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Abstract. We consider the problem of locating defects and estimating their geometric features
from multi-static response matrix measurements at single or multiple frequencies. A main objective
is to design specific defect detection rules and to analyze their receiver operating characteristics and
the associated resolution and signal-to-noise ratio. In this paper we introduce a unified analytic
framework that uses high-frequency asymptotic methods in combination with a hypothesis test
based formulation to construct specific procedures for detection and characterization of cracks
and inclusions. A central ingredient in our approach is the use of random matrix theory to
characterize the signal space associated with the multi-static response matrix measurements. We
present numerical experiments to illustrate some of our main findings.
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1. Introduction. The focus of this paper is on imaging small defects from
measurements at single or multiple frequencies. Two different types of defects are
considered: cracks and inclusions. Our general imaging approach is based on rela-
tively high-frequency asymptotic formulas for the signature of the defect.

We assume that we have coincident transmitter and receiver arrays of n ele-
ments. The multi-static response (MSR) matrix is the transmit-receive responses
of this array. The problem we consider is to image the defect from the MSR ma-
trix measurements at single or multiple frequencies in the presence of measurement
noise.

We construct different imaging functionals for imaging the defects from MSR
measurements at a single or multiple frequencies. In particular, MUSIC (which
stands for MUltiple SIgnal Classification) and Kirchhoff-type algorithms are in-
vestigated. Applying the techniques of statistical hypothesis testing we derive a
strategy for ruling on the presence/absence of a defect based on the introduced
imaging functionals. We also introduce the notion of resolution, which takes into
account the signal-to-noise-ratio (SNR), and analyze the resolution-enhancement
effect obtained with broadband signals. We revisit Berens’ modelling that was in-
troduced in [11] and derive, using our asymptotic formulas for the signature of the
defect, appropriate probability of detection functions. The detailed statistical anal-
ysis carried out in this paper shows that the probability of false alarm is given in
terms of a Tracy-Widom distribution, which is a bell-shape function somewhat dif-
ferent from the Gaussian distribution usually applied. Finally we perform numerical
experiments using the proposed algorithms to test their performance and efficiency.

The paper presents a unified framework for imaging defects. It proposes ef-
ficient imaging algorithms and establishes an approach for hypothesis testing and
resolution analysis. The paper extends several recent results, concepts, and methods
for imaging defects. In [9] a continuous model was considered and an asymptotic
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expansion of the boundary perturbations that are due to the presence of a small
crack was derived. Moreover, a MUSIC-type approach for locating the crack from
boundary measurements at a single frequency was designed. It was also shown that
the location and the length of the crack can be estimated from the projection onto
the noise space and the first significant singular value of the response matrix while
the direction of the crack can only be estimated from the second singular vector.
In [4, 5] a MUSIC-type imaging of small inclusions at a single frequency in the dis-
crete framework has been presented. High-frequency asymptotic formulas for the
perturbations in the MSR measurements due to small inclusions have been derived
in [3, 22] and time-reversal techniques studied in [3]. In [19], a notion of resolution
for imaging point sources has been introduced and a resolution analysis successfully
carried out in the presence of noise. In this paper we integrate and extend these
techniques by introducing an analytic framework that uses high-frequency asymp-
totic methods in combination with a hypothesis test based formulation to construct
specific procedures for detection and characterization of cracks and inclusions. A
central ingredient in our approach is the use of random matrix theory to characterize
the signal space associated with the MSR measurements.

The paper is organized as follows. In Section 2 an asymptotic formalism for
defect imaging is established. We consider two principal situations, either with
cracks or inclusions. Motivated by this description imaging functionals to locate
the defects are introduced in Section 3. Then, we present the test for detection
of the crack or inclusion, that is to rule on whether they are present or not. This
crucial test is based on analysis of the singular values of the response matrix and
is derived in Section 4. An extension of Berens’ modelling for defect detection
is given in Section 4.5. In Section 5 we use the singular vectors to estimate the
location given that there is a crack present. In the location estimation we introduce
a location dependent threshold to the test whether a search point is associated with
a defect or not. A resolution analysis is carried out in Section 6. In Section 7,
optimization algorithms for reconstructing the crack orientation or the inclusion
polarization tensor are presented. We illustrate with some numerical examples in
Section 8. The paper ends with a discussion in Section 9. Some background on the
probabilistic framework together with a proof of the asymptotic expansion of the
effect of a small crack are given in the appendices.

For the sake of simplicity, we only consider the two-dimensional imaging prob-
lem but stress that the techniques developed here apply directly to the three-
dimensional case.

2. Asymptotic Formalism.

2.1. Asymptotic Modelling of Cracks. We shall first consider the case
where the defect is a small perfectly conducting crack. The crack Σε is characterized
by its size ε, location xc, and orientation t and we consider two space dimensions
so that the crack is a line.

We assume a transducer array with the transducers located at (xj = (x
(j)
1 , 0); j =

1, . . . , n), moreover, that the full response matrix is available. First, we assume that

there is no noise. The governing equation for the time-harmonic field u
(j)
ε emitted

by a source at xj is

∆u(j)
ε +

ω2

c20
u(j)
ε = δxj in R2 \ Σε,

u
(j)
ε = 0 on Σε,∣∣∣∣( ∂

∂|x|
− i

ω

c0

)(
u(j)
ε (x)− Ĝ(ω,x,xj)

)∣∣∣∣ = O(|x|−3/2),

(2.1)
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where Ĝ is the time-harmonic Green function

Ĝ(ω,x,y) =
i

4
H

(1)
0

( ω

c0
|y − x|

)
, (2.2)

using the notation |y| = ∥y∥2. Here, H
(1)
0 is the zeroth order Hankel function of

the first kind. Using the asymptotic form of the Hankel function

H
(1)
0 (x) ≃

√
2/(π|x|) exp(ix− i sgn(x)π/4) for |x| ≫ 1,

we find that for ω|x− y|/c0 ≫ 1:

Ĝ(ω,x,y) ≃
√
c0

2
√
2π

exp(i π/4)√
ω|y − x|

exp
(
i
ω

c0
|y − x|

)
, (2.3)

and

∇Ĝ(ω,xc,xj) ≃
√
c0

2
√
2π

(
iω(xc − xj)

c0|xc − xj |

)
exp(i π/4)√
ω|xc − xj |

exp
(
i
ω

c0
|xc − xj |

)
.

We shall assume a high frequency regime with ωL/c0 ≫ 1 for L the distance
from the array center point to the crack center point. Regarding the crack size we
assume

ωε

c0
< 1.

We define the response matrix entries by Ajl := u
(j)
ε (xl). Following [9], we

prove in Appendix B that the following asymptotic formula is valid for ω of order
o(ε):

Ajl(ω) =
2πĜ(ω,xj ,x

c)Ĝ(ω,xc,xl)

log( ωε
2c0

) + γ − log 2− i
2

−πε2
∂

∂t
Ĝ(ω,xj ,x

c)
∂

∂t
Ĝ(ω,xc,xl) + o

(ε2ω2

c20

)
=

ic0

4ω
√

|xj − xc||xl − xc|
exp

(
iω

c0
(|xj − xc|+ |xl − xc|)

)

×
[

1

log( ωε
2c0

) + γ − log 2− i
2

− ε2ω2

2c20

((xj − xc) · t)((xl − xc) · t)
|xj − xc||xl − xc|

]

+o
(ε2ω2

c20

)
, (2.4)

where γ ≃ 0.577 is the Euler constant and ∂/∂t stands for the tangential derivative.

2.2. Asymptotic Modelling of Inclusions. We consider next the (electro-
magnetic) situation where D is an inclusion with constant parameters 0 < µ < +∞
and 0 < q < +∞, (µ, q) ̸= (1, 1), located in a background medium with permeability
and permittivity equal to 1.

Suppose that D = εB + xc, where B is a domain which plays the role of a
reference domain, ε denotes the small diameter of D, and xc indicates the location
of D.

Using the same notation as above, let u
(j)
ε be the solution of

∇ ·
(
1 + (

1

µ
− 1)χ(D)

)
∇u(j)

ε +
ω2

c20
(1 + (q − 1)χ(D))u(j)

ε = δxj in R2,∣∣∣∣( ∂

∂|x|
− i

ω

c0

)(
u(j)
ε (x)− Ĝ(ω,x,xj)

)∣∣∣∣ = O(|x|−3/2),

(2.5)
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where Ĝ is the time-harmonic Green function (2.2). In [3] we proved that the
following asymptotic of the response matrix entries holds:

Ajl(ω) = ε2∇Ĝ(ω,xj ,x
c) ·M(µ,B)∇Ĝ(ω,xc,xl)

−ε2ω2

c20
(q − 1)|B|Ĝ(ω,xj ,x

c)Ĝ(ω,xc,xl) + o
(ε2ω2

c20

)
=

−iωε2

8πc0
√
|xj − xc||xl − xc|

exp
(
i
ω

c0
(|xj − xc|+ |xl − xc|)

)
×
[
(xj − xc) ·M(µ,B)(xl − xc)

|xj − xc||xl − xc|
+ |B|(q − 1)

]
+ o
(ε2ω2

c20

)
, (2.6)

as ω → +∞ and εω → 0. Here M(µ,B) is the polarization tensor given by [6, 7]:

M(µ,B) := (
1

µ
− 1)

∫
B

∇(v̂(x̃) + x̃) dx̃,

where v̂ is the solution to

∆v̂ = 0 in R2 \B,

∆v̂ = 0 in B,

v̂|− − v̂|+ = 0 on ∂B,

1

µ

∂v̂

∂ν

∣∣∣∣
−
− ∂v̂

∂ν

∣∣∣∣
+

= (
1

µ
− 1)ν on ∂B,

v̂(x̃) = O(|x̃|−2) as |x̃| → +∞,

with ν the outward-pointing unit normal vector.
Note that if the background medium is not the free-space then we have to

replace, in the asymptotic formulas (2.4) and (2.6), the Green function Ĝ by
the one associated with the background medium, Ĝ, and change the constant
log( ωε

2c0
) + γ − log 2− i

2 in formula (2.4) by

log(
ε

2
) + 2πR(ω,0,0),

where R(ω,x,y) = Ĝ(ω,x,y)− 1
2π log |x− y|.

3. Imaging Functionals.

3.1. Estimation of Crack Location. We consider first the case with cracks
and recall some common imaging functionals, which are functions of a search point
in the search domain where we are looking for defects. In Section 5 we shall relate
this to a location-dependent test that is derived in a probabilistic framework.

Note that in the presence of one defect at xc the response matrix has the
approximate form

A ≃ τ(ω,xc)d(ω,xc)d(ω,xc)T , (3.1)

with d(ω,xc) the normalized illumination vector

d(ω,xc) =
1√∑n

j=1
1

|xj−xc|

(
1√

|xj − xc|
exp

( iω
c0

|xj − xc|
))

j=1,...,n

(3.2)

and τ given by

τ(ω,xc) =
ic0
∑n

j=1
1

|xj−xc|

4ω
(
log( ωε

2c0
) + γ − log 2− i

2

) . (3.3)
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Here T denotes the transpose. The first singular value and singular vectors of the
Singular Value Decomposition (SVD) of the data

A = UΣV
T
,

satisfy Av1 = σ1u1 with the relations

u1 ≃ exp(iθ1)d, v1 ≃ exp(−iθ2)d, σ1 ≃ |τ(ω,xc)|, (3.4)

with θ1 + θ2 = arg(τ(ω,xc)).

A MUSIC imaging functional at a single frequency ω is given by

IMU(ω,x
S) =

1∣∣∣d(ω,xS)−
(
u1(ω),d(ω,xS)

)
u1(ω)

∣∣∣ , (3.5)

where (a, b) = a · b. We contrast this with a more classical Kirchhoff migration
formulation which migrates traces to the search point xS :

IKM(ω,xS) = d(ω,xS)
T
A(ω)d(ω,xS). (3.6)

In terms of the SVD decomposition of the response matrix the Kirchhoff migration
functional can be written as

IKM(ω,xS) =
n∑

l=1

(
d(ω,xS),ul(ω)

) (
d(ω,xS),vl(ω)

)
σl(ω). (3.7)

In the case with one (sufficiently small) defect we have σ1 ≫ σl, for all l = 2, . . . , n,
and

IKM(ω,xS) ≃
(
d(ω,xS),u1(ω)

) (
d(ω,xS),v1(ω)

)
σ1(ω). (3.8)

With measurements of the response matrix at multiple frequencies, (ωk)k=1,...,K ,
we can construct the imaging functional by summing over frequencies

IKMF(x
S) =

1

K

∑
ωk

d(ωk,xS)
T
A(ωk)d(ωk,xS) (3.9)

where K is the number of frequencies (ωk). An alternative imaging functional when
searching for a single defect is

IMT(x
S) =

1

K

∑
ωk

(
d(ωk,x

S),u1(ωk)
) (

d(ωk,x
S),v1(ωk)

)
(3.10)

in which we have renormalized the information provided by the different modes, yet
retained phase coherency. Finally, it is also possible to use a matched field imaging
functional:

IMF(x
S) =

1

K

∑
ωk

∣∣∣d(ωk,xS)
T
A(ωk)d(ωk,xS)

∣∣∣2 (3.11)

in which the phase coherence between the different frequency-dependent compo-
nents is not exploited. As we will see in Section 5, this makes sense when the
different frequency-dependent components are incoherent.
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3.2. Estimation of Inclusion Location. Define the n × 3 matrix d(ω,xS)
by

d(ω,xS) =
1√∑n

j=1
|(1,xj−xS)|2

|xj−xS |

((
1, (xj − xS)T

)√
|xj − xS |

exp
(
i
ω

c0
|xj − xS |

))
j=1,...,n

.(3.12)

Let A = UΣV
T

be the SVD of the matrix A. The rank of A is three times
the number of inclusions (if for any inclusion its permittivity and permeability are
different from 1) [4, 5]. In the case of a unique inclusion the first three columns of
U provide an orthonormal basis for the image space of A which is denoted by the

n× 3 matrix US . The n×n matrix PA = USU
T

S is the orthogonal projection onto
the image space of the response matrix A.

A MUSIC imaging functional at a single frequency ω is then given by [4, 5]:

IMU(x
S) =

1∣∣∣(I−PA)d(ω,xS)
∣∣∣ = 1∣∣∣d(ω,xS)−

∑3
l=1 ul(ω)ul(ω)

T
d(ω,xS)

∣∣∣ ,
(3.13)

where I is the n × n identity matrix and (ul)l=1,...,3 are the right singular vectors
of A.

In the case of measurements at multiple frequencies (ωk), we may construct the
imaging functional as

IMT(x
S) =

1

K

∑
ωk

3∑
l=1

(
d(ωk,x

S),ul(ωk)
) (

d(ωk,x
S),vl(ωk)

)
, (3.14)

where K is the number of frequencies and (vl) are the left singular vectors of A. In
the following sections we shall introduce tests deriving from a hypothesis test based
framework to quantify when one can actually detect a defect.

4. Optimal Detection.

4.1. Singular Values of Noisy Response Matrices. In this subsection we
consider the case in which the MSR matrix is obtained in the absence of any crack
or inclusion so that it contains only noisy data coming primarily from electronic
noise. Therefore, we assume that the MSR matrix A is random with complex
Gaussian statistics. In other words the entries Ajl, 1 ≤ j, l ≤ n, are modelled
as independent complex Gaussian random variables with mean zero and variance
a2/n (equivalently A = Ar + iAi with Ar and Ai two independent real Gaussian
matrices whose entries have mean 0 and variance a2/(2n)).

4.1.1. Spectral Measure. We denote by σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the

singular values of the response matrix A sorted by decreasing order. We introduce
the corresponding spectral measure:

N (n)([σu, σv]) =
1

n
Card

{
j ∈ {1, . . . , n}, σ(n)

j ∈ [σu, σv]
}
, for any σu < σv.

N (n) is a counting measure which consists of a sum of Dirac masses:

N (n) =
1

n

n∑
j=1

δ
σ
(n)
j

.

The following result is standard in Random Matrix Theory [27]:
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Proposition 4.1. When n → ∞ the spectral measure N (n) almost surely
converges to the absolutely continuous measure N with compact support:

N([σu, σv]) =

∫ σv

σu

ρ(σ)dσ,

where

ρ(σ) =
1

σc
ρsc

( σ

σc

)
, ρsc(σ) =

{
1
π

√
4− σ2 if 0 < σ ≤ 2,

0 otherwise,
(4.1)

and σc = a.

The function ρ is the asymptotic spectral measure: ρ(σ)dσ gives the proportion
of singular values of the response matrix that lie in the elementary interval [σ, σ+dσ].
The normalized function ρsc is the semi-circle law.

4.1.2. Moments. In the asymptotic regime n → ∞ we have

1

n

n∑
j=1

(σ
(n)
j )2k =

∫ ∞

0

σ2kρ(σ)dσ = γ(2k)
sc σ2k

c , (4.2)

γ(2k)
sc =

∫ ∞

0

σ2kρsc(σ)dσ, (4.3)

with γ
(2)
sc = 1, γ

(4)
sc = 2, γ

(6)
sc = 5. We can describe the fluctuations of the second

moment which has Gaussian distribution with a relative amplitude of the order of
n−1:

1

n

n∑
j=1

(σ
(n)
j )2 =

1

n
Trace

(
A

T
A
)
=

1

n

n∑
j,l=1

|Ajl|2

dist.
= σ2

c +
σ2
c

n
N (0, 1), (4.4)

when n is large (note that E(|Ajl|2) = a2 and Var
(
|Ajl|2) = a4). Here E stands

for the expectation (mean value), Var for the variance, N (µ, σ2) for the normal

distribution with mean µ and variance σ2, and
dist.
= means “equal in distribution”.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

σ

ρ(
σ)

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

z

p(
z)

Fig. 4.1. Left figure: spectral measure for a complex Gaussian random matrix with σc = 1
obtained from Monte Carlo simulations with n = 50 (solid) and compared with the theoretical
semi-circle law (dashed). Right figure: probability density function of the normalized maximal

singular value Z2 = 22/3n2/3(maxσ
(n)
j /σc − 2) obtained from Monte Carlo simulations with

n = 50 (solid) and compared with the theoretical Tracy-Widom distribution of type 2 (dashed).
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4.1.3. Maximal Singular Value. The largest singular value is 2σc up to a
random correction of order σcn

−2/3:

σ
(n)
1

dist.
= σc

[
2 + 2−2/3n−2/3Z2 + o(n−2/3)

]
. (4.5)

The random correction Z2 looks Gaussian (see Fig. 4.1), but it is not. It is a
Tracy-Widom distribution of type β = 2 [23]:

P(Z2 ≤ z) =

∫ z

−∞
pTW2(x)dx = exp

(
− 1

2

∫ ∞

z

(x− z)φ2(x)dx
)
,

E(Z2) ≃ −1.77, Var(Z2) ≃ 0.81,

with φ(x) the solution of the Painlevé equation

φ′′(x) = xφ(x) + 2φ(x)3, φ(x) ≃ Ai(x), x → ∞, (4.6)

Ai being the Airy function.
Note that the random correction to the maximal singular value has a relative

amplitude of the order of n−2/3, while the random correction to the second moment
(4.4) has a relative amplitude of order n−1. Therefore, we obtain the following
result:

Proposition 4.2. Let us consider the response matrix obtained with an elec-
tronic noise. The ratio of the first singular value over the L2-norm of the other
singular values

R :=
σ
(n)
1(

1
n−1

∑n
j=2

(
σ
(n)
j

)2)1/2 (4.7)

has the following statistical distribution

R
dist.
= 2 +

1

22/3n2/3
Z2, (4.8)

when n is large, where Z2 is a random variable independent of all the parameters
which follows a Tracy-Widom distribution of type 2.

This result is very important. Combined with the corresponding result in the
presence of a defect that we will present in Subsection 4.2, it allows us to build
a likelihood-ratio test for the detection of a defect in the medium. By Neyman-
Pearson Lemma [24] this test is of the form: when the ratio (4.7) is beyond a
threshold value η (significantly larger than 2), then this means that a defect must
be buried in the medium. The knowledge of the statistical distribution of the ratio
(4.7) in the absence and in the presence of a defect will allow us to choose the
threshold η to reach a prescribed level for the test (i.e., a given probability of false
alarm), and so that this test is the most powerful amongst all tests with this level
(the power is the probability of detection); see Appendix A.

4.2. Singular Values of Noisy Response Matrices with a Crack. Here
we consider the response matrix A obtained with a crack in the presence of additive
electronic noise:

A = A0 +W, (4.9)

where here A0 = h0h
t
0 is assumed to be a rank-one matrix and W is a complex

Gaussian matrix as the one studied in Subsection 4.1. Let us denote by σ0 = ∥h0∥22
the nonzero singular value of A0 and by σ

(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the

singular values of the matrix A. We introduce the parameter σc =
√
na where a2 is
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the variance of the entries of the matrix W which models additive electronic noise.
For large n, we can expand the distribution of the singular values and we obtain
the following results [15, 20]:

Proposition 4.3.
a) If σc > σ0, then the largest singular value σ

(n)
1 obeys the same non-Gaussian

statistics (with mean 2σc) as in the absence of the crack.

b) If σc < σ0, then the largest singular value σ
(n)
1 obeys Gaussian statistics

with the mean and variance

E(σ(n)
1 ) = σ0 + σ2

cσ
−1
0 , Var

(
σ
(n)
1

)
=

1

2n
σ2
c

(
1− σ2

cσ
−2
0

)
.

c) For any σc the second singular value σ
(n)
2 is equal to 2σc up to a random

correction that is of the order of n−2/3 as n → ∞.
Several interesting features can be observed:

• The noise generates many small singular values, whose largest one is σ
(n)
2

which is of the order of 2σc.
• The first singular value, σ

(n)
1 , corresponding to the crack, increases as the

noise increases. This is a manifestation of the level repulsion: the small

singular values (and in particular σ
(n)
2 ) increase as the noise increases, and

the strong singular value is repulsed.
• The first singular value, corresponding to the crack, and the second singular
value, that is the largest singular value generated by the noise, are well

separated as long as E(σ(n)
1 ) > E(σ(n)

2 ), i.e., σc < σ0. In the opposite case
σc > σ0 it is not possible to see the crack.

We can study the spectral measure of the n− 1 smallest singular values

(σ
(n)
2 , σ

(n)
3 , · · · , σ(n)

n ):

N (n−1)([σu, σv]) =
1

n− 1
Card

{
j = 2, . . . , n, σ

(n)
j ∈ [σu, σv]

}
, for σu < σv.

When n is large, N (n−1) is asymptotically equivalent to a continuous measure N
compactly supported:

N([σu, σv]) =

∫ σv

σu

ρ(σ)dσ, with ρ(σ) =
1

σc
ρsc

( σ

σc

)
.

We can describe the ratio of the maximal singular value over the square root of
the second moment by:

Proposition 4.4. Let us consider the response matrix obtained with a single
crack in the presence of electronic noise. For σc < σ0, the ratio (4.7) has the
following statistical distribution

R
dist.
=

σ0

σc
+

σc

σ0
+

1√
2n

√
1− σ2

cσ
−2
0 N (0, 1). (4.10)

For σc > σ0 we have (4.8).
This proposition describes the statistical distribution of the ratio (4.7) in the

presence of a crack. It allows us to compute explicitly the power of the likelihood-
ratio test which is the most powerful test for a given false alarm rate by the Neyman-
Pearson Lemma [16].

4.3. Singular Values of Symmetrized Noisy Response Matrices. In
this section we assume that the response matrix is obtained in the presence of
electronic noise only and that the matrix is symmetrized to reduce the noise variance
of its off-diagonal entries. That is, the response matrix A is complex Gaussian
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(with independent complex Gaussian entries with mean zero and variance a2) and
we consider the symmetrized matrix

As =
1

2

(
A+AT

)
.

Then the matrix As is symmetric complex and has random entries with Gaussian
statistics: As

jl = As
lj and the entries As

jl, j ≤ l are independent complex Gaussian

random variables with mean zero and variance a2s/n off the diagonal (j ̸= l) and
2a2s/n on the diagonal j = l, with as = a/

√
2. The symmetrization of the response

matrix reduces the variance of its off-diagonal entries by a factor of
√
2.

We denote by σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the

response matrix As sorted by decreasing order and by N (n) the corresponding
spectral measure.

Proposition 4.5. When n → ∞ the spectral measure N (n) almost surely
converges to the absolutely continuous measure N with compact support:

N([σu, σv]) =

∫ σv

σu

ρ(σ)dσ, ρ(σ) =
1

σs
c

ρsc

( σ

σs
c

)
,

where ρsc is the semi-circle law given by (4.1) and σs
c = as = a/

√
2.

In the asymptotic regime n → ∞ the moments of the singular values are given
by the formulas (4.2) with σc replaced by σs

c . We can describe the fluctuations of
the second moment which has Gaussian distribution with a relative amplitude of
the order of n−1:

1

n

n∑
j=1

(σ
(n)
j )2 =

1

n
Trace

(
(As)

T
As
)
=

1

n

n∑
j,l=1

|As
jl|2

dist.
= (σs

c)
2 +

(σs
c)

2

n
N (1, 2).

when n is large (note that E(|As
jj |2) = 2a2s, Var

(
|As

jj |2) = 4a4s, E(|As
jl|2) = a2s,

Var
(
|As

jl|2) = a4s, for j ̸= l, and As is symmetric).

0 1 2 3 4
0

0.2

0.4

0.6

0.8

σ

ρ(
σ)

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

z

p(
z)

Fig. 4.2. Left figure: spectral measure for a complex symmetric Gaussian random matrix
with σc = 1 obtained from Monte Carlo simulations with n = 50 (solid) and compared with the
theoretical semi-circle law (dashed). Right figure: probability density function of the normalized

maximal singular value Z1 = 22/3n2/3(maxσ
(n)
j /σs

c − 2) obtained from Monte Carlo simulations

with n = 50 (solid) and compared with the theoretical Tracy-Widom distribution of type 1 (dashed).

The largest singular value is 2σs
c up to a random correction of order σs

cn
−2/3:

σ
(n)
1

dist.
= σs

c

[
2 + 2−2/3n−2/3Z1 + o(n−2/3)

]
.
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The random correction Z1 looks Gaussian (see Fig. 4.2), but it is not. It is a
Tracy-Widom distribution of type β = 1:

P(Z1 ≤ z) =

∫ z

−∞
pTW1(x)dx = exp

(
− 1

2

∫ ∞

z

φ(x) + (x− z)φ2(x)dx
)
,

E(Z1) ≃ −1.21, Var(Z1) ≃ 1.61,

where φ is the solution to (4.6).
Note that the random correction to the maximal singular value has a relative

amplitude of the order of n−2/3, while the random correction to the second moment
has a relative amplitude of order n−1. Therefore, we obtain the following result:

Proposition 4.6. Let us consider the symmetrized response matrix obtained
in the presence of electronic noise. The ratio (4.7) has the following statistical
distribution

R
dist.
= 2 +

1

22/3n2/3
Z1, (4.11)

when n is large, where Z1 is a random variable independent of all parameters fol-
lowing a Tracy-Widom distribution of type 1.

4.4. Singular Values of Symmetrized Response Matrices with a Crack.
Here we consider the response matrix A given by (4.9) obtained with a single crack
in the presence of additive electronic noise and we symmetrize this matrix:

As =
1

2

(
A+AT

)
= A0 +Ws,

where Ws is a complex symmetric Gaussian matrix like the one studied in Subsec-
tion 4.3. Let us denote by σ0 = ∥h0∥22 the nonzero singular value of A0 and by

σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n the singular values of the matrix As. We introduce

the parameter σs
c =

√
n/2a where a2 is the variance of the entries of the matrix W

due to additive electronic noise. Let us denote by σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥ σ

(n)
n

the singular values of the response matrix As. For large n, we can expand the
distribution of the singular values and we get the following results:

Proposition 4.7.
a) If σs

c > σ0, then the largest singular value σ
(n)
1 obeys the same non-Gaussian

statistics (with mean 2σs
c) as in the absence of the crack.

b) If σs
c < σ0, then the largest singular value σ

(n)
1 obeys Gaussian statistics

with the mean and variance

E(σ(n)
1 ) = σ0 + (σs

c)
2σ−1

0 , Var
(
σ
(n)
1

)
=

1

n
(σs

c)
2
(
1− (σs

c)
2σ−2

0

)
.

c) For any σs
c the second singular value σ

(n)
2 is equal to 2σs

c up to a random
correction that is of the order of n−2/3 as n → ∞.

We can describe the ratio of the maximal singular value over the L2-norm of
the other singular values by:

Proposition 4.8. Let us consider the symmetrized response matrix obtained
in the presence of electronic noise with a crack. For σs

c < σ0, the ratio (4.7) has
the following statistical distribution

R
dist.
=

σ0

σs
c

+
σs
c

σ0
+

1√
n

√
1− (σs

c)
2σ−2

0 N (0, 1). (4.12)

For σs
c > σ0 we have (4.11).
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4.5. Berens’ Modelling Revisited. In [11] A.P. Berens introduced a frame-
work for analyzing schemes for nondestructive inspection methods (NDI), testing
for the presence of flaws. In their reliability analysis the probability of detection
(POD) as function of flaw size played a central role. In our notation the “flaw size”
corresponds to the parameter ε and we are thus interested in designing reliability
tests with a desirable performance in terms of the corresponding POD(ε) function.
In [11] a maximum likelihood approach was used for parameter estimation, and a log
normal distribution was in particular postulated for the response variable’s relation
to crack size. One parameter to be estimated is then the variance of the Gaussian
residual. Our approach here is to introduce a physical model for the measurements,
as we have described above, and then infer a corresponding “optimal” POD func-
tion that can be associated with the MSR matrix measurements. We describe the
picture deriving from this approach below, in fact, the resulting picture deviates
somewhat from that deriving from Berens’ modelling.

Consider the imaging of cracks from measurements of the MSR matrix at a
single frequency ω in the presence of electronic noise, that is, we model with an
additive Gaussian noise. Assuming availability of previous and/or multiple mea-
surements we may assume that the variance of the entries of the MSR matrix (due
to the electronic noise) is known and equal to a2. In fact, we will see that we do not
need to know the value a2 in order to build the most powerful test with a prescribed
false alarm rate.

By Proposition 4.6, in the absence of the crack (hypothesis H0) the ratio of the
first singular value of the symmetrized MSR matrix over the L2-norm of the other
singular values

R :=
σ1(

1
n−1

∑n−1
j=2 σ2

j

)1/2 (4.13)

is of the form

R
dist.
= 2 +

1

22/3n2/3
Z1, (4.14)

where Z1 is a random variable following a Tracy-Widom distribution of type 1.
In the presence of a crack at position xc and with size ε (hypothesis HA),

Proposition 4.8 shows that the ratio is of the form

R
dist.
=

σ0

σs
c

+
σs
c

σ0
+

1√
n

√
1− (σs

c)
2σ−2

0 N (0, 1), (4.15)

σ0(x
c, ε) =

c0
∑n

j=1
1

|xj−xc|

4ω | log( ωε
2c0

) + γ − log 2− i
2 |
, (4.16)

σs
c =

√
n/2a. (4.17)

This result is correct as long as σ0 > σs
c . When σ0 < σs

c we have (4.14).
Note that, as functions of the number of sensors n, the singular value σ0 scales

as n, while the noise level σs
c scales as

√
n. This shows that the detection power

increases with the number of sensors.
If the data gives the ratio R, then we propose to use a test of the form R > r

for the alarm corresponding to the presence of a crack. By the Neyman-Pearson
Lemma the decision rule of accepting HA if and only if R > rα maximizes the
probability of detection for a given false alarm probability α

α = P(R > rα|H0)

with the threshold

rα = 2 +
1

22/3n2/3
Φ−1

TW1(1− α),
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where ΦTW1 is the cumulative distribution function of the Tracy-Widom distribu-
tion of type 1. The computation of the threshold is easy since it depends only on
the number of sensors n and on the false alarm probability α. This test is therefore
universal. Note that we should use a Tracy-Widom distribution table, and not a
Gaussian table. We have, for instance, Φ−1

TW1(0.9) ≃ 0.45, Φ−1
TW1(0.95) ≃ 0.98 and

Φ−1
TW1(0.99) ≃ 2.02.

The detection probability 1 − β is the probability to sound the alarm when
there is a crack:

1− β = P(R > rα|HA).

For a given measurement array it depends on ε and xc through the value σ0(ε,x
c)

and also on the noise level a. Here we find that the detection probability is

POD(ε,xc) = 1− β(ε,xc) = 1− Φ

√
n

rα − σ0

σs
c
− σs

c

σ0√
1− (σs

c/σ0)2

 ,

where Φ is the cumulative distribution function of the normal distribution with mean
zero and variance one. This result is valid as long as σ0 > σs

c . When σ0 < σs
c , so that

the crack is “hidden in noise”, then we have 1− β = 1−ΦTW1

(
Φ−1

TW1(1−α)
)
= α.

4.6. Rank Estimation of a Noisy Response Matrix. The results of the
previous subsections give the principle of an original method to estimate the effective

rank of noisy response matrix A from its singular values σ
(n)
1 ≥ σ

(n)
2 ≥ σ

(n)
3 ≥ · · · ≥

σ
(n)
n . The effective rank of the matrix is the number of non-zero singular values

that would be observed in the absence of noise.
The usual procedure consists in estimating the number of singular values larger

than a threshold value related to the noise level and determined empirically by the
user. The information carried by the small singular values is then not exploited.

Here we propose to look first at the n − k smallest singular values σ
(n)
k+1 ≥

σ
(n)
k+2 ≥ · · · ≥ σ

(n)
n , where k ≪ n is an upper bound for the effective rank of A. The

spectral measure of the n − k smallest singular values is fitted (by a least-square
method for instance) by a semi-circle law (note that there is only one parameter to
estimate). Then one compares the full histogram of the n singular values with the
fitted semi-circle law. The number of singular values that depart significantly from
the semi-circle law is the effective rank of the matrix A. A full statistical analysis
of this method is possible and will be addressed in a separate paper. Moreover, we
will generalize the optimal detection analysis in Section 4 to the case of inclusions
and multiple cracks where the matrix A has more than one significant eigenvalue.
This generalization is nontrivial.

5. Conditional Localization. We assume that the spectral test described
in Subsection 4.5 identified the presence of a defect and we want to estimate its
location. Thus, we want to decide whether there is a defect or not at a partic-
ular location based on the measured MSR matrix, A, at a single or for multiple
frequencies.

5.1. Effective Imaging Functional. We assume here a single defect, one
frequency, and the following model for the noisy MSR matrix:

A(ω) = A0(ω) +W(ω),

where A0(ω) is given by (2.4) or (2.6) and W is a complex centered Gaussian noise
with “variance” a2: W = Wr + iWi, with Wr and Wi having identically inde-
pendently distributed real entries distributed according to the normal distribution
with mean 0 and variance a2/2. In particular E(|Wjl|2) = a2.
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Since we know that the unperturbed response matrix A0(ω) is symmetric, we
first symmetrize the noisy MSR matrix:

As(ω) =
1

2

(
A(ω) +A(ω)T

)
which, as said earlier, reduces the noise variance of the off-diagonal entries by a
factor of

√
2:

As(ω) = A0(ω) +Ws(ω), Ws(ω) =
1

2

(
W(ω) +W(ω)T

)
Here W is a symmetric complex Gaussian matrix: Ws = Ws

r+ iWs
i , with Ws

r and
Ws

i being symmetric real matrices with independent entries with mean zero and
variance a2 on the diagonal and a2/2 off the diagonal.

We consider the localization of a crack. We shall first assume that there is one
crack present as determined by the spectral detection test described above. Thus,
the observations are modelled as

As(ω) = τ(ω,x)d(ω,x)d(ω,x)T +Ws(ω),

and we seek to estimate the location x of the crack. Here τ,d are given by (3.2)-
(3.3). In this case, given the parameters x, τ , and a, the observed symmetrized
response matrix As(ω) has the probability density function

p (As | x, τ, a) = 1

2nπ(n2+n)/2an2+n
exp

(
−∥As − τd(ω,x)d(ω,x)T ∥2F

2a2

)
,

with respect to the measure over the space of complex symmetric matrices:

n∏
j=1

dℜ(As
j,j)dℑ(As

j,j)
∏

1≤j<l≤n

dℜ(As
j,l)dℑ(As

j,l).

Here the subscript F represents the Frobenius norm. Using Bayes theorem with
the Jeffreys prior for the parameters x, τ, a (a non-informative prior distribution),
which is proportional to a−1, we find that, given the observations As, the likelihood
function of the parameters x, τ , and a is given by:

l0 (x, τ, a | As) =
1

an2+n+1
exp

(
−∥As − τd(ω,x)d(ω,x)T ∥2F

2a2

)
. (5.1)

The maximum likelihood estimator of x and the nuisance parameters a and τ are
found by maximizing the likelihood function (5.1) with respect to these:(

x̂, τ̂ , â
)
= argmaxx,τ,al0 (x, τ, a | As) .

We first eliminate a by requiring

∂l0 (x, τ, a | As)

∂a

∣∣∣∣
a=â

= 0,

which gives

â =
∥As − τd(ω,x)d(ω,x)T ∥F√

n2 + n+ 1
,

and then the likelihood ratio is proportional to

l0
(
x, τ, â | As

)
≃ ∥As − τd(ω,x)d(ω,x)T ∥−(n2+n+1)/2

F .
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Since As(ω) is complex symmetric, it admits a symmetric singular value decom-
position: there exist unitary vectors uj(ω) and nonnegative numbers σj(ω) (the
singular values) such that

As(ω) =
n∑

j=1

σj(ω)uj(ω)uj(ω)
T .

Therefore, we can write

∥As − τd(ω,x)d(ω,x)T ∥2F = ∥u(2)(ω)− τd(2)(ω,x)∥22,

with u(2) =
∑n

j=1 σjuj ⊗uj and d(2) = d⊗ d. Since ∥d∥ = 1, we have ∥d(2)∥2 = 1
and we then find that

τ̂ = argmin
τ

∥u(2)(ω)− τd(2)(ω,x)∥22 =
(
d(2)(ω,x),u(2)(ω)

)
.

Note also that ∥u(2)∥22 =
∑n

j=1 σ
2
j = ∥As∥2F . We therefore conclude that the

maximum likelihood estimator x̂ derives from maximizing the MUSIC-type function

x̂= argminx
∥∥u(2)(ω)−

(
d(2)(ω,x),u(2)(ω)

)
d(2)(ω,x)

∥∥2
2
.

Note however that x̂ is not the maximizer of the MUSIC functional (3.5) since all
singular vectors (weighted by the singular values) contribute to u(2). We have in
fact∥∥u(2)(ω)−

(
d(2)(ω,x),u(2)(ω)

)
d(2)(ω,x)

∥∥2
2
= ∥u(2)(ω)∥22 −

∣∣(u(2)(ω),d(2)(ω,x))
∣∣2

= ∥As(ω)∥2F − |IKM(ω,x)|2,

where IKM is the Kirchhoff migration functional (3.6). From this representation we
find that the estimation x̂ of the location can be expressed in terms of the Kirchhoff
migration functional as

x̂ = argmaxx |IKM(ω,x)| . (5.2)

This indicates that Kirchhoff migration is more accurate in the presence of additive
noise than MUSIC in that the location of its maximum is exactly the maximum
likelihood estimator of the location of the crack.

The analysis can be extended to the case in which the response matrices are
recorded at several frequencies (ωk)k=1,...,K and the additive noise matrices W(ωk),
k = 1, . . . ,K, are independent and identically distributed. Then one finds that the
maximum likelihood estimator of the location of the defect is the maximum of the
matched field imaging functional:

x̂ = argmaxxIMF(x), (5.3)

where IMF is the Matched Field functional (3.11). This shows that one should
look for the maximum of the sum of the square moduli of the KM functionals in
order to exploit the multi-frequency information optimally. Indeed, the fact that the
relevant operation is the sum of the squares comes from the fact that the additive
noise matrices are assumed to be independent for different frequencies. If some
correlation between frequency components exists, it is likely that a procedure such
as Coherent Interferometry [12] will be more appropriate.
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5.2. Multiple Localization via Projection Pursuit. We remark here on
the case when there are several cracks. We can then use a recursively applied and
projected version of the approach above. Let Π⊥

k denote the unitary projection
matrix on the complement of the subspace spanned by the illuminated vectors
d(ω, x̂j), j = 1, .., k of the first k estimated crack locations.

We then form the modified MSR matrix by projecting as:

As
k(ω) = Π⊥

k A
s(ω)Π⊥

k . (5.4)

The test for presence of further cracks is then carried out as described in Section
4.5, but with respect to the projected MSR. In the case that the test predicts that
further cracks are present then the subsequent crack location is estimated by again
maximizing a Kirchhoff imaging functional IKM,k, associated with the projected
MSR As

k.
We remark that above we assumed that the cracks were well-separated so that

the corresponding illumination vectors are orthogonal. In the case that clusters of
nearby cracks are present one can generalize the above approach by postprocessing
the data such that the location estimates for the cracks in the cluster is estimated
by maximizing the joint likelihood of the cracks.

5.3. Statistical Analysis of Location Estimate. We continue here the
analysis of the single frequency case and provide a location-dependent threshold for
the image function that we derived above. We remark that this is important since
the detection test introduced in Section 4 tests whether there is something present
in the probed scenery or not. Here we want to test whether there is a localized
crack present at the particular search location xS . As a part of this test we will
then obtain a measure of confidence with which we can say that there is a crack
present.

We choose as a test statistics the image function derived above

IKM(ω,xS) =
(
d(ω,xS),As(ω)d(ω,xS)

)
=
(
d(ω,xS),A(ω)d(ω,xS)

)
.

We observe that under the null hypothesis H0, there is no crack at xS , we have

IKM(ω,xS)
dist.≃ a√

2
(W1 + iW2),

with Wj being standard independent normal real Gaussian random variables with
mean zero and variance one. Here a2 is the variance of the entries of the random
matrix A and we have implicitly assumed that xS is far enough from the other
cracks so that the vector d(ω,xS) is approximately orthogonal to the illumination
vectors of other cracks. Under the alternate hypothesis HA, we have

IKM(ω,xS)
dist.≃ µKM(ω,xS) +

a√
2
(W1 + iW2),

where µKM(ω,xS) is given by

µKM(ω,xS) = τ(ω,xS)
∣∣d(ω,xS)

∣∣4 = τ(ω,xS),

with τ given by (3.3).
We now consider the real and imaginary parts of the statistics:

y1 = ℜ(IKM(ω,xS)), y2 = ℑ(IKM(ω,xS)).

and we denote similarly µ1 = ℜ(µKM(ω,xS)) and µ2 = ℑ(µKM(ω,xS)). From the
expression (3.3) of τ(ω,xS), it is clear that its argument is very close to π/2 so that
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µ2 is positive and larger than µ1 and the relevant information is in the imaginary
part of the imaging functional y2 = ℑ(IKM(ω,xS)). Using the expression of the
normal density we find that the likelihood ratio for y2 is given by

Λ(y2) =
fA(y2)

f0(y2)
= exp

(
− µ2

2

a2
+

2µ2y2
a2

)
.

By the Neyman-Pearson Lemma the decision rule of accepting HA if and only
if y2 = ℑ(IKM(ω,xS)) > η maximizes the probability of detection for a given false
alarm rate α with the threshold η = (a/

√
2)Φ−1(1− α), where Φ is the cumulative

distribution function of the normal distribution. The power of the test is given by

1− βKM(ω,xS) = 1− Φ
(√

2
η −ℑ(µKM(ω,xS))

a

)
= Φ

(√
2
ℑ(µKM(ω,xS))− η

a

)
,

(5.5)
since Φ(x) = 1− Φ(−x).

The power of the test can be expressed in terms of the SNR

SNR(ω,xS) =

∣∣E(IKM(ω,xS)
)∣∣

Var1/2
(
IKM(ω,xS)

) =
|τ(ω,xS)|

a
,

as

1− βKM(ω,xS) = Φ
(√

2SNR(ω,xS)− Φ−1(1− α)
)
, (5.6)

where we have made the approximation |µKM(ω,xS)| ≃ ℑ(µKM(ω,xS)) which is
accurate enough since the argument of τ(ω,xS) is close to π/2. Note that the order
of magnitude of the SNR is

SNR(ω0,x
S) ≃ SNR0 :=

c0n

4ω0L
∣∣∣ log(ω0ε

2c0
) + γ − log 2− i

2

∣∣∣ , (5.7)

where ω0 is the typical frequency and L is the distance from the sensor array to the
search region.

5.4. Multifrequency Measurements. In the case of (uncorrelated) mea-
surements at multiple frequencies, one can use the migration imaging functional
(3.9) which can be written as

IKMF(x
S) =

1

K

∑
ωk

IKM(ωk,x
S),

where K is the number of frequencies. Under the null hypothesis H0, there is no
defect at xS , the functional IKMF(x

S) is distributed as

IKMF(x
S)

dist.≃ a√
2K

(W1 + iW2)

with again Wj being standard independent normal real Gaussian random variables
with mean zero and variance one. Under the alternate hypothesis HA, we have

IKMF(x
S)

dist.≃ µKMF(x
S) +

a√
2K

(W1 + iW2),

where µKMF(x
S) is given by

µKMF(x
S) =

1

K

∑
ωk

µKM(ωk,x
S).
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A straightforward generalization of the arguments used in the previous subsection
shows that the test accepting HA if ℑ(IKMF(x

S)) > η maximizes the probability of
detection for a given false alarm rate α with the threshold η = (a/

√
2K)Φ−1(1−α).

The power of this test is

1− βKMF(x
S) = Φ

(√
2K

ℑ(µKMF(x
S))− η

a

)
≃ Φ

(√
2K SNR0 − Φ−1(1− α)

)
, (5.8)

with SNR0 defined by (5.7). Therefore, the multiple frequencies enhance the detec-
tion performance via higher “effective” SNR.

One can also use the matched field imaging functional (3.11)

IMF(x
S) =

1

K

∑
ωk

|IKM(ωk,x
S)|2.

Under the null hypothesis H0, there is no defect at xS , the distribution of the
functional IMF(x

S) is proportional to a χ2-distribution with 2K degrees of freedom
and it can be approximated when K is large enough (2K > 50 in practice) by

IMF(x
S)

dist.≃ a2 +
a2√
K

N (0, 1).

Under the alternate hypothesis HA, we have for K large enough

IMF(x
S)

dist.≃ a2 + µ2
MF(x

S) +
a√
K

√
2µ2

MF(x
S) + a2N (0, 1),

where µMF(x
S) is given by

µ2
MF(x

S) =
1

K

∑
ωk

|µKM(ωk,x
S)|2 =

1

K

∑
ωk

|τ(ωk,x
S)|2.

The test accepting HA if IMF(x
S) > η maximizes the probability of detection for a

given false alarm rate α with the threshold

η = a2 +
a2√
K

Φ−1(1− α).

The power of this test is

1− βMF(x
S) = Φ

(√
K

µ2
MF(x

S)

a
√
a2 + 2µ2

MF(x
S)

− a√
a2 + 2µ2

MF(x
S)

Φ−1(1− α)
)
,

If the SNR is larger than one, then the power is

1− βMF(x
S) = Φ

(√K√
2
SNR0 − SNR−1

0 Φ−1(1− α)
)
.

If the SNR is smaller than one, then the power is

1− βMF(x
S) = Φ

(√
KSNR2

0 − Φ−1(1− α)
)
.

This shows that the power is smaller than with the test using the KMF functional.
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6. Resolution Analysis. Following [19], we provide a resolution analysis for
imaging or localization of defects in the presence of noise. We do this in the context
of a small inclusion.

Suppose that there are two inclusions Ds = εBs + xc
s, s = 1, 2 with permeabil-

ities µs and the same permittivity as the background q = 1. If the inclusions are
well separated then the leading-order term in the asymptotic expansion of the MSR
matrix (as ω → +∞ and εω → 0) is the sum of the two inclusion contributions:

Ajl(ω) = ε2
2∑

s=1

∇Ĝ(ω,xj ,x
c
s) ·M(µs, Bs)∇Ĝ(ω,xc

s,xl) + o
(ε2ω2

c20

)
, (6.1)

while if the inclusions are closely spaced then we have [7]:

Ajl(ω) = ε2∇Ĝ(ω,xj ,xc) ·M(µ,B)∇Ĝ(ω,xc,xl) + o
(ε2ω2

c20

)
, (6.2)

where B is an equivalent ellipse with the overall µ and of center xc given by

1− µ

1 + µ

2∑
s=1

|Bs| =
2∑

s=1

1− µs

1 + µs
|Bs|,

and

1− µ

1 + µ
xc

2∑
s=1

|Bs| =
2∑

s=1

1− µs

1 + µs
|Bs|xc

s.

Formula (6.2) says that the signature of the two inclusions is the same as an
equivalent one placed at the location xc and with the permeability µ.

Consider now an imaging functional I(xS) of the same form as before (for
instance (3.14) where the contributions of the two inclusions are renormalized). In
the presence of noise, we decide between two alternatives:

• H0: there is one defect,
• HA: there are two defects.

We assume here that the distribution of the imaging functional is Gaussian. We
use I(xc) as the basis for our decision. Under the null hypothesis we have I(xc) ∼
N (µ1, δ) while under the alternative hypothesis I(xc) ∼ N (µ2, δ), where the means
µ1 and µ2 can be computed explicitly. The mean µ2 depends on the distance ρ
between the centers of the inclusions.

Let α denote the false alarm rate. The decision rule is to accept HA when I(xc)
goes below a certain threshold η determined by

η = µ1 + δΦ−1(α),

which is independent of ρ. The detection probability for a two-defects is then given
by

1− β(ρ) = Φ

(
η − µ2(ρ)

δ

)
= Φ

(
Φ−1(α) +

µ1 − µ2(ρ)

δ

)
.

According to the Neyman-Person Lemma, the detector is the most powerful in the
sense that it produces the highest detection probability for all values of the unknown
distance ρ and a given false alarm rate α.

One then introduces the following notion of detection resolution, ρr: the offset
that gives a 50% chance of detecting the presence of two inclusions, that is,

β(ρr) =
1

2
.
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7. Reconstruction of Geometric Features.

7.1. Identification of Crack Orientation. Assume that one has detected
a crack at location xc and seeks to estimate the orientation of the crack. To this
effect note that we have from (2.4)

A(j, l, ω) :=
16ω2|xj − xc||xl − xc|

c20
AjlAjl ∼ aε0 + ω2aε1(nj · t)(nl · t),

for

aε0 =
1

| log( ωε
2c0

) + γ − log 2− i
2 |2

, aε1 = −ε2

c20
ℜ
(

1

log( ωε
2c0

) + γ − log 2− i
2

)
,

nj =
xc − xj

|xc − xj |
.

Since aε0 and aε1 can be estimated from σ1, the procedure for estimation of t exploits
the frequency dependence of A(j, l, ω) as follows:

t̂ = argmint
∑
j,l,ωk

∣∣∣A(j, l, ωk)− âε0 − ω2
kâ

ε
1(nj · t)(nl · t)

∣∣∣2, (7.1)

with the “hats” representing estimates.

7.2. Identification of Polarization Tensor. Assume that one has detected
an inclusion at xc and seeks to estimate its polarization tensor ε2M(µ,B)(= M(µ,D))
and ρ := |D|(q − 1). In contrast with the crack detection problem, using measure-
ments at multiple frequencies does not yield better reconstruction of the geometric
features and material parameters of the inclusion since the leading-order term in
Ajl depends linearly on the frequency (see (2.6)).

Writing M(µ,D) = λ1w1⊗w1+λ2w2⊗w2, where w1 and w2 are orthonormal
eigenvectors of M(µ,D), we have

A(j, l, ω) :=
64π2c20
ε4ω2

|xj − xc||xl − xc|AjlAjl

≃
[ 2∑
m=1

λm(xj − xc) ·wm(xl − xc) ·wm

|xj − xc||xl − xc|
+ |D|(q − 1)

]2
. (7.2)

Therefore, we obtain that

(λ̂1, ŵ1, λ̂2, ŵ2, ρ̂)

= argminλ1,w1,λ2,w2,ρ

∑
j,l,ωk

∣∣∣∣A(j, l, ωk)−
[ 2∑
m=1

λm(xj − xc) ·wm(xl − xc) ·wm

|xj − xc||xl − xc|
+ ρ
]2∣∣∣∣2,

with the “hats” representing as before estimates.

8. Numerical Experiments. This section presents results of numerical ex-
periments that give qualitative illustrations of some of the main findings in this
paper. We choose the following cracks:

Σ1 = {(x+ 0.2,−11.5) : −ε ≤ x ≤ ε},
Σ2 = {Rπ/6(x− 0.4,−10.5) : −ε ≤ x ≤ ε},

where Rπ/6 is the rotation by π/6, i.e., t =
(
cos π

6 , sin
π
6

)
. We set ε = 0.01 and

suppose that the transducers are equidistributed on the line going from (x
(1)
1 , 0) to

(x
(N)
1 , 0).
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8.1. Imaging Functionals. First, we consider imaging of a single crack us-
ing the functionals IMU, IKM, IKMF, and IMT to illustrate their performance and
limitations. Recall that these are the “Music”, “Kirchhoff”, “Multifrequency Kirch-
hoff” and “One Mode Kirchhoff” given in respectively (3.5), (3.6), (3.9) and (3.10)
in the situation with a crack. The test configurations are given in Table 8.1. Note
that the set of data is generated by numerically solving the forward problem, that
is solving (2.1), using an integral equation code.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional Figure

Σ1 20 −1 1 ω ∈ [300, 360] IMT , IKMF , IKM Figs. 8.1, 8.4
Σ2 20 −1 1 ω ∈ [300, 360] IMT , IKMF , IKM Figs. 8.2, 8.5
Σ1 20 −1 1 ω = 330 IMU Figs. 8.1, 8.4,8.3
Σ2 20 −1 1 ω = 330 IMU Figs. 8.2, 8.5

Table 8.1
Test configurations.

The interval [300, 360] is uniformly partitioned into K = 60 frequencies. The
discretization size of the search domain is chosen as 0.05.

Localization results for Σ1 and Σ2 are shown in Figs. 8.1 and 8.2, respectively.
The locations of Σ1 and Σ2 are successfully identified. However, the location of the
rotated crack Σ2 is not well-identified using IMU.

|IMT (xS)| for ω ∈ [300, 360]
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Fig. 8.1. Localization results for Σ1 using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right). The data set is generated solving (2.4) numerically.

Fig. 8.3 shows that the performance of the MUSIC algorithm over the consid-
ered range of frequencies [300, 360] is almost invariant. In the the other examples,
we shall use the middle frequency, ω = 330, for this single-frequency algorithm.

Let us stress that using data computed by the asymptotic expansion formula
(2.4) yields closely resembling images. In Figs. 8.4 and 8.5, localization results for
Σ1 and Σ2 using the asymptotic expansion formula are shown. That the imaging
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|IMT (xS)| for ω ∈ [300, 360]
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Fig. 8.2. Localization results for Σ2.

IMU (xS) for ω = 300
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Fig. 8.3. Localization results for Σ1 using IMU with ω = 300, 320, 340, and 360.

functionals are efficient when the forward problem is computed with the asymptotic
formulas is indeed expected as they have been constructed via this representation.
The comparisons between Figs. 8.4-8.5 and Figs. 8.1-8.2, however, show that the
imaging functionals are efficient as well when the forward data is generated by
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solving (2.1) numerically, giving data which reflects more closely a situation with
“real data”.

|IMT (xS)| for ω ∈ [300, 360]
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|IKMF (xS)| for ω ∈ [300, 360]
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Fig. 8.4. Localization results for Σ1 using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right). The data set is generated using the asymptotic formula (2.4).
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Fig. 8.5. Same as Fig. 8.4 except that the crack is Σ2.
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8.1.1. Influence of the Transducer Array Setting. Next, we show the
influence of the configuration of the transducer array with the test configurations
being described in Table 8.2. The used imaging functional is IMT.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional Setting

Σ2 20 −0.5 0.5 ω ∈ [300, 360] IMT setting 1
Σ2 20 −1 1 ω ∈ [300, 360] IMT setting 2
Σ2 20 −2 2 ω ∈ [300, 360] IMT setting 3
Σ2 20 −5 5 ω ∈ [300, 360] IMT setting 4

Table 8.2
Test configuration.

|IMT (xS)| for ω ∈ [300, 360]
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Fig. 8.6. Results for Σ2. Top left: setting 1, top right: setting 2, bottom left: setting 3 and
bottom right: setting 4.

In Fig. 8.6, we can see that for a given number of transducers, if the size of the
array is small then the images are blurred while if it is large, then an aliasing effect
due to undersampling of the array can appear.

8.1.2. Estimation of the Tangential Direction of a Crack. We now es-
timate the tangential direction t of a single crack. Based on formula (7.1), the
direction t of a single crack minimizes the following functional:

R(t) =
∑
j,l,ωk

∣∣∣∣A(j, l, ωk)− âε0 − ω2
kâ

ε
1(nj · t)(nl · t)

∣∣∣∣2.
We use 8 and 12 search directions ti in the situations with Σ1 and Σ2, respectively.

The values of R(ti) for each of the two cracks Σ1 and Σ2 are given in Table 8.3.
Note that the values of R(ti) are normalized with respect to the maximum value.
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l Value of R(ti) for Σ1 Value of R(ti) for Σ2

1 0.1707 0.0075
2 1.0000 0.4356
3 0.2041 1.0000
4 0.0252 0.4877
5 0.1707 0.0096
6 1.0000 0.0938
7 0.2041 0.0075
8 0.0252 0.4356
9 1.0000
10 0.4877
11 0.0096
12 0.0938

Table 8.3
Recovering the directions of the small cracks Σ1 and Σ2.

Crack n x
(1)
1 x

(n)
1 Frequency Imaging functional

Σ(m) 30 −2 2 ω ∈ [300, 360] IMT, IKMF, IKM

Σ(m) 30 −2 2 ω = 330 IMU

Table 8.4
Test configuration for Σ(m).

From the data in Table 8.3, the estimated tangential direction t of the crack
Σ1 is given by

t ≃ t4, t8 = (1, 0), (−1, 0).

Similarly, the estimated direction t of the crack Σ2 is

t ≃ t1, t7 =

(√
3

2
,
1

2

)
,

(
−
√
3

2
,−1

2

)
.

Thus, the approach set forth for estimation of crack orientation worked well in this
case.

8.2. Imaging of Multiple Small Cracks. Consider the functionals IMT,
IKMF, IKM and IMU for imaging multiple cracks. We choose for illustration the
following example:

Σ(m) = {(x− 0.05,−11) : −ε ≤ x ≤ ε} ∪ {Rπ/4(x+ 0.05,−11) : −ε ≤ x ≤ ε}.

The test configurations and localization results can be found in Table 8.4 and
Fig. 8.7. Note that for IKMF, IKM, and IMU there is a peak of much smaller
magnitude at the rotated crack (the one on the right). Note that the normalization
of the modes in the functional IMT defined by (3.10) gives a more balanced contrast.

8.3. Robustness With Respect to Measurement Noise. Suppose that
the measured data is polluted by a white Gaussian noise so that the SNR is 10dB.
In order to test the robustness of the proposed imaging functionals, we consider the
imaging of the two-closely located cracks Σ(m). The test configuration is the same
as in the noiseless case.

Again, in the imaging of Σ(m) a peak of much smaller magnitude at the rotated
crack (the one on the right) results when using functionals IKMF and IKM as shown
in Fig. 8.8. Note that the Kirchhoff imaging functionals are not significantly affected
by measurement noise. However, the location of the rotated crack via IMU for
ω = 330 can not be identified any more.
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|IMT (xS)| for ω ∈ [300, 360]
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|IKM (xS)| for ω ∈ [300, 360]
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Fig. 8.7. Localization results for Σ(m) with IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right).
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|IKMF (xS)| for ω ∈ [300, 360]
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Fig. 8.8. Localization results for Σ(m) using IMT (top left), IKMF (top right), IKM (bottom
left) and IMU (bottom right) with 10 dB SNR.
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9. Concluding Remarks. We have presented a framework for detection and
localization of cracks and inclusions. The approach is based on physical modelling,
modelling the formation of the response function using the governing equation for
the wave propagation phenomenon and evaluating this via asymptotic techniques.
The explicit tests are then based on optimal statistical decision rules in the context
when there is additive Gaussian noise. An important aspect of the detection rule is
that it is universal in that it depends only on the number of measurements and the
prescribed false alarm rate. The approach also addresses the important question of
identifying the dimension of the signal space. Our probabilistic approach identifies
a Kirchhoff imaging functional as the optimal one in the localization step and we
explicitly discuss a notion of resolution. Finally, the asymptotic framework answers
the question about what aspects of cracks and inclusions can be estimated based on
the measurements and we set forth explicit schemes of estimation of these geometric
features. The framework that we have presented can be generalized to the case
with cluttered media and the situation with multiple and clustered defaults. This
requires to determine the statistical properties of the multi-static response matrix
in this framework, using the theory of wave propagation in complex media [21].
Results on this and a more detailed analysis of estimation of geometric features of
(extended) cracks and inclusions will be reported elsewhere.

Appendix A. Statistical Test. As in the standard statistical hypothesis
testing [18, 24], we postulate two hypotheses and derive a decision rule for deciding
in between them based on the measured response matrix.

We define H0 the (null) hypothesis to be tested and HA the (alternative) hy-
pothesis:

• H0: there is no defect,
• HA: there is a defect.

We want to test H0 against HA. Two types of independent errors can be made:
• Type I errors correspond to rejecting the null hypothesis H0 when it is
correct (false alarm). Their probability is given by

α := P [accept HA|H0 true],

also called the level of significance of the test.
• Type II errors correspond to acceptingH0 when it is false (missed detection)
and have probability

β := P [accept H0|HA true].

The success of the test (probability of detection or detection power) is therefore
given by 1− β.

Given the data the decision rule for accepting H0 or not can be derived from
the Neyman-Pearson Lemma which asserts that for a prescribed false alarm rate α
the most powerful test corresponds to accepting HA for the likelihood ratio of HA

to H0 exceeding a threshold value determined by α.

Neyman-Pearson Lemma: Let Y be the set of all possible data and let f0(y)
and f1(y) be the probability densities of Y under the null and alternative hypotheses.
The Neyman-Pearson Lemma [18, p. 335] states that the most powerful test has a
critical region defined by

Y :=

{
y ∈ Y

∣∣∣ f1(y)
f0(y)

≥ ηα

}
, (A.1)

for a threshold ηα satisfying ∫
y∈Y

f0(y)dy = α. (A.2)



28 H. AMMARI ET AL.

If the data is y, we reject H0 if the likelihood ratio f1(y)
f0(y)

> ηα and accept H0

otherwise. The power of the (most powerful) test is given by

1− β =

∫
y∈Y

f1(y)dy. (A.3)

Appendix B. Proof of the Asymptotic Formula (2.4). Assume for the
sake of simplicity that

Σε =

{
(x, 0) : −ε ≤ x ≤ ε

}
. (B.1)

Thus, xc = (0, 0). Suppose also that c0 = 1. Let X ε be defined by

X ε =

{
φ :

∫ ε

−ε

√
ε2 − |x|2 |φ(x)|2 dx < +∞

}
. (B.2)

Endowed with the norm

∥φ∥X ε =

(∫ ε

−ε

√
ε2 − |x|2 |φ(x)|2 dx

)1/2

,

X ε is a Hilbert space.
The following behavior of the Hankel function near 0 holds [25]:

− i

4
H

(1)
0 (ω|x|) = 1

2π
ln |x|+ τω +

+∞∑
n=1

(bn ln(ω|x|) + cn)(ω|x|)2n, (B.3)

where

bn =
(−1)n

2π

1

22n(n!)2
, cn = −bn

(
γ − ln 2− πi

2
−

n∑
j=1

1

j

)
,

and the constant τω = (1/2π)(lnω + γ − ln 2)− i/4, γ being the Euler constant.
We have the integral representation

u(j)
ε (x) = Ĝ(ω,x,xj) +

∫
Σε

ϕε(y)Ĝ(ω,y,x) dσ(y), x ̸= xj , y = (y, 0), (B.4)

where the density ϕε is the solution in X ε to the integral equation∫
Σε

ϕε(y)Ĝ(ω,y,x) dσ(y) = −Ĝ(ω,x,xj) for x = (x, 0) ∈ Σε.

From (B.3) it then follows that ϕε is the solution in X ε to

(− 1

2π
Lε +Rε)[ϕε] = −Ĝ(ω, ·,xj) on Σε,

where

Lε[ϕ](x) =

∫ ε

−ε

ln |x− y|φ(y) dy and Rε[ϕ](x) =

∫ ε

−ε

Rω(x, y)φ(y) dy,

with

Rω(x, y) = −τω −
+∞∑
n=1

(bn ln(ω|x− y|) + cn)(ω|x− y|)2n.
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Set

ϕ̃ε(x) := εϕε(εx).

By a change of variables, we get∫ ε

−ε

Rω(x, y)ϕε(y) dy = −τω
∫ 1

−1

ϕ̃ε(y) dy +O((ωε)2 ln(ωε)),

where O((ωε)2 ln(ωε)) is in the X 1-norm. Analogously to [9], it then follows that

− 1

2π
L1[ϕ̃ε] + Cε

(
− ln ε

2π
− τω

)
+O((ωε)2 ln(ωε))

= −Ĝ(ω,xc,xj)− εx
∂Ĝ

∂x
(ω,xc,xj) +O(ε2ω2),

where

Cω
ε =

∫ 1

−1

ϕ̃ε(y) dy.

Here ∂/∂x is the tangential derivative on Σε defined by (B.1). Using the explicit
form of L−1

1 as in Lemma 2.1 in [9] yields

ϕ̃ε(y) =
Ĝ(ω,xc,xj)

ln(1/2)
√
1− y2

− Cω
ε

ln ε+ 2πτω

π ln(1/2)
√
1− y2

− 2ε
∂Ĝ

∂x
(ω,xc,xj)

y√
1− y2

+O((ωε)2 ln(ωε)),

and therefore, since ε∂Ĝ
∂x (ω,x

c,xj) = O(εω),

Cω
ε =

2πĜ(ω,xc,xj)

ln(1/2) + ln ε+ 2πτω
+O(εω).

Finally, plugging the expansion of ϕ̃ε in (B.4) we get the desired asymptotic formula

for u
(j)
ε which is uniform in εω.
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