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Imaging of dynamic heterogeneities
in multiple-scattering media
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A new method of visualizing objects with distinct internal dynamics of the constituent scattering particles em-
bedded in a liquid multiple-scattering medium is presented. We report dynamic multiple-light-scattering ex-
periments and a theoretical model, based on diffusing photon-density waves for concentrated colloidal suspen-
sions in Brownian motion, as a background medium into which is inserted a capillary containing (i) the same
suspension under flow, or (ii) suspensions of different particle sizes in Brownian motion. These model objects,
with purely dynamic but no static scattering contrast, can be visualized by space-resolved measurements of the
time autocorrelation function g2(t) of the scattered light intensity at the sample surface. Maximum contrast
occurs at a parameter-dependent finite correlation time t. The physical origin of this effect is outlined. Our
data are in excellent quantitative agreement with the model, with no adjustable parameter. © 1997 Optical
Society of America. [S0740-3232(97)00701-1]
1. INTRODUCTION
Dynamic fluctuations of multiple-scattered light from tur-
bid but macroscopically homogeneous liquid suspensions
have been widely investigated in recent years, both theo-
retically and experimentally. The time autocorrelation
function g2(t) of the scattered light intensity provides un-
ambiguous quantitative information about various types
of motion of the scattering particles, as may be illustrated
by research on Brownian motion,1 short-time ballistic
motion,2 shear flow,3,4 acoustic modulation,5 or structural
rearrangement of foams.6 In fact, the different motions
generate rather characteristic time dependences of g2(t).
At the same time, substantial interest has developed in

the effort to image or to locate objects that are buried
more deeply than a few scattering mean free paths of
light inside a multiple-scattering medium. Many pos-
sible applications, particularly in medical sciences, are
based on the fact that an absorbing or transmitting object
modifies the spatial distribution of the diffusing photon
density. As a consequence, the light intensity emerging
from the sample surface contains some information about
the object’s position and size.7,8

Combining the two above-mentioned features makes it
0740-3232/97/010185-07$10.00 ©
possible to localize or to image objects consisting of scat-
tering particles undergoing a motion that differs from the
particle’s motion outside the object.9,10 Boas et al.9 have
visualized a spherical inclusion filled with a colloidal sus-
pension in Brownian motion surrounded by a solid
multiple-scattering slab, with the contrast being in the
particle dynamics and in the static scattering properties.
Heckmeier and Maret10 have visualized shear flow of a
colloidal suspension confined in a capillary embedded in
the same suspension, thus exploiting dynamic contrast
alone. In these experiments the use of a backscattering
geometry is very convenient and should be more appropri-
ate for most practical applications.
In this paper we extend the measurements reported in

Ref. 10 to dynamic contrast that is due to differential
Brownian motion (but no flow), using different-size par-
ticles inside and outside the capillary. In addition, we
compare the data with a diffusion theory for g2(t), which
is developed for two distinct sample geometries: an infi-
nite slab of thickness d and a cylindrical capillary of ra-
dius a, respectively, embedded in a semi-infinite slab.
The parameters are chosen such that there is no static
scattering contrast between the object and its environ-
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ment. Our theory quantitatively accounts for all the fea-
tures of our data on flow and on differential Brownian mo-
tion. The general case of combined static and dynamic
contrast is not considered here, since its theory is more
involved.

2. THEORY
It can be shown9 that in a highly multiple-scattering re-
gime l* ! L, where l* is the transport mean free path for
elastic scattering and L is a characteristic dimension of
the sample, the nonnormalized temporal depolarized
electric-field autocorrelation function at the position r
within a turbid medium G1(r, t) 5 ^E(r, t)E* (r, t
1 t)& is well approximated by the solution of the steady-
state diffusion equation.9,11 In the case of negligible light
absorption, this equation can be written as

@“2 2 k2~t!#G1~r, t! 5 2
S~r!

Dp
, (1)

where k2(t) describes the attenuation of temporal correla-
tion with time, which is discussed below; Dp 5 vl* /3 (v
denotes the speed of light in the medium) is the photon
diffusion coefficient; and S(r) is a light-source distribu-
tion. In the case of pure Brownian motion of scatterers
k2(t) 5 3t/(2t0l*

2), where t0 5 (4k0
2DB)

21, with DB
being the particle diffusion coefficient and k0 the wave
number of the light in the medium. This type of diffusion
equation was initially derived from the transport theory
of light in a macroscopically homogeneous medium12 for a
correlation function measured far from its boundaries and
far from the light sources. It was shown, however, that
Eq. (1) is also valid even when these conditions are not
strictly fulfilled. Thus, for instance, Eq. (1) gives correct
results not only for the correlation function of light trans-
mitted or reflected from a slab filled with a turbid
medium12,13 but also for turbid media with large-scale
spatially varying dynamics.9 For that case an expression
for G1(r, t) that considers the Brownian motion of scatter-
ers as a source of wave dephasing has been derived.
Here we generalize this description to the situation of Poi-
seuille flow of scatterers, which is simply done by chang-
ing of the t dependence of k2(t).
We consider a semi-infinite medium that occupies the

half-space x . 0 in which is embedded a hidden inclusion
(the object) of volume V1 @ l* 3 limited by the surface S1 .
This inclusion is characterized by different dynamics of
scatterers as compared with the surrounding medium.
To describe this difference we introduce an additional
spatial dependence of k2 in the form k2(r, t) 5 k in

2(t) in-
side V1 and k2(r, t) 5 kout

2(t) elsewhere. Such an ap-
proach is valid only for sufficiently large inclusions, that
is, when the diffusion approximation is applicable inside
the inclusion. Since we are interested in purely dynamic
heterogeneities, we assume the photon diffusion coeffi-
cient or the photon transport mean free path to be con-
stant within the entire scattering volume, inside and out-
side V1 .
We are interested in the case of flow of scatterers inside

either a cylindrical tube or a slab with volume V1 in
which Brownian motion also exists. If the scatterers in
the surrounding medium undergo only Brownian motion,
we have k in
2(t) 5 3t/(2t0

inl* 2) 1 6@t/(t f l* )#
2 and

kout
2(t) 5 3t/(2t0

outl* 2), where t0
in,out are related to the

particle diffusion coefficients DB
in,out inside and outside

V1 through t0
in,out 5 (4k0

2DB
in,out)21 and tf is a charac-

teristic time introduced by the flow.
To distinguish between perturbations of correlation

arising from the presence of flow and those determined by
different particle diffusion coefficients inside and outside
the inclusion, we consider the two following cases: (i)
that in which the flow of a fluid suspension is surrounded
by exactly the same medium (t f , `, t0

in 5 t0
out), and (ii)

that of the purely Brownian inhomogeneity (t f → `,
t0

in Þ t0
out).

In the above formulas the term (3/2l*2)(t/t0) describes
attenuation of correlation due to the Brownian motion of
scatterers,11,14 and the (6/l* 2)(t/t f)

2 determines the addi-
tional loss of correlation caused by the flow.15 The char-
acteristic time tf depends on a distribution of velocity gra-
dients related to a particular geometry of the flow. We
assume that tf is determined by the root-mean-square ve-
locity gradient15 G1 :t f 5 A30/(k0l*G1). G1 5 G/A3 for
planar Poiseuille flow in an infinite slice of width d
5 2a @V 5 G/d(a2 2 x2)ez , 2a < x < a#, and G1
5 G/A2 for cylindrical Poiseuille flow in an infinite cap-
illary of diameter d 5 2a [in cylindrical coordinates V
5 G/d(a2 2 r2)ez , 0 < r < a]. In the latter case G1
5 32Q/(A2pd3), where Q is the flow rate. Indeed, this
description means that an additional dephasing of the
photons inside the region of flow depends not on the par-
ticular form of their trajectories but only on the total
length of their paths inside V1 . This approximation is
therefore valid only when d @ l* and for long diffusion
paths, which correspond to relatively short correlation
times.11

To complete the mathematical formulation of the prob-
lem, we specify the boundary conditions on the surface S
of the medium and on the surface S1 of the dynamical
heterogeneity9,16:

G1
out~r, t! 2 ~2/3!l* @n • “G1

out~r, t!# 5 0, r P S,

G1
in~r, t! 5 G1

out~r, t!,

Dp
in@n • “G1

in~r, t!# 5 Dp
out@n • “G1

out~r, t!#,

r P S1 . (2)

Here n is a unit normal vector pointing inward toward
the corresponding surface, and G1

in(r, t), G1
out(r, t), and

Dp
in , Dp

out are solutions of Eq. (1) and photon diffusion
coefficients inside and outside the volume V1 , respec-
tively. In our case of Dp

in 5 Dp
out the last condition can

be simplified. The first condition can be approximately
replaced by a null condition for G1 at an extrapolated
boundary13,17 x 5 2x1 5 2Dl* , where D depends sensi-
tively on the transport of light near the sample boundary
(see Ref. 4 and references therein). D0 5 0.7104 is found
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from the Milne theory14 for isotropic scattering and for
vanishing optical index mismatch between the scattering
medium and its surroundings. We can account for mis-
match in the index of refraction at the surface by chang-
ing this extrapolation length,4,18 i.e., by changing D. The
boundary conditions (2) have the same form as for diffuse
photon-density waves and were discussed in detail
previously.12,16

To simplify our analysis, we assume a plane wave inci-
dent upon the medium surface. This results in a source
term S(r) 5 d(x 2 x0) in Eq. (1) with x0 . l* . In other
words, we assume that photons begin their scattering se-
quences at a depth x0 of the order of a transport mean
free path inside the medium. The light-collecting detec-
tor is assumed to be placed on the surface of the medium.
This is experimentally realized by imaging of the sample
surface on the cathode of a phototube.
In the weak multiple-scattering limit (k0l* @ 1) the

normalized autocorrelation function of the depolarized
light backscattered from a homogeneous semi-infinite
sample (t f → `, t0

in 5 t0
out), g1(t) 5 G1(t)/G1(0), be-

comes

g1
0~t! 5 expS 2gA 3t

2t0
outD , (3)

where g 5 1 1 D is a numerical constant of order 2 and
the superscript 0 of g1

0(t) denotes the homogeneous case.
This result, which was obtained previously by many in-
vestigators, is in excellent agreement with experi-
ments.11,16

When V1 has the form of an infinite slice of width d
that is embedded at a depth x inside the medium, we ob-
tain the following equation as the solution of Eq. (1) with
boundary conditions (2) in backscattering:

g1~t! 5
F~j1!

F~j2!
, (4)

where

F~j! 5 k inkout exp~koutj! 1 tanh~k ind !

3 @kout
2 cosh~koutj! 1 k in

2 sinh~koutj!# (5)

and j1 5 x 2 x0, j2 5 x 1 x1.
If, in contrast, V1 has the form of a cylindrical capillary

of radius a and infinite length that is located parallel to
the z axis at a distance x from the surface, we can write
the solution of Eq. (1) as a superposition of the correlation
function in the homogeneous case (incident wave in terms
used for diffuse photon-density waves; see Refs. 8 and 9)
given by Eq. (3) and the term that accounts for the pres-
ence of the cylindrical inhomogeneity (scattered wave).
In the infinite medium for a plane-wave source described
above, this important contribution depends only on the y
coordinate of the capillary axis ( y 5 0 corresponds to the
centered capillary position with respect to the light detec-
tor) and, in our case of Dp

in 5 Dp
out, is found to have the

following form:
g1
scatt~y, t!

5 2
h 2 x0

2pl* (
n51

` E
2u1

u1 dus

cos us
KnS kout h 2 x0

cos us
D

3 Kn~koutAh2 1 y2!cos@n~us 2 u!#

3 F kout In8~kouta !In~k ina ! 2 k in In~kout a !In8~k ina !

koutKn8~kouta !In~k ina ! 2 k inKn~kouta !In8~k ina !
G .
(6)

Here In and Kn are modified Bessel functions, the prime
indicates differentiation with respect to the argument, h
5 x 1 a denotes the x position of the capillary axis, and
u 5 arctan(y/h). u1 , which determines the limits of inte-
gration, is equal to p/2 if an infinite plane-wave source is
considered. A light source of finite extension in the di-
rection of the y axis can approximately be taken into ac-
count by use of a u1 value that corresponds to the angular
size of the source viewed from the capillary center.
To meet the null boundary condition on the plane x

5 2x1 and thus obtain g1
scatt for the geometry of inter-

est, we use the image method, i.e., we place the same cap-
illary and a negative light source at the other side of this
plane to obtain a symmetric geometry, as discussed in
Refs. 8 and 13. Whereas Eq. (6) for the infinite medium
is an exact solution of Eq. (1), the solution for a semi-
infinite medium obtained with the image method is only
approximate because only first-order scattered waves (in
terms used for diffuse photon-density waves), are taken
into account. In fact, the wave scattered from the actual
capillary that is given by Eq. (6) hits the surface of the
image capillary and gives rise to a second-order scattered
wave, which in turn hits the capillary, and so on. There-
fore an exact solution of the semi-infinite problem is an
infinite series of consecutive scattered waves. Here we
take only the first-order scattered waves, since they give
the main contribution to the correlation function.
Higher-order scattered waves cannot easily be taken into
account but are negligible under most circumstances, as
discussed in Ref. 8. Note that both the above solutions
for plane and cylindrical inclusions reduce to Eq. (3) for a
homogeneous semi-infinite sample with pure Brownian
motion if one assumes that k in(t) 5 kout(t) for all t or that
d 5 0.
Although the solution for the cylindrical inhomogeneity

[Eq. (6)] is much more complicated than the one for the
planar inclusion [Eqs. (4) and (5)], the physical effects de-
scribed by both of them are very similar. This is illus-
trated in Fig. 1, in which normalized time autocorrelation
functions are plotted for the case in which the colloidal
suspension is the same inside and outside the inclusion,
flowing either in a cylindrical tube (solid curves) or in a
planar sheet (dashed curves) for different depths x. In
both cases there is no influence of the dynamical hetero-
geneity for t 5 0 (static experiment). All the curves are
essentially identical at short times (t ! t f

2/t0
in), where

the overall decay is dominated by the (identical) Brown-
ian motion inside and outside, because this decay is linear
in t as opposed to the t 2 dependence for flow.4 At inter-
mediate correlation times the shear-flow-induced distor-
tions are obviously largest for the shortest distances x.



188 J. Opt. Soc. Am. A/Vol. 14, No. 1 /January 1997 Heckmeier et al.
In addition, at given x, they are larger for the case of pla-
nar inclusion, since in this case more photons scan re-
gions of shear because of the infinite size of the sheet in
the direction of the y axis. At long correlation times all
the curves tend to coincide with the curve for the homo-
geneous case (dotted curve). This can easily be
explained10 by the time–path relation in dynamic mul-
tiple scattering, which associates long correlation times
with short paths of diffusing photons, and vice versa.16

For long times t the decrease of the correlation function is
determined by short diffusion paths that do not reach suf-
ficiently deep into the sample, on average, to hit the in-
clusion. A useful way to measure the influence of the in-
clusion is to calculate the maximum absolute value of the
difference between the perturbed correlation function
g1(t) and the unperturbed one, given by Eq. (3):

Dg 5 max
0,t,`

ug1~t! 2 g1
0~t!u, (7)

which is shown in the inset of Fig. 1 as a function of the
inclusion depth x. It can be seen that significant pertur-
bations of the correlation function due to flow inside the
inclusion appear up to depths of approximately 10–15l*
in this case.

3. EXPERIMENT
A vertically polarized beam of a monomode Ar1 laser (l
5 514.5 nm; waist, '1 nm) was incident upon the scat-
tering sample cell (Fig. 2). The backscattered light was
imaged from a 1-mm-diameter region of the cell surface
through two pinholes and a lens onto a photomultiplier

Fig. 1. Theoretical time correlation functions for cylindrical
(solid curves) and planar (dashed curves) Poiseuille flows embed-
ded in a semi-infinite homogeneous sample. The lower, middle,
and upper pairs of curves correspond to depths 3l* , 5l* , and
7l* , respectively. y 5 0, d 5 22l* , t0

in 5 t0
out 5 2.66 3 1024

s, t f 5 4.6 3 1026 s, and g 5 2.8. The dotted line corresponds
to a homogeneous semi-infinite medium. The inset shows the
maximum absolute differences between the correlation functions
with flow and with no flow (dotted line) as a function of flow
depth (x).
tube, thus collecting approximately one speckle spot. To
reduce the influence of low-order scattering paths only de-
polarized light was detected (V–H configuration). The
normalized intensity autocorrelation function g2(t) was
calculated from the photomultiplier output with an elec-
tronic correlator. To cover the full time range of speckle
fluctuations of interest, we used 88 correlator channels in
multiple tau mode. We obtained the autocorrelation
function of the scattered electric field g1(t) by applying
the Siegert relation.19 Since the observation area of the
scattered light necessarily had a nonvanishing size, the
experimental values of g1(0) were always somewhat
smaller than 1, typically 0.75 6 0.01. Hence, for quanti-
tative comparison between experimental data and theory,
the experimental g1(t) is multiplied by a constant.
The light-scattering cell was filled with a monodisperse

suspension of polystyrene beads (particle diameter b
5 0.12 mm, t0

out 5 2.66 3 1024 s, DB
out 5 3.55 3 10212

m2/s, particle volume fraction F 5 0.058, photon trans-
port mean free path l* 5 69 mm). For visualization of
flow, the capillary inside the cell contained this very same
suspension, whereas for the case of a heterogeneity with
distinct Brownian dynamics rather than flow the capil-
lary was filled with a suspension of polystyrene beads of
different particle diameters. This was realized with two
different suspensions: b 5 0.7 mm and b 5 2.04 mm,
with t0

in 5 1.55 3 1023 s (4.52 3 1023 s); DB
in 5 6.08

3 10213 m2/s (2.09 3 10213 m2/s); F 5 0.035 (0.067), re-
spectively. The concentration of the suspension was al-
ways adjusted to match l* 5 69 mm of the surrounding
liquid, and the value l* 5 69 mm was independently
checked by standard multiple-light-scattering experi-
ments in transmission geometry.16 By measuring the
static backscattered intensity for different y positions of
the capillary, we carefully checked the absence of static
scattering contrast both for the Brownian heterogeneities
and for the glass wall of the capillary. To obtain an ex-
perimental g value [Eq. (3)], a reference measurement

Fig. 2. Sketch of the light-scattering cell for realization of dy-
namic heterogeneities inside a turbid liquid. A large cell (5
cm 3 4 cm 3 2 cm) is completely filled with a concentrated col-
loidal suspension. The included cylinder consists of an x-ray
capillary (optical glass; length: 3 cm, diameter d 5 1.5 mm,
wall thickness: 0.01 mm). A tube connected to the capillary
delivers suspension from an elevated tank at flow rates con-
trolled by its height. For the Brownian inclusions the capillary
is filled with the corresponding suspensions. x 5 0: sample
surface, y 5 0: center of the capillary.
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without capillary was made for every dynamic inhomoge-
neity. For reasons of finite laser-beam size and because
of a slightly different experimental setup for Brownian
and flow measurements,20 these values range from 2.12 to
2.82.

4. RESULTS AND DISCUSSION
A. Visualization of Flow
As shown in Fig. 1, the visualization of flow in a hidden
slab or a capillary is possible within a finite window in
correlation times. At sufficiently short times and suffi-
ciently long times the decay of g1(t) is always dominated,
at finite shear rates, by the Brownian motion. At short
times this is due to the different time dependence of g1(t)
for Brownian motion (At/t0

in) and shear motion (t /tf); at
long times, because of the shortness of the contributing
scattering paths that do not reach the heterogeneity bur-
ied at a finite depth. In Fig. 3 we compare the predicted
function g1(t) for the case of the hidden capillary at dif-
ferent x positions, together with the corresponding set of
data.10 We find excellent agreement between data and
theory over the entire range of available data. Note that
all the relevant experimental parameters (l* , g, d, x,
t0
in , Q) were independently measured, and hence there is

no adjustable fitting parameter. The remarkable agree-
ment shown in Fig. 3 demonstrates the validity of the dif-
fusion approach for the given typical set of parameters.
Closer inspection of the case without flow, shown in

Fig. 3, reveals a small deviation of the data from the At
behavior expected for plane-wave backscattering from a
homogenous medium at short times. The effect is shown
more clearly in Fig. 4, in which we compare backscatter-
ing data from the same sample, using two incident beam

Fig. 3. Experimental time correlation functions for various dis-
tances x of the capillary surface from the inner surface of the
sample cell [x 5 2.8l* (s), 4.2l* (L), 5.7l* (n), 7.1l* (h);
y 5 0] and Q 5 0.50 ml/s compared with the case of no flow (1).
The inset shows the maximum difference Dg of these correlation
functions with respect to the Brownian case as a function of the x
position of the capillary. The theoretical predictions are indi-
cated as solid curves.
waists of fivefold different size. The At behavior is recov-
ered for the larger beam waist. We therefore attribute
the small short-time deviation in our typical data to the
use of a smaller laser-beam size (1 mm), which is neces-
sary for visualizing millimeter-size objects.21 In Fig. 5 a
set of data taken at fixed x 5 2.8l* is shown for different
flow rates. The major effect of increasing flow rate is
to increase the time decay of g1(t) at intermediate t, that
is, for t . t f

2/t0
in . The data shown are not inconsistent

Fig. 4. Time correlation functions for backscattering from the
suspension (l* 5 69 mm, D 5 3.55 3 10212 m2/s), without in-
cluded heterogeneity for different laser-beam sizes. The beam
waist is roughly equal to 1 mm (s); the expanded beam diameter
is roughly equal to 5 mm (1).

Fig. 5. Time correlation functions for different flow rates Q.
The capillary is placed at x 5 2.8l* inside the cell and is cen-
tered with respect to the incoming laser beam [y 5 0; Q
5 0.90 ml/s (s), Q 5 0.50 ml/s (L), Q 5 0.22 ml/s (h), no flow
(n)]. The theoretical predictions are indicated as solid curves.
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with the idea that the upper limit of the time window of
the effect of flow depends not on the flow rate but merely
on x.10 The agreement of the data with the diffusion
theory is very good, but slightly less than in Fig. 3 be-
cause of the small effect of the finite beam waist discussed
above. In addition, the deviations seen at largest t at the
highest flow rate are due to small uncertainties in the
measured average scattering intensity.
Finally, Fig. 6 shows measured and theoretical values

of Dg as a function of the y position of the capillary for
fixed x, fixed laser incidence, and fixed area of observa-
tion. Again, theory and data agree within the experi-
mental errors without an adjustable parameter. The
slight—and perhaps insignificant—asymmetry of data
with respect to theory is attributed to the experimental
difficulty of defining the center-of-gravity position and the
diameter of the capillary to better than a few l* .
For practical applications of the described method, it

may appear mathematically rather involved to fit the ex-
perimental curves g1(t) individually, with x, y, d, t0

in ,
and Q as independent fitting parameters. Obviously, es-
timates of y, t0

in , and eventually d can be obtained di-
rectly from a transverse scan in the y direction, as shown
in Fig. 6. The remaining parameters x and Q are easily
obtained by a two-parameter fit, since the short-time
slope of g1(t) is sensitive to Q and x, whereas the long-
time behavior of g1(t), that is, the time of approach of the
case of no flow, depends only on x.

B. Visualization of Distinct Brownian Motion
So far, we have considered the case of flow versus Brown-
ian motion of otherwise identical suspensions. However,
the idea of visualizing dynamic heterogeneities is not re-
stricted to different types of particles’ motion, which give
rise to different t dependences of g1(t). Dynamic con-
trast can also be provided [without flow and, hence, with
identical t dependences of g1(t)] by use of suspensions

Fig. 6. For a fixed x position of 7.1l* inside the cell, Dg is shown
as a function of the y position of the flow (Q 5 0.50 ml/s). The
error bars are due to uncertainty in determining Dg; the width of
the capillary is indicated by the horizontal line. The solid curve
denotes our theoretical prediction.
with different diffusion constants inside and outside the
confined volume. This is illustrated in Fig. 7, in which
we show the time dependence of g1(t) for the case of a cap-
illary filled with larger colloidal particles in Brownian
motion. As above, l* values are adjusted to be identical
(l* 5 69 mm) inside and outside the capillary. The ob-
served dynamic contrast is now positive, since the larger

Fig. 7. Time correlation functions for different positions of the
Brownian heterogeneity [DB

in 5 2.09 3 10213 m2/s; x 5 2.9l*
(s), 5.22l* (L); y 5 2.9l* ] compared with the homogeneous case
without inclusion (1). The inset shows Dg of these correlation
functions as a function of the x position of the capillary. The
theoretical predictions are indicated as solid curves.

Fig. 8. Time correlation functions for different Brownian het-
erogeneities. The capillary is placed at x 5 3.77l* , y 5 2.9l* ,
inside the cell [DB

in 5 2.09 3 10213 m2/s (s), DB
in 5 6.08

3 10213 m2/s (n), DB
in 5 DB

out 5 3.55 3 10212 m2/s (1)]. In-
set: For a fixed x position of 3.77l* inside the cell, Dg is shown
as a function of the y position for these heterogeneities. The
solid curve denotes the theoretical prediction, and the width of
the capillary is indicated by the horizontal line.
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particles in the tube slow down the decay of g1(t). Note
that, unlike in the case of flow, the correlation functions
now differ, in principle, at all small (but finite) t, since
both contributions initially decay as At. At long times,
in contrast, all the curves are expected to merge into the
curve for the homogeneous case at the same time as
above. As discussed previously, this time is controlled
only by x and t0

out .10 Figure 8 shows experimental and
theoretical curves for two different particle sizes in com-
parison with the case of no contrast (the same particle
size inside and outside). The inset gives the correspond-
ing y profiles. It appears that the effect due to Brownian
contrast is generally smaller than the effect of flow and,
in particular, that the two diffusion constants studied
here are rather difficult to distinguish. Nevertheless,
contrast is clearly visible over a very similar range of dis-
tances x and is equally well described by our model.

5. CONCLUSIONS
In this paper we describe the physics of time-dependent
multiple-scattering speckles generated by optical back-
scattering from a colloidal sample into which is inserted a
thin capillary containing colloidal particles with different
dynamical properties. The experimental and the theo-
retical material presented here illustrates that the
method of visualizing dynamic heterogeneities by space-
and time-resolved measurements of the autocorrelation
function of the multiple-scattered intensity works very
well when the dynamic contrast is sufficiently large.
Then, by comparison of data with simple diffusion theory,
the method provides even quantitative information on the
distance of the heterogeneity from the surface and on the
type of motion occurring inside and outside. We can see
with no particular effort a capillary of approximately 20l*
diameter when it is positioned up to approximately
10–20l* inside a liquid turbid suspension. This is simi-
lar to the typical performance in static incoherent
multiple-scattering imaging.7 What remains to be seen
is the ultimate limits of the method and how a true two-
dimensional image can be obtained with realistic techni-
cal effort and acceptable data-acquisition time.
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