocal mesh size of the discretized do-
main and is the normalized error in the object equation
of the previous iteration, cf. (19).

The cost functional in (16) is based on two things: the objec-
tive of minimizing the errors in the data and object equations
and the observation that the regularization factor, when mini-
mized, converges to one. The structure of the cost functional
is such that it will minimize the regularization factor with
a large weighting parameter in the beginning of the optimiza-
tion process, because the value of is still large, and that it
will gradually minimize more and more the errors in the data
and object equations when the regularization factor has reached
a nearly constant value close to one. If noise is present in the
data, the errors in the data equations will remain at a large value
during the optimization and, therefore, the weight of the regu-
larization factor will be more significant. Hence, the noise will,
at all times, be suppressed in the reconstruction process and we
automatically fulfill the need of a stronger regularization when
the data contain noise.

The factor is introduced for restoring differentiability.
Its choice is further inspired by the idea that, in the first few
iterations, we do not need the minimization of the regularization
factor and when the iterations proceed we want to increase the
effect of the regularization factor.

This MR-CSI algorithm starts with some initial estimates ob-
tained from the back propagation. Then, in each iteration, it re-
constructs alternatingly the contrast sources and the contrast by
using conjugate gradient steps (one for the contrast sources and
one for the contrast). In this way, the computational complexity
of the algorithm is approximately equal of solving two forward
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Fig. 2. Photograph of the 2.33-GHz circular scanner.

problems using conjugate gradient method. The details of the
algorithm can be found in the Appendix.

In biomedical applications, we have somea priori infor-
mation about the range of the complex permittivity . We
remark that thisa priori information is easily implemented
by enforcing, after each update of the contrast, the complex
permittivity beyond its range to either the lower or the upper
bound. In most numerical examples presented later in this
paper, we have used thisa priori information.

IV. EXPERIMENTAL DATA: 2-D TM CASE

For the 2-D TM-polarization case, there are experimental data
available. The circular microwave scanner with frequency of
operation at 2.33 GHz is used. It consists of a 12.5-cm-radius
circular array of 64 water-immersed horn antennas, see [13].
The electric field is parallel to the array axis, theaxis. The
targets are introduced in a cylindrical water tank (see Fig. 2).
Each of the array antennas can operate either in a transmitting
or receiving mode. The measurement procedure records the total
electric field values at the receiving antennas, when all the array
antennas are successively used as a transmitter. Due to isolation
limitations of the circuitry, if one antenna is transmitting, the
scattered fields are measured only with the 33 antennas located
in front of the active source. A schematic measurement setup of
the antenna array is given in Fig. 3. The scattered fields are de-
duced from the total field by subtracting the incident field, mea-
sured in the absence of any targets. Furthermore, the measured
scattered fields have been calibrated so that a unit line source
directed in the direction can be used as the model of the inci-
dent fieldsviz.

(24)

where is the permeability in vacuum.

Fig. 3. Measurement setup of the experimental data and the cylindrical
phantom (schematic).

In the inversion of experimental data, we assumed that the
unknowns object entirely located within a test domainwith
dimension of 6.4 by 6.4 . The quantity is the wavelength in
water with at frequency GHz.
Hence, the wavelength mm. The discrete form of
the algorithm is obtained by dividing the test domain into 64
by 64 subsquares, assuming the contrast, the contrast sources,
and the fields to be piecewise constant. The integrals over sub-
squares are approximated by integrals over circles of equal area
which are calculated analytically [15]. The discrete spatial con-
volutions are efficiently computed using fast Fourier transform
(FFT) routines.

The lower and upper bounds of the complex permittivity used
in the inversion algorithm are given by

and (25)

A. Cylindrical Phantom

The first experimental data (data file: FANCENT.ASC) were
obtained from a phantom consisting of two Plexiglas cylinders,
filled with different concentrations of ethyl alcohol. Fig. 3
shows the phantom for which the measurements were taken.
Cylinder A was filled with a 96% solution of ethyl alcohol,
with . Cylinder B was filled with a 4% ethyl
alcohol solution, with . The complex permittivity
of the Plexiglas was .

The results obtained from the initial estimates (back prop-
agation) are given in the top plots in Fig. 4. This is approxi-
mately identical if we use the spectral diffraction tomography
technique. From the back propagation results, we can “already”
observe the presence of cylinder B, but the indication of the pres-
ence of cylinder A is very poor. Nevertheless, the reconstructed
values are completely wrong.

The results of our nonlinear inversion method described in the
present paper after 1024 iterations are given in the bottom plots
of Fig. 4. Although the total number of iterations is large, the
total computation time is limited. Note that we do not solve any
forward problem in each iteration of the algorithm. One iteration
of the method takes approximately 8 s on a personal computer
with a 600-MHz Pentium III processor. After 1024 iterations,
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Fig. 4. Cylindrical phantom: images obtained from back propagation (top
plots) and from nonlinear inversion (bottom plots).

the normalized error in the data equations is already reduced
to 4.08%, and adding more iterations does not change the result.

Note that this particular experimental data has also been used
to test the Newton–Kantorovich method by Joachimiwiczet al.
[7]. They have obtained a comparable numerical result, but in
the Newton–Kantorovich method morea priori information,
like the location of the boundary of cylinder B and its (approx-
imate) permittivity value, has to be used. Without using thisa
priori information, the Newton–Kantorovich method was not
able to produce acceptable results [7].

B. Human Arm Phantom

The next experimental data (data file: PHANARM.CO) were
obtained from a human arm phantom. The external layer (skin)
and bones of the human arm phantom were made with PVC with
complex permittivity and the muscle was

. Again we show first the results obtained from the initial
estimates (back propagation). These results are given in the top
plots of Fig. 5. The results of our nonlinear inversion method
after 1024 iterations are given in the bottom plots of Fig. 5. After
1024 iterations, the normalized error in the data equations is
already reduced to 6.40%, and adding more iterations does not
change the result. From the results, we observe that the bones
are clear and sharp. The drawback is that for one of the bones
the imaginary part of the reconstructed complex permittivity is
completely wrong. This can be caused by the presence of the
noise in the experimental data (in typical operational conditions
the SNR is around 20 dB).

Fig. 5. Human arm phantom: images obtained from back propagation (top
plots) and from nonlinear inversion (bottom plots).

C. Human Forearm

As the last experimental data, we consider data that were
taken from a human forearm (data-file: BRAGREG.ASC). The
back propagation results are given in the top plots of Fig. 6.
The results of our nonlinear inversion method after 1024 iter-
ations are given in the middle plots of Fig. 6. After 1024 itera-
tions, the normalized error in the data equations is already
reduced to 4.10%, and adding more iterations does not change
the result. The reconstructed images show the positions of the
two bones and the correct value of the muscle (approximately

). Conversely, due to the water and tissue attenua-
tion and the reduced dynamic range of the available data, the
complex permittivity values of the bones are higher than the
real ones (the value should approximately be at
2.33 GHz).

In order to investigate whether we can improve the results
by reducing the cell size, in the bottom plots of Fig. 6 we
present also inversion results using a discretization mesh that
is twice as fine. Thus, now the test domain 6.4by 6.4 is
discretized into 128 by 128 cells. The computation time is
approximately increased by a factor of four. We observe that
the complex permittivity values of the reconstructed bones
are improved slightly. The normalized error in the data
equations is now reduced to 4.06%, which is lower than the
previous value. Thus, for this particular data set, reducing the
mesh size is not advantageous.
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Fig. 6. Human forearm: images obtained from back propagation (top plots),
from nonlinear inversion using 64 by 64 cells (middle plots) and using 128 by
128 cells (bottom plots).

V. COMPARISON OF 2-D TM- AND 2-D
TE-POLARIZATION MEASUREMENTS

In this section, we present some comparisons of the inver-
sion using 2-D TM- and 2-D TE-polarization measurements.
Because there are no experimental data available for the 2-D
TE-polarization case, we use synthetic data. The 2-D TE-polar-
ization measurements can be obtained by rotating the horn an-
tennas over 90 degrees in the circular measurement antennas.
The synthetic data are generated using a Conjugate Gradient
FFT method; see [15] for 2-D TM-polarization measurements
and [16] for 2-D TE-polarization measurements. Note that, due
to the gradient-divergence operator working on the integral over
domain , the discretization procedure of the TE-polarization
measurements is more complicated than that for the TM-polar-
ization measurements. After generation of synthetic data, 5%
random additive white noise of the maximum value of all the
scattered field are added to the data. In the inversion algorithm

Fig. 7. Synthetic arm: images of the original profile (top plots) and the results
using 2-D TM polarization (middle plots), and using 2-D TE polarization
(bottom plots).

of the 2-D TE-polarization measurement, we use a slightly dif-
ferent technique (see [17]) to obtain the discrete form of the in-
version algorithm than the one used to generate synthetic data.

In order to have a criterion of the quality of the reconstructed
images, we define the contrast error as follows:

(26)

where is the original profile which has been used to gen-
erate synthetic data. Note that for the study using the synthetic
data thea priori information about the lower and upper bound
of the complex permittivity contrast, cf. (25) is not used.

A. Synthetic Arm

As a first example, we consider a synthetic model of human
forearm. The data are collected using the measurement setup
and frequency of operation as the ones used for the experi-
mental data. The original profile of the synthetic human forearm
is given in top plots of Fig. 7. The background medium is water
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( ). The model consists of bones with complex per-
mittivity , marrows with , and four blood
vessels with . The permittivity of the muscle is .
The sizes of the object domainsin Fig. 7 are 4.5 by 4.5 .

In the inversion, this test domain is discretized into 45 by
45 cells. The inversion results from the TM-polarization mea-
surement after 1024 iterations are given in the middle plots of
Fig. 7. After 1024 iterations, the normalized error in the data
equations and the contrast error are reduced to 2.63% and
7.78%, and adding more iterations does not improve or change
the result. One iteration now takes approximately 8 s.

The inversion results from the TE-polarization measurement
after 1024 iterations are given in the bottom plots of Fig. 7.
After 1024 iterations, the normalized error in the data equa-
tions and the contrast error are reduced to 1.11% and
6.30%, and adding more iterations does not improve the result.
One iteration now takes approximately 16 s. We observe that the
boundaries of the bones are reconstructed better than the ones
obtained from TM-polarization measurements. The reason for
the improved reconstruction is based on the fact that in the inte-
rior of the test domain the electric fields are not tangential of
the different tissue, so that the jumps in these components yield
better reconstruction results of these interfaces. In order to in-
vestigate this improvement, we consider a more inhomogeneous
example, namely the synthetic neck.

B. Synthetic Neck

The same measurement setup is still used as the previous
example (64 sources with 33 receivers in front of a particular
source), but now the radius of the antennas is 11.19 cm and the
frequency of operation is 1 GHz. The complex permittivity of
water at this frequency of operation is . The original
profile of this simple neck model is given in the top plots of
Fig. 8. The neck model consists of fat tissue with complex per-
mittivity , cartilage with , veins/arteries
with , bone with , trachea 1, and marrow

. The permittivity of the muscle is . The
size of the domain in Fig. 8 is by where is the
wavelength in water at frequency of operation GHz.

In the inversion, this test domain is discretized into 33 by
37 cells. The inversion results from the TM polarization mea-
surement after 1024 iterations are given in the middle plots
of Fig. 8. After 1024 iterations, the normalized error in
the data equations and the contrast error are reduced to
0.06% and 17.97%, and adding more iterations does not im-
prove the result. Note that, contrary to the results for the syn-
thetic arm, the normalized errors in the data equations are very
small, while the error in contrast is still large. This indicates a
lack of information.

Next, we investigate whether we can improve the results using
the TE-polarization measurements. The inversion results from
the TE-polarization measurement after 1024 iterations are given
in the bottom plots of Fig. 8. We observe that the results in-
deed improved. After 1024 iterations, the normalized error
in the data equations and the contrast error are reduced
to 0.31% and 16.19%, and adding more iterations does not im-
prove the result.

Fig. 8. Synthetic neck: images of the exact profile (top plots) and the results
using 2-D TM polarization (middle plots), and using 2-D TE polarization
(bottom plots).

VI. RESULTS OFFULL-VECTORIAL 3-D INVERSION

As a test case for our full-vectorial 3-D inversion algorithm
we use the 3-D version of the synthetic example in [18]. The
measurement setup is similar to the one used by Bulyshevet
al. [13] where they employ a scalar approximation of the field
problem. We have three rings containing transmitter and re-
ceiver antennas. A schematic view of the transmitter–receiver
setup and the test domainis given in Fig. 9. All receivers op-
erate simultaneously (in all three rings) while the transmitter op-
erates one after another. The receiver records all the components
of the vector electric field (multicomponent receiver). The
transmitter is modeled using a point magnetic dipole directed in
the directionviz.

(27)
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Fig. 9. Schematic of the antenna positions and the test domainD.

Fig. 10. Volume slices of the original profile (top plots) and the reconstructed
results (bottom plots).

The frequency of operation of the transmitters is GHz. In
each ring, we have 6 transmitter stations and 30 receiver stations,
thus in total we have 18 90 data points. The vertical positions
of the circular rings are , 0, and , where

m, is the wavelength in water with complex permittivity
. Note that making the number of transmitters equal

to the number of receivers could be extremely expensive from a
computational point of view.

The original profile which has been used to generate synthetic
data are given in the top plots of Fig. 10. These plots show the
volume slices at and . The dimension (domain

) of the profiles in Fig. 10 is 3 by 3 by 3 . The objects
have a complex permittivity close to that of biological tissue
(bone and muscle ), and they are
immersed in water. The synthetic data are generated by a con-
jugate gradient FFT method using discretization cells of 30
30 30. The technique to obtain the discrete form of the al-
gorithm is described in [19]. After generation of synthetic data,
5% random additive white noise is added.

In the inversion, we discretize the test domaininto 15 by
15 by 15 cells, thus the number of complex unknowns is equal to
3375. The reconstruction results after 1024 iterations are given

Fig. 11. Contour plots of the original profile (top plots) and the reconstructed
results (bottom plots) atx = 0.

in the bottom plots of Fig. 10. Now, one iteration takes approx-
imately 22 s on a personal computer with a 600-MHz Pentium
III processor. We observe that the results are quite satisfactory
in spite of the use of limited data. The only drawback is that the
resolutions in the vertical direction are worse than those in the
transversal plane. This is due to the limited number of transmit-
ters and receivers in the vertical direction. In order to have more
details on the reconstruction results, we present also the contour
plots in Fig. 11 at (the plane in the middle ring).

VII. CONCLUSION

The present results of experimental biomedical data using
a 2-D TM-polarization measurement at 2.33 GHz show that
the MR-CSI method leads to an effective inversion technique.
The algorithm is fully iterative and does not solve any forward
problem in each of its iterative steps. This makes the method
suitable for large scale computations. Furthermore, the artificial
tuning process with a weighting parameter of the regularization
to obtain the “cosmetically best” results seems superfluous.

From the feasibility study results of the synthetic arm and
the synthetic neck of the 2-D TM- and 2-D TE-polarization
measurements, we observe that the algorithm is not able to
reconstruct tissues with a dimension less than half the wave-
length. This limitation is known as the Rayleigh criterion.
Thus, in order to image inhomogeneities with sizes less than
half a wavelength, one has to use a higher frequency (shorter
wavelength) wave field experiment. The problem with using
a single high-frequency experiment is the increase of the
nonlinearity of the problem, which will effect the performance
of the algorithm. Thus, in order to robustly solve this problem,
a multifrequency experiment inversion has to be included
(see, e.g., [20]) and because the Maxwell model (due to the
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relaxation effect of the complex permittivity) no longer holds,
a more complicated model, e.g., the Debye model, has to be
used. Moreover, under the hardware point of view, some issues
concerning the SNR, repeatability, and isolation requirements
of the scanner must be investigated. This is one subject of our
future research.

As our final test study, we show a simple example of inversion
of full-vectorial 3-D biomedical media. The results indicate that
the inversion method can obtain satisfactory 3-D results using a
limited data set.

APPENDIX

The MR-CSI method starts with the updating of the contrast
sources and contrast in the following manner.

A. Updating the Contrast Sources

Define the data error and the object error to be

(28)

(29)

Now suppose and are known. We update by

(30)

where is a real constant parameter and the update directions
are functions of position. The update directions are chosen

to be the Polak–Ribière conjugate gradient directions. These up-
date directions are given by

(31)

where

(32)

In (32), and are the adjoints of and mapping
into and into , respectively. Further,

the overbar denotes complex conjugate. The real parameter
in (30) is found explicitly to be

Re

(33)

We choose as starting values the contrast sources that mini-
mize the normalized errors in the data equations, which are
the contrast sources obtained by back propagation

(34)

B. Updating of the Contrast

Before updating the contrast, we first compute

(35)

Now, supposing that and are known, we update
by

(36)

where is a constant parameter and the update directionis
taken as the Polak–Ribière conjugate gradient direction

(37)

As in [12], the preconditioned gradient in (37) is given by

(38)

where

(39)

and

(40)

Note that the gradient tends to the direction as the gra-
dient tends to zero. The weighting of the gradients clearly
depends on the normalized errors in the cost function. Since
we have a multiplicative cost function, one can expect a higher
nonlinear functional, but the gradient of this cost function has
the same form as the gradient of an additive cost function with
a weighting parameter related to ; see, e.g., [9]. Moreover,
we observe that the gradient of the present regularization
factor is similar to the one of total-variation regularization;
see [9]. Hence, this weighted regularization factor
combines the features of minimization of the total variation in
the -norm and in the -norm (through its gradient).

The minimization of the multiplicative cost functional (16)
can be performed analytically. The cost functional is a fourth-
degree polynomial in viz.

(41)

where

(42)
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Differentiation with respect to yields a cubic equation with
one real root and two complex conjugate roots. The real root is
the desired minimizer .

As far as the starting value is concerned, we start with the
initial estimates of (34) and compute the initial field
using (35) to obtain

(43)

This completes the description of the MR-CSI algorithm.
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