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Abstract
Patients with severe aortic stenosis (AS) show progressive 
fibrotic changes in the myocardium, which may impair car-
diac function and patient outcomes even after successful 
aortic valve replacement. Detection of patients who need an 
early operation remains a diagnostic challenge as myocar-
dial functional changes may be subtle. In recent years, speck-
le tracking echocardiography (STE) and cardiac magnetic 
resonance mapping have been shown to provide comple-
mentary information for the assessment of left ventricular 
mechanics and identification of subtle damage by focal or 
diffuse myocardial fibrosis, respectively. Little is known, 
however, about how focal and diffuse myocardial fibrosis oc-
curring in severe AS are related to measurable functional 
changes by echocardiography and to which extent both pa-
rameters have prognostic and diagnostic value. The aims of 
this review are to discuss the occurrence of focal and diffuse 

myocardial fibrosis in patients with severe AS and to explore 
their relation with myocardial function, determined by STE, 
as well as the prognostic and diagnostic potential of both 
parameters. © 2018 S. Karger AG, Basel

Introduction 

The appropriate timing of aortic valve replacement 
(AVR) in asymptomatic patients with severe aortic steno-
sis (AS) remains challenging [1, 2]. Several of these pa-
tients show progressive fibrosis of the left ventricular (LV) 
myocardium, which may impair cardiac function and 
clinical outcomes even after successful AVR [3–5]. These 
individuals may benefit from early AVR before the devel-
opment of irreversible myocardial fibrosis. The identifica-
tion of myocardial damage at an early stage remains chal-
lenging. Indices provided by standard echocardiography 
show a low sensitivity as myocardial structural and func-
tional changes may be subtle. Cardiac magnetic resonance 
(CMR) and speckle tracking echocardiography (STE) 
have been recently shown to provide complementary in-
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formation in the assessment of myocardial fibrosis and its 
functional consequences, respectively [6–9]. However,  
information on the clinical value of the use of these car-
diac imaging techniques in valvular heart disease is scant. 
Moreover, little is known about the relationship between 
myocardial fibrosis and measurable LV systolic function 
by STE. Accordingly, the aim of the present paper is to 
review the existing scientific literature on the relation be-
tween myocardial fibrosis and LV dysfunction and its pos-
sible impact on clinical outcomes in patients with AS.

Pathophysiology of LV Dysfunction in AS

Obstruction of the LV outflow tract due to AS is asso-
ciated with a gradual increase in the LV afterload, which 
ultimately leads to the development of LV hypertrophy. 
Until recently, LV hypertrophy in AS had been consid-
ered a compensatory mechanism of the left ventricle 
muscle to face the high-pressure overload. Hypertro-
phied LV is capable of generating greater forces and high-
er pressures, while the increased wall thickness maintains 
a normal wall stress and sustains LV contractions. How-
ever, this original view of LV hypertrophy as a solely com-
pensatory process has changed in the last decades. Fo-
cused papers have in fact demonstrated a significant rela-
tionship between LV hypertrophy and increased LV 
stiffness, diastolic dysfunction, and increased LV filling 
pressure [10–12]. Thanks to recent advances in cardiac 
imaging, a close association has been observed between 
the development of LV hypertrophy and myocardial fi-
brosis [13]. It has been postulated that, while originally 
being a compensatory process, LV hypertrophy ultimate-
ly becomes maladaptive and leads to myocyte apoptosis 
and diffuse interstitial myocardial fibrosis. These changes 
make the cardiac muscle less compliant and are respon-
sible for the progression of LV hypertrophy towards overt 
heart failure [14–16]. Cardiac fibrocyte cells normally 
produce collagen to provide structural support for the 
heart. When overactivated in response to pressure over-
load, this process causes excessive accumulation of fibro-
sis and damages myocardial muscles. In histology, 2 types 
of myocardial fibrosis have been described: diffuse myo-
cardial fibrosis (DMF), an early form of fibrosis believed 
to be reversible, and focal myocardial fibrosis (FMF), a 
later form that is irreversible [17]. AS is characterized by 
a significant increase in DMF, with a large variation in 
interindividual values [6, 17]. The extent of DMF has 
been shown to be an independent predictor of adverse 
clinical outcomes both before and after AVR as well [15, 

18, 19]. Notably, patients with paradoxical low-flow low-
gradient AS have a higher degree of myocardial fibrosis 
and LV longitudinal dysfunction than patients with nor-
mal-flow high-gradient AS [16, 20]. It has been hypoth-
esized that not only a reduced LV cavity but also LV func-
tional changes as a consequence of myocardial fibrosis 
contribute to a reduction in the LV stroke volume and 
production of a low transvalvular gradient, thus leading 
to a poor outcome [20, 21]. This suggests that DMF may 
be one of the critical mechanisms underlying the transi-
tion of LV hypertrophy to heart failure with an unfavor-
able clinical course. Accordingly, an accurate diagnostic 
technique, able to assess DMF or its functional correlates, 
may be crucial in patients experiencing AS. 

Imaging of Diffuse Myocardial Fibrosis in AS

LV myocardial biopsy has been the gold standard for 
evaluation of DMF for a long time. However, the inva-
siveness, susceptibility to sampling errors, and inability to 
assess the fibrotic burden of the whole LV myocardium 
hamper its clinical utility in daily practice. CMR has 
emerged as a reference noninvasive method to assess both 
FMF and DMF [6, 15, 26]. Late gadolinium enhancement 
(LGE) at CMR is an established technique for assessing 
FMR (replacement fibrosis, scar). In symptomatic pa-
tients with severe AS, FMF occurs mainly in the subendo-
cardial layer of the LV and its degree decreases from the 
base to the apex [15, 16]. Patients with a larger extent of 
FMF had a significantly lower freedom from cardiac 
death at 10 years (42 ± 19% vs. 89 ± 6%, p = 0.002), with 
congestive heart failure being the most common cause of 
death [3]. In another study, the presence of FMF was sig-
nificantly associated with poor postoperative outcomes 
[17]. However, FMF develops later in the disease course 
and, therefore, CMR-derived LGE is not sensitive enough 
to detect the early stage of myocardial damage. Accord-
ingly, in our previous studies which used CMR-derived 
T1 mapping (CMR-T1), a total of 25% of patients had 
extensive (> 30%) DMF and a focal scar was not observed 
in any of them [23, 24]. Using the MOLLI sequence, 
CMR-T1 was in fact recently shown to allow accurate de-
tection and quantification of DMF with excellent preci-
sion, reproducibility, and scan-rescan stability [22]. The 
T1 mapping technique measures the myocardial T1 re-
laxation time before or after contrast administration. An 
increased collagen content with expansion of the extra-
cellular space causes prolongation of the native T1 relax-
ation time and an extracellular volume (ECV) fraction 
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increase in comparison with normal myocardium. Both 
native T1 relaxation time and ECV have been significant-
ly associated with DMF at myocardial histology [25–27]. 
We recently reported the high accuracy of both native T1 
relaxation time with a cut-off value ≥1,010 ms (Ss = 90%, 
Sp = 73%, AUC = 0.82) and ECV with a cut-off value 
≥0.315 (Ss = 80%, Sp = 90%, AUC = 0.85) to identify ex-
tensive (> 30%) DMF at histology [24]. Moreover, corre-
lations between both native T1 and ECV with prognostic 
markers such as NT-pro-BNP or troponin have been re-
ported [28, 29]. CMR-T1 has therefore been proposed as 
a promising technique to identify early structural chang-
es in patients with AS. The advantages and limitations of 
CMR in AS assessment are shown in Table 1.

Imaging of Early LV Dysfunction in AS

LV ejection fraction by echocardiography is routinely 
used to assess LV systolic chamber function in patients 
with AS. However, increasing evidence demonstrates that 
irreversible myocardial damage might occur before 
changes in the ejection fraction become apparent [8]. It is 
noteworthy that AS-induced DMF starts at the subendo-
cardial level, affecting mainly longitudinal LV function. 
Since it is predominantly determined by radial function, 
the LV ejection fraction can be normal for a long time 
even in the presence of extensive subendocardial fibrosis 

[6, 15, 19]. Accordingly, the LV ejection fraction, i.e., the 
class I guideline recommendation for AVR, cannot be 
used for early risk stratification in asymptomatic AS pa-
tients. In contrast, STE-derived 2-D global longitudinal 
strain (GLS) is a validated and sensitive parameter to 
quantify LV longitudinal systolic function [8, 9]. Several 
studies have demonstrated a reduced magnitude of GLS 
in AS patients compared to controls despite a preserved 
LV ejection fraction [16–18, 31–33]. In asymptomatic AS, 
GLS at rest has been shown to be independently associ-
ated with development of symptoms, an abnormal exer-
cise tolerance, a need for AVR, and mortality [34–37]. 
Furthermore, a magnitude of the longitudinal strain of 
LV basal segments below −13% has been found to be as-
sociated with a higher rate of cardiac events at follow-up 
[32]. It has also been shown that a GLS below −18% pre-
dicts an abnormal exercise response with a sensitivity of 
68% and a specificity of 77% [38]. In another study, the 
assessment of GLS during exercise had a higher accuracy 
than the LV ejection fraction to detect latent LV systolic 
dysfunction [39]. Finally, even the decrease in circumfer-
ential strain may be a marker of advanced disease with 
unfavorable course, particularly when it is associated with 
a low-flow state in AS patients [40]. These findings sug-
gest that both regional and GLS have a greater and earlier 
diagnostic power than the LV ejection fraction in this 
clinical setting [41]. The advantages and limitations of the 
STE-derived GLS assessment are summarized in Table 1.

Table 1. Advantages and limitations of STE and CMR mapping in AS assessment

STE CMR mapping

Advantages Low cost, more availability, rapid measurement offline after 
adequate image acquisition

Ability to image on any plane, full visualization of the 
myocardium, valve inflow/outflow tracts

Non-Doppler, angle-independent, myocardial deformation 
evaluated in 2-D and 3-D, good reproducibility

Direct measurement of the valve area and 
characterization of the associated great vessel anatomy

Objective quantification of myocardial systolic dynamics Gold standard to quantify valve flow, cardiac volumes, 
and mass

Recent data support GLS derived by STE as a sensitive 
marker to detect subclinical myocardial dysfunction in AS 
patients

CMR techniques such as LGE and T1 mapping are 
promising markers to detect focal and diffuse 
myocardial fibrosis, respectively

Limitations Lower temporal resolution, need for good image quality High cost, limited availability

Tracking affected by out-of-plane cardiac motion Adverse reaction to gadolinium

Intervendor variability Relative complexity of acquisitions, time-consuming 
image analysis

AS, aortic stenosis; CMR, cardiac magnetic resonance; DMF, diffuse myocardial fibrosis; ECV, extracellular volume; GLS, global 
longitudinal strain; LGE, late gadolinium enhancement; STE, speckle tracking echocardiography.
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Relationship between Myocardial Fibrosis and LV 
Systolic Function

Different kinds of observations have shown that GLS is 
a functional marker of myocardial fibrosis. First of all, GLS 
was found to be related to biomarkers of myocardial fibro-
sis such as those expressing calcification, collagen forma-
tion, or breakdown and inflammation [42, 43]. Several 
studies have also reported significant associations between 
LV systolic function and both FMF and DMF at CMR or 

myocardial histology [3, 14, 15, 18, 19, 24, 29, 44–46] (Ta-
ble 2). Former studies have investigated the relationship 
between FMF and LV contractile function [14, 44, 45]. It 
has been shown that both the presence and the extent of 
FMF are inversely related to echocardiographic parame-
ters such as relative wall thickness, LV fractional shorten-
ing, and ejection fraction and to STE-derived indices of LV 
myocardial function [18, 28, 44]. A GLS ≤−11.6% showed 
a sensitivity of 65% and a specificity of 75% to predict sig-
nificant FMF (LGE > 10%) [43]. The majority of studies 

Table 2. Studies showing  relationships between myocardial fibrosis and LV systolic  function assessed by different methods

Study Patients, 
n

MF
type

Methods Study results

Weidemann et al. [14] 85 FMF LGE CMR, histology,
GLS

The extent of histologically determined that cardiac fibrosis 
at baseline correlated closely with markers of LS function  
(all p < 0.001) but not global LVEF

Milano et al. [3] 99 FMF Histology,
LVEF

MF was inversely related to LV fractional shortening  
(r = −0.64, p < 0.001), LVEF (r = −0.53, p < 0.001), and  
LV relative wall thickness (r = −0.70, p < 0.001)

Treibel et al. [15] 133 FMF,
DMF

LGE CMR, ECV,
histology

High ECV was associated with worse LV remodeling, LVEF, 
and functional capacity

Dweck et al. [18] 143 MF LGE CMR,
LVEF

Midwall fibrosis has an incremental prognostic value to 
LVEF and may provide a useful method of risk stratification

Chin et al. [19] 166 FMF, 
DMF

LGE CMR, ECV, 
histology

Index ECV demonstrated a good correlation with DMF on 
myocardial biopsies; there was evidence of increasing 
hypertrophy, myocardial injury, diastolic dysfunction, and 
LS dysfunction consistent with progressive LV 
decompensation (all p < 0.05)

Kockova et al. [24] 40 DMF CMR T1, ECV, 
histology,

Both native T1 relaxation time with a cutoff value ≥1,010 ms 
and ECV with a cutoff value ≥0.32 showed a high accuracy in 
identifying severe (>30%) DMF
Native T1 relaxation time showed a significant correlation 
with LV mass (p < 0.01)

Fabiani et al. [29] 36 MF Histology,
GLS

MF is associated with alterations of regional and GLS
Plasmatic miRNA-21 is directly related to MF and associated 
with LV structural and functional impairment

Hoffmann et al. [44] 30 FMF LGE CMR, GLS There was a negative correlation between the amount of  
MF determined by LGE CMR and peak systolic longitudinal 
strain for the total LV (r = –0.538, p = 0.007)

Lee et al. [45] 80 DMF CMR T1, GLS Native T1 correlated significantly with GLS measured with 
2-D STE (r = 0.598, p < 0.001)

Bull et al. [46] 109 DMF CMR T1,
histology

T1 values increased with greater LV mass indices and 
correlated with the degree of biopsy-quantified fibrosis  
(r = 0.36, p = 0.008)

LVEF, left ventricle ejection fraction; STE, speckle tracking echocardiography; GLS, global longitudinal strain; LS, longitudinal sys-
tolic; CMR, cardiac magnetic resonance; MF, nonspecific myocardial fibrosis; DMF, diffuse myocardial fibrosis; FMF, focal myocardial 
fibrosis; LGE, late gadolinium enhancement; ECV, extracellular volume.
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dealing with this issue have focused on DMF [15, 19, 24, 
46, 47]. Of the conventional echocardiography-derived 
parameters, DMF seems to show a significant, though 
weak, correlation only with LV mass and the LV mass in-
dex [23, 24]. In contrast to FMF, none of the other conven-
tional parameters including LV ejection fraction or aortic 
valve area had a significant association with the degree of 
DMF [39]. This emphasizes the need to use a highly sensi-
tive technique to assess DMF. Recent investigations have 
reported a significant relationship among DMF at histol-
ogy, the CMR-T1-derived native T1 relaxation time or 
ECV, and STE-derived deformation indices [15, 18, 45]. In 
our study, a GLS <–15% showed excellent accuracy to pre-
dict extensive (> 30%) DMF (Fig. 1, 2) [23, 24]. Moreover, 
we observed a significant correlation between GLS during 

exercise and native T1 relaxation time (Fig. 3) [23, 24]. Fi-
nally, the native T1 relaxation time showed a high accu-
racy in predicting the limited LV contractile reserve [23, 
24]. All together these results strongly support the concept 
that GLS could be considered as an accurate functional 
marker of DMF in AS.

Limitations

Although both CMR-T1 and STE seem to have great 
clinical potential in various cardiovascular diseases, these 
techniques also have several limitations (Table 1). One of 
the major shortcomings of both methods is the great inter-
scanner or intervendor variability of normal values. This 

2D GLS –21.1% 2D GLS –14.9%

ba

Fig. 1. Examples of resting 2-D GLS compared with the extent of DMF on myocardial histology. a Patient with a 
preserved magnitude of 2-D GLS (–21.1%) and a negligible extent of DMF (7.4%). b Patient with a reduced mag-
nitude of 2-D GLS (–14.9%) and extensive DMF (31.2%). DMF, diffuse myocardial fibrosis; GLS, global longitu-
dinal strain. The images are shown with permission from the research work group of the Cardiovascular Center 
Aalst (Belgium) [23, 24].
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disadvantage requires definition of normal values for each 
individual scanner or echo device when assessing healthy 
subjects. This procedure should be repeated after each ma-
jor update of equipment or hardware. Other limitations 
need also mentioned. First of all, CMR-derived assessment 
of FMF using LGE has a wide interobserver variability, de-
pends on the technical setting of the scanner, and does not 
allow detection of DMF [47]. The CMR-T1-derived T1 re-
laxation time and ECV are dependent on a specific CMR-
T1 sequence, magnetic field strength, and homogeneity. In 
addition, there is a significant overlap between T1 map-
ping values in healthy and diseased myocardia, making the 
interpretation challenging [15, 30, 39, 40]. Other limita-
tions of CMR include the limited availability of equipment 

and expertise, the associated high costs, and the need to 
administer a contrast agent. In contrast, echocardiography 
is more widely available, faster, and cheaper than CMR. 
GLS, a relatively operator-independent parameter, has a 
higher reproducibility compared to LV ejection fraction 
and other echocardiographic parameters of LV systolic 
function [6]. However, due to the difference among differ-
ent vendors, the same software should be used in individ-
ual patients over time [48–50]. The load dependency of the 
STE-derived indices may represent another challenge for 
routine clinical use in AS, as they are largely influenced by 
both preload and afterload changes [27, 38, 39, 51]. Ac-
cording to recent published studies in animal models, STE-
derived indices correlate strongly with pressure-volume 
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Fig. 2. a Correlation between 2-D GLS and the percentage of myocardial collagen on myocardial histology. b Ac-
curacy of resting 2-D GLS to identify extensive (> 30%) DMF on myocardial histology. DMF, diffuse myocardial 
fibrosis; GLS, global longitudinal strain. The images are shown w permission from the research work group of 
the Cardiovascular Center Aalst [23, 24].

Fig. 3. a Correlation between exercise-induced Δ 2-D GLS and native T1 relaxation time on a 3-T scan. b Accu-
racy of native T1 relaxation time on a 3-T scan to predict a reduced LV contractile reserve. DMF, diffuse myo-
cardial fibrosis; GLS, global longitudinal strain. The images are shown with permission from research work group 
of the Cardiovascular Center Aalst [23, 24].
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loop-derived contractility indices and the STE-derived 
strain cannot predict load-independent contractility [51, 
52]. Accordingly, to bypass this limitation in the chronic 
overloaded LV, the pressure-strain loop-based method is a 
promising tool for assessment and monitoring of myocar-
dial function in patients with AS, but this method is still 
under investigation. Recently, novel techniques of derived 
tissue tracking by CMR cine acquisitions, such as CMR 
tagging and feature tracking, have provided a detailed 
characterization of LV global and regional contractility 
and reasonable agreement in the assessment of myocardial 
deformation in patients with AS [53–55]. However, sev-
eral technical limitations may affect quantitative results 
and lead to variability among different readers [56–58]. Fi-
nally, the role of tissue tracking by CMR in detection of the 
extent and types of myocardial fibrosis could be compro-
mised by the coexistence of other comorbidities, such as 
hypertension, amyloidosis, or ischemic heart disease, 
which may play a role in disease phenotyping [59, 60]. 
Thus, the accuracy of these emerging methods for charac-
terization of LV performance and quantification of myo-
cardial fibrosis in patients with isolated AS or a concomi-
tant comorbidity is still not adequately identified [61–64]. 

Conclusions

There is growing evidence that myocardial fibrosis 
plays an important role in the pathophysiology of AS and 
its complications. Recent advances in cardiac imaging 
technology allow noninvasive detection of myocardial fi-

brosis and the associated impairment of LV systolic func-
tion. It has been demonstrated that evaluation of myocar-
dial fibrosis by CMR and of its functional consequences 
highlighted by GLS provides a more accurate assessment 
of early myocardial damage than LV ejection fraction. 
Despite its great diagnostic potential, further improve-
ment of the current technology is needed to homogenize 
CMR-T1- and STE-derived indices across different ven-
dors and scanners. Future advances in noninvasive car-
diac imaging might improve our understating of the in-
terplay between myocardial fibrosis and LV function. The 
real clinical value of these parameters reflecting early 
myocardial injury needs to be validated in multicenter 
prospective studies. 

However, the encouraging results derived from differ-
ent studies provide clinical perspectives on the use of 
these techniques for guidance in clinical decision making 
and improvement of the management of patients with 
AS.
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