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Abstract. Benign radiation-induced lung injury (RILI) is not uncommon following stereotactic ablative radio-
therapy (SABR) for lung cancer and can be difficult to differentiate from tumor recurrence on follow-up imaging.
We previously showed the ability of computed tomography (CT) texture analysis to predict recurrence. The aim
of this study was to evaluate and compare the accuracy of recurrence prediction using manual region-of-interest
segmentation to that of a semiautomatic approach. We analyzed 22 patients treated for 24 lesions (11 recur-
rences, 13 RILI). Consolidative and ground-glass opacity (GGO) regions were manually delineated. The longest
axial diameter of the consolidative region on each post-SABR CT image was measured. This line segment is
routinely obtained as part of the clinical imaging workflow and was used as input to automatically delineate the
consolidative region and subsequently derive a periconsolidative region to sample GGO tissue. Texture features
were calculated, and at two to five months post-SABR, the entropy texture measure within the semiautomatic
segmentations showed prediction accuracies [areas under the receiver operating characteristic curve (AUC):
0.70 to 0.73] similar to those of manual GGO segmentations (AUC: 0.64). After integration into the clinical work-
flow, this decision support system has the potential to support earlier salvage for patients with recurrence and
fewer investigations of benign RILI. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.4.041010]
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1 Introduction

Stereotactic ablative radiotherapy (SABR) (also known as ster-

eotactic body radiotherapy) is now the guideline-recommended

treatment for patients with nonsmall cell lung cancer (NSCLC)

who are medically inoperable or refuse surgery.1,2 Compared

with conventional radiotherapy techniques, SABR involves

the treatment of small lung tumors with higher doses per fraction

in fewer fractions. Typically, doses of up to 18 Gy per fraction

are delivered in between three and eight fractions over one to

two weeks, in contrast to a dose of 2 Gy per day delivered

over four to six weeks in conventional radiotherapy techniques.

The higher doses used in SABR have led to local control rates of

up to 90% at three years post-treatment, similar to those reported

after surgery.3,4 However, radiation-induced lung injury (RILI),

such as radiation fibrosis, can occur after SABR. Some forms of

benign changes can appear with a size and shape similar to those

of a recurring tumor on computed tomography (CT) imaging,

which is routinely acquired every three months as part of fol-

low-up care. This confounds the critical clinical decision to pro-

vide potentially life-saving additional salvage therapies in cases

where the cancer is recurring after SABR.

Present guidelines recommend the use of serial CT scans for

follow-up after SABR, with the use of 18-fluorodeoxyglucose

positron emission tomography (FDG-PET) imaging only when

appropriate.5 FDG-PET is recommended when recurrence is

suspected on CT; however, due to the high number of false pos-

itive findings on PET, patients eligible for salvage treatment

should undergo a biopsy if feasible.5 Qualitative image assess-

ment has also been performed on CT images following SABR,

and a high-risk feature set has been developed to discriminate

benign fibrosis from recurrence.6,7 These features include an

enlarging opacity, sequential enlargement from one scan to

the next, a bulging margin, loss of linear margin, and air bron-

chogram loss. However, these features typically do not manifest

until one year post-SABR.6

Our overarching goal is to develop a fully automated system

that will classify a CT image as recurrence or RILI, supporting

the decision to prescribe salvage therapy to SABR patients with

recurring tumors. This system will not require any manual delin-

eation other than that which is performed during the normal

clinical workflow and will produce operator-independent, repro-

ducible classification results. Quantitative radiomic image

analysis has been increasingly utilized on CT, magnetic reso-

nance imaging, and PET for differentiation of tumor types

and grades and for response assessment across many disease

sites.8,9 Texture analysis has been investigated in predictive

modeling of radiation pneumonitis after definitive lung

radiotherapy.10 It has also been described for predicting the

development of radiation pneumonitis after definitive radio-

therapy for esophageal cancer.11,12 Cunliffe et al. compared radi-

ologist-defined severity of normal tissue damage with CT
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texture features.11 In an additional study, they demonstrated the

ability to differentiate patients with and without clinical radia-

tion pneumonitis by measurements of dose-dependent texture

change between pre- and postradiotherapy CT images.12 To

the best of our knowledge, these are the only papers present

in the literature measuring CT texture for benign radiation-

induced lung injury. Our previous work evaluated quantitative

CT image texture analysis for early prediction of recurrence after

SABR.13,14 We have shown that second-order texture features

based on gray-level co-occurrence matrices (GLCM) calculated

within manually delineated ground-glass opacity (GGO) regions

can predict recurrence within six months post-SABR. The

regions of GGO refer to hazy regions of increased attenuation

in the lung within which vascular regions can still be visualized,

and these regions typically surround the consolidative mass.

Texture features within these regions showed twofold cross-val-

idation (CV) errors of 23 to 30% and areas under the receiver

operating characteristic curve (AUCs) of 0.78 to 0.81.13 As seen

in Fig. 1, patients with benign injury tended to have a smooth

GGO appearance compared to a variegated appearance in

patients with recurrence.

However, there are two main limitations to clinical transla-

tion of this technique. First, although interoperator variability in

manual segmentations on radiographic images is a well-known

problem, little is known about predicting recurrence based on

texture feature analysis within GGO segmentations performed

by different operators.15 As GGO boundaries are often barely

discernible, it is reasonable to expect substantial interoperator

variability. Second, manual three-dimensional (3-D) segmenta-

tion of the GGO is time-consuming, and automated GGO seg-

mentation is extremely challenging due to the lack of any shape

regularity and the difficulty, even for the human medical expert,

in judging the locations of the weak GGO boundaries. Inspired

by our previous observation that a periconsolidative region

(defined by a concentric expansion of the consolidative mass)

intended to sample GGO tissue yielded classification perfor-

mance comparable to manually delineated GGO,14 we conjec-

tured that accurate classification performance could be obtained

using an automatically defined periconsolidative region, render-

ing a complete GGO segmentation unnecessary.

Based on these observations and challenges, our primary

objectives in the current study are as follows: First, we aim

to measure the accuracy of texture features for predicting recur-

rence based on the first three-month follow-up scan, with a

periconsolidative region derived from a semiautomatic segmen-

tation of the consolidative region.16 This decision support sys-

tem would eliminate the need for any time-consuming manual

segmentations. Although the segmentation algorithm is semiau-

tomatic, its only input is the Response Evaluation Criteria in

Solid Tumors (RECIST 1.1) line segment, which is routinely

obtained as part of the clinical imaging workflow; no additional

user interaction is required.17 We also aim to determine the

reproducibility of the system’s segmentation recurrence predic-

tions to inputs from different operators. Finally, we aim to com-

pare the classification performance to manually delineated

segmentations.

2 Methods

2.1 Materials and Imaging

A total of 24 lesions from 22 patients treated for stage I NSCLC

with SABR at the VU University Medical Center, The

Netherlands, between February 2004 and February 2010

were used for this study. Of these 24 lesions, 11 were defined

as local recurrences based on biopsy confirmation (8/11) and/or

ultimate clinical outcome (3/11). The remaining 13 lesions

developed moderate-to-severe radiological RILI CT changes

based on expert assessment and had at least two years of imag-

ing follow-up. These 13 RILI cases were chosen because they

were especially challenging to distinguish from recurrences

based on the first follow-up scan; for such cases, computer-

assisted decision support was deemed to have the greatest poten-

tial value in the clinical context. The proportion of recurrences is

artificially inflated in this dataset, and the true rate of local recur-

rence for a typical stage I NSCLC cohort is ∼10%.3,4 During

follow-up, 46 post-treatment diagnostic CT scans were taken

at the first two follow-up time periods (two to five and five

to eight months) post-SABR on one of the three scanners at

the VU Medical Center: Siemens Volume Zoom 4-slice,

Siemens Sensations 64-slice (Siemens Nederland N.V.,

Den Haag, The Netherlands), or Philips Brilliance iCT 256-

slice (Royal Philips Electronics, Inc., Amsterdam, The

Netherlands). To eliminate the effect of image acquisition

parameters on quantitative image analysis, all follow-up scans

were acquired with the same acquisition parameters at inspira-

tory breath hold, 120 kVp, 100 mAs, spiral acquisition, 0.5 sec-

ond rotation time, 2.5 to 5 mm slice thickness, with 70 cc of

intravenous contrast (Ultravist-300; Bayer Pharma AG,

Berlin, Germany) administered with a 25 s delay. Iterative

reconstruction was not used in this imaging dataset and a stan-

dard sharp lung convolution kernel was applied (B60f) with 0.5

to 0.9 mm isotropic in-plane voxel dimensions.

Fig. 1 The two- to five-month follow-up image for four patients in our study. The solid lines encompass
consolidative changes and the dashed lines encompass regions of ground-glass opacity (GGO), as
delineated by a senior radiation oncology resident. The two lesions that developed benign radiation-
induced lung injury are shown in (a) and (b), and qualitatively, the GGO regions have a smooth appear-
ance. (c) and (d) Two lesions that eventually developed cancer recurrence, and in these images, a vari-
egated texture is visible in the GGO regions.
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2.2 Region of Interest Segmentation

2.2.1 Manual segmentation of consolidation and ground-

glass opacity

Segmentations were performed by a resident in radiation oncol-

ogy (operator 1) on all follow-up CT images in ITK-SNAP 3.0.18

A lung window setting (level/window −600∕1500 HU) and the

paintbrush tool or polygon outline were used. A mediastinal

window setting (level/window 50/450 HU) was also used for

tumors or fibrosis abutting the mediastinum. Consolidation

changes were defined as an increased density with respect to

normal surrounding lung with no visibility of vasculature

within. GGO was defined as an increase in normal lung density

with visibility of vasculature within. The segmentations were

randomly checked by a thoracic radiation oncologist. The

time required to manually complete the consolidation and

GGO segmentations was also recorded on a subset of images.

2.2.2 Semiautomatic segmentation of consolidation

An overview of our semiautomatic segmentation approach can

be seen in Fig. 2. In the current clinical workflow, a physician

measures the lesion’s longest axial diameter based on RECIST

criteria to determine treatment response.17 Since these measure-

ments are taken during the normal clinical workflow by the

physician, we use them as initializations for the segmentation

algorithm. Specifically, the endpoints of the RECIST segment

on the CT image serve as the only operator inputs to the seg-

mentation algorithm. These line segments allow for localization

of our post-SABR consolidative regions of interest (ROIs) on

the follow-up scan, eliminating the need for any deformable

registration to localize the area from the planning scan.

The recently published OneCut graph cut algorithm was used

to segment the consolidative regions.19,20 This algorithm finds

the segmentation that minimizes the L1 distance between

unknown object and background appearance models. The

variation of this algorithm that uses seeds for initialization min-

imizes the energy function

EQ-TARGET;temp:intralink-;e001;326;730EðSÞ ¼ −βkθS − θS̄kL1 þ j∂Sj; (1)

where S is the segmentation, θS and θS̄ are the distributions of

object and background intensities, respectively, and β is a tuning

parameter (0.05 in our experiments) determining the relative

contributions of the L1 intensity model difference and the seg-

mentation perimeter length to the overall energy. In practice, θS

and θS̄ are represented as histograms with a specified number of

bins (64 in our experiments). The tuning parameter was deter-

mined using a subset of four images (two RILI and two recur-

rences) spanning differences in size, shape, and appearance of

the consolidative regions. The input RECIST line segments used

to tune the parameter were separate from the RECIST line seg-

ments used to validate the algorithm. The OneCut approach

globally minimizes this energy function with a single graph

cut and is particularly suited to our problem, given its speed,

its natural incorporation of object and background seeds as

input, and its demonstrated superior performance to the closest

competing GrabCut method21 for bin counts >20, allowing for

segmentation of objects having more subtle intensity differences

from the background.19 The foreground seeds were defined as

voxels greater than or equal to a threshold of −200 HU within a

sphere A, centered at the midpoint of the RECIST segment, with

a diameter equal to the length of the RECIST segment plus

10 mm. The background seeds were defined as all voxels within

normal lung parenchyma (as described in the Appendix), not

within sphere A, and within a sphere B centered at the midpoint

of the RECIST segment with a diameter equal to the length of

the RECIST segment plus 20 mm. The OneCut segmentation

was performed on each slice (mapping the lung window/level

range of −1350 to 150 HU to an 8-bit range) within an ROI

centered on and enveloping the background seeds. Any parts

of these segmentations lying outside of the whole lung (in

Manual 
GGO 

Manual

consolidation

Automatic

consolidation

with OneCut19

Automatic

Periconsolidative

Image with RECIST

line segment 

Image with

foreground and

background seeds 

Texture analysis

and 

classification 

Texture analysis

and 

classification 

Error
FPR
FNR
AUC

Fig. 2 An overview of our semiautomatic segmentation approach and the methods used in this paper. On
the original computed tomography (CT) image, an operator places a Response Evaluation Criteria in
Solid Tumors line segment to measure the longest axial diameter (taken in the normal clinical workflow).
This was used as initialization for the OneCut algorithm to automatically obtain the consolidation seg-
mentation (red). An expansion of this region defined the periconsolidative region (blue). On the original
CT image, manually delineated consolidation and GGO regions were also obtained. Texture analysis
was performed in the GGO and semiautomatic periconsolidative regions, and classification results
were compared using twofold cross-validation errors, false positive rates (FPR), false negative rates
(FNR), and area under the receiver operating characteristic curve (AUC).
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cases where the consolidation abutted the lung boundary) were

removed and the 3-D largest connected component closest to the

RECIST line was taken. Due to the inclusion of small adjacent

vessels in the 3-D volume, a subsequent slice-by-slice two-

dimensional (2-D) largest connected component was taken to

remove these disconnected vessels in plane. Finally, the 3-D

largest connected component was taken as the final consolida-

tion segmentation volume.

To validate our algorithm and assess the impact of interop-

erator variability on segmentation and classification perfor-

mance, three operators provided RECIST measurements of

the consolidative changes post-SABR. If the consolidation

region was split into more than one disconnected region, a sep-

arate measurement was taken for each region. Validation was

performed with typical users of the system, including a senior

radiation oncology resident (operator 1) and two thoracic radi-

ation oncologists (operators 2 and 3). To avoid biasing the

results, none of the operators in this study contributed to the

design of the semiautomated segmentation algorithm.

2.2.3 Automatic delineation of periconsolidative region

A periconsolidative region within the lung parenchyma was

derived automatically by thresholding the 3-D distance trans-

form of the consolidation segmentations. The threshold was

set at 16 mm based on our previous observation that classifica-

tion performance does not differ substantially from that given by

the corresponding manually delineated GGO above this

threshold.14 The domain was also restricted to a sphere, centered

at the midpoint of the RECIST segment, with a diameter equal to

the length of the RECIST segment plus 32 mm (16 mm × 2).

This is due to the possible inclusion of connected vessels distant

to the consolidative mass or extra consolidative regions errone-

ously included in the semiautomatic segmentation. A sphere

defined by the RECIST line segment will, by definition, circum-

scribe the lesion; this shape was chosen to enable concentric

sampling of the tissue outside of the consolidative mass. We

want to ensure we are sampling the periconsolidative region

adjacent to the treatment site and avoiding sampling additional

normal lung distant to the consolidative mass. The size of the

sphere was chosen to encompass the entire RECIST line plus

a 16-mmmargin on each end, which was chosen for consistency

with the 16-mm threshold used for expansion from the consol-

idative mass. An example of a resulting periconsolidative region

can be seen in Fig. 2.

2.3 Feature Extraction and Image Analysis

MATLAB® 8.4 (The Mathworks, Natick, Massachusetts) was

used to calculate first-order texture as the standard deviation

of the density within the GGO or periconsolidative region.

The Insight Segmentation and Registration Toolkit (ITK)

4.3.122 was used to calculate four second-order texture features

based on a GLCM: energy, entropy, inertia, and correlation.23–25

The equations for calculation of these texture features are

EQ-TARGET;temp:intralink-;e002;63;154Energy ¼
X

i;j

gði; jÞ2; (2)

EQ-TARGET;temp:intralink-;e003;63;111Entropy ¼ −
X

i;j

gði; jÞlog2 gði; jÞ or 0 if gði; jÞ ¼ 0; (3)

EQ-TARGET;temp:intralink-;e004;326;752Correlation ¼
X

i;j

ði − μÞðj − μÞgði; jÞ

σ2
; (4)

and

EQ-TARGET;temp:intralink-;e005;326;714Inertia ¼
X

i;j

ði − jÞ2gði; jÞ; (5)

where g is a 2-D matrix where each element gði; jÞ contains the
number of voxel pairs whose elements have gray levels i and j,

where μ is the weighted pixel average,

EQ-TARGET;temp:intralink-;e006;326;646

μ ¼
X

i;j

i · gði; jÞ

¼
X

i;j

j · gði; jÞ ðdue to symmetry of gÞ; (6)

and σ is the weighted pixel variance,
EQ-TARGET;temp:intralink-;e007;326;567

σ ¼
X

i;j

ði − μÞ2 · gði; jÞ

¼
X

i;j

ðj − μÞ2 · gði; jÞ ðdue to symmetry of gÞ: (7)

The number of bins and density ranges in the GLCM were set

to yield 20 HU bin widths between −1000 and 200 HU (60

bins), based on analysis of the histogram distributions within

manually delineated GGO regions. GLCMs were calculated

within four in-plane neighboring voxel pair directions

[ð−1;0; 0Þ, ð−1;−1;0Þ, ð0;−1;0Þ, ð1;−1;0Þ] for the entire 3-

D ROI, and texture features were averaged over all directions.

When calculating a GLCM, the neighboring voxel to be ana-

lyzed must be specified by the distance and location (in the

x, y, and z directions) from the reference voxel. An example

of the four in-plane neighboring voxel relationships is shown

in Fig. 3. Due to the voxel anisotropy typically seen in postra-

diation follow-up lung CT images (5-mm slice thickness), we

did not analyze through-plane directions in this study.

Features were analyzed within two discrete time periods: two

to five and five to eight months post-SABR. This timing of

images was chosen because the focus of our study is on the

early prediction of recurrence post-SABR. Within each time

period, the images used for analysis spanned all 22 patients

and 24 tumors available.

2.4 Classification

PRTools 5.0 (Delft Pattern Recognition Research, Delft, The

Netherlands) was used for classification. For a stringent

(0, -1, 0) (1, -1, 0) (-1, -1, 0) 

(-1, 0, 0) 

Fig. 3 The four in-plane spatial relationships used for calculating the
gray level co-occurrence matrix. The dark central voxel is the refer-
ence voxel, and the neighboring voxels considered in the analysis
are shown in gray.
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determination of classification performance, twofold CV over

1000 repetitions was performed using a linear Bayes normal

classifier. The mean and standard deviation of the classification

error, false negative rates (FNRs), false positive rates (FPRs),

and AUCs were measured, where recurrence is defined as pos-

itive. Classification performance was measured for all five

extracted texture features in both the automatically defined peri-

consolidative regions and the manually delineated GGO regions.

2.5 Comparison of the Semiautomatic
Segmentations

To compare the segmented regions between operators, similarity

metrics were calculated to measure segmentation differences.

The symmetric mean absolute boundary difference, Dice simi-

larity coefficient (DSC) ½ð2jVA ⋂ VBjÞ∕ðjVAj þ jVBjÞ�, volume

difference ðVB− VAÞ, recall ½TP∕ðTPþ FNÞ�, and precision

½TP∕ðTPþ FPÞ� were calculated, where VA and VB are the vol-

umes of the segmentations by operators A and B, respectively,

and TP¼ true positive, FP¼ false positive, TN ¼ true negative,

and FN ¼ false negative. Segmentation metrics were calculated

on all of the images used in this study. Each metric was calcu-

lated on the same 3-D image volume between operators.

Calculation of segmentation differences was completed between

all operators for the semiautomated consolidative regions. Due

to the lack of a reference operator when comparing segmenta-

tions between operators, the F1 score was calculated to eliminate

the effect of reference operator selection on precision and recall

metrics. The F1 score is the harmonic mean of the precision and

recall and can be used to measure the segmentation accuracy

f2 · ½ðprecision · recallÞðprecisionþ recallÞ�g. Additionally, the
time to generate the manual and semiautomatic segmentations

was measured and compared.

2.6 Statistical Analysis

All statistical analyses were completed in SPSS Statistics

Version 22.0 (IBM Corp., Armonk, New York). To compare

segmentation differences between operators, a Kolmogorov-

Smirnov test was first completed to test for normality of

distribution for all the measures. A Wilcoxon signed rank

test for nonparametric data was used to compare differences

between operators (two-sided with alpha ≤ 0.05). To compare

classification performance between operators, an independent

samples t test with unequal variances was performed to test

the null hypothesis that the mean classification performance

between operators was equal. Due to the repeated sampling in

the CV metrics (1000 times), to correct for multiple testing, a

Bonferroni correction was applied with alpha ≤ 0.05∕1000.
To determine noninferiority of the semiautomated classifica-

tion results with respect to results obtained using the manual

segmentations, the 95% confidence interval of the difference

in CV metrics was assessed. An inferiority margin of 5% was

chosen as an acceptable clinical difference in CV metrics.

3 Results

3.1 Manual Segmentations

Classification performance at two to five months post-SABR

using texture features within manually delineated GGO regions

is shown in Fig. 4. We examined classification results within this

early time range, as we want to determine the ability to predict

recurrence as early as possible post-SABR. The top-performing

feature in terms of twofold CVerror was entropy. At two to five

months post-SABR, the mean twofold CV error was 27.4%,
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Fig. 4 Classification performance of the manual GGO and semiautomatic periconsolidative regions for
the top-performing texture feature (entropy) at two to five months post-SABR. The columns indicate the
mean twofold cross-validation errors, mean FPR, mean FNR, and the AUC. The whiskers indicate the
standard deviation over 1000 repetitions, and each color represents a different operator. The asterisks
indicate a statistically significant difference between operators (p < 0.00005).

Table 1 Area under the receiver operating characteristic curve for the
top texture feature (entropy) at both time points after stereotactic abla-
tive radiotherapy (SABR).

Two to five months Five to eight months

Operator 1 (manual) 0.64� 0.04 0.67� 0.04

Operator 1 (semiauto) 0.73� 0.06 0.71� 0.05

Operator 2 (semiauto) 0.70� 0.04 0.67� 0.07

Operator 3 (semiauto) 0.71� 0.05 0.69� 0.07
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with a mean FPR and FNR of 29.5 and 25.3%, respectively, and

an AUC of 0.64. For comparison, the AUC value at five to eight

months post-SABR was 0.67 and is shown in Table 1. At five to

eight months post-SABR, the entropy feature demonstrated a

twofold CV error of 30.0%, mean FPR of 25.2%, and mean

FNR of 36.2%. A qualitative representation of the manually

delineated ROIs is provided in Fig. 1.

3.2 Semiautomated Segmentations

3.2.1 Segmentation comparison

Similarity metrics for the semiautomatic consolidative segmen-

tations are summarized in Table 2. The majority of the metrics

failed a Kolmogorov-Smirnov test for normality, and therefore,

the median values are reported. AWilcoxon signed rank test for

nonparametric data was performed to test the null hypothesis

that the medians of each group are equal. Overall, when

using the semiautomatic approach, interoperator variability

was low, with values for the F1 score ranging from 0.87 to

0.93 and boundary differences from 1.00 to 1.75 mm.

Operator 3 showed the largest variability, with significant

differences in all four metrics. However, the volume overlap

(DSC) measurements still showed high overall agreement in

the segmentations, with values of 0.87 to 0.93. Qualitative

examples for all of the operators’ semiautomatic segmentations

are shown in Fig. 5.

3.2.2 Classification performance

Classification performance at two to five months post-SABR

within the automatically derived periconsolidative regions is

shown in Fig. 4 for the top feature (entropy). Using these seg-

mentations, entropy had mean twofold CV errors of 24.7 to

27.8% across all three operators. Operator 1 had a significantly

lower mean twofold error compared to operators 2 and 3. There

was no significant difference in mean errors between operators 2

and 3. Overall, the decision support system based on semiauto-

matic segmentations produced balanced FPRs and FNRs of 25.8

to 30.6% and 23.5 to 25.3%, respectively. There was no signifi-

cant difference in the mean FNRs between any of the operators.

All three operators had significantly different mean FPRs; how-

ever, differences were all ≤5%. At two to five months post-

SABR, entropy had AUC values between 0.70 and 0.73 for

all operators, which was significantly different between all oper-

ators. For comparison, the AUC values at five to eight months

post-SABR are shown in Table 1 and were between 0.67 and

0.71 for all operators. At this time point, the entropy feature

had twofold CV errors of 22.8 to 31.3%, mean FPRs of 21.6

to 23.3%, and mean FNRs of 22.8 to 43.9%.

Table 2 Interoperator variability in the semiautomatic consolidative segmentations; all values are reported as the median [interquartile range].

Operator MAD bilateral (mm) DSC F1 score Volume difference (cm3)

1 versus 2 1.18 [0.31, 2.62] 0.90 [0.78, 0.98] 0.90 [0.78, 0.98] −1.66 [−17.91, 0.33]#

1 versus 3 1.75 [0.60, 3.19]* 0.87 [0.74, 0.97]* 0.87 [0.74, 0.97]* −10.56 ½−22.86;−1.68�*
#

2 versus 3 1.00 [0.45, 2.13]* 0.93 [0.81, 0.97]* 0.93 [0.81, 0.97]* −3.57 [−13.58, 0.06]*

Note: MAD, mean absolute boundary difference; DSC, Dice similarity coefficient.
*,#Indicate significant differences between rows, p < 0.05.

Operator 1 Operator 2 Operator 3  

Operator 1 Operator 2 Operator 3  

(a) Radiation-induced lung injury  

(b) Recurrence 

Follow-up Planning 

Follow-up Planning 

Fig. 5 The pretreatment lesion used for treatment planning and a three-month follow-up scan showing
the radiological changes post-SABR for a patient with (a) radiation-induced lung injury and (b) recurrence.
Semiautomated segmentations of the consolidative regions (red) and periconsolidative regions (blue)
surround them. Operators 1, 2, and 3 are shown for each case.
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3.3 Comparison of System Performance: Manual
versus Semiautomatic Segmentations

3.3.1 Classification performance

Comparison of classification performance at two to five months

post-SABR using the manual and semiautomatic decision sup-

port systems is shown in Fig. 4. Classification using the semi-

automated method was compared to classification performance

using the manual delineations performed by the senior radiation

oncology resident. Using the semiautomatic segmentations, the

entropy texture feature produced AUCs higher than the manual

contours for all three operators. All AUC values using the semi-

automated approach were significantly different from reference

manual contours. In terms of mean twofold error, operator 1

demonstrated a significantly better performance compared to

the manual segmentations. There was no significant difference

in classification performance between the manual and the semi-

automatic segmentations by operators 2 and 3. There were also

no significant differences with respect to the FNRs. However,

operators 1 and 3 produced significantly lower FPRs compared

to the manual segmentations, whereas no difference was

observed with respect to operator 2. A noninferiority study

was completed to determine if the semiautomated approach

was noninferior to the manual approach. Figure 6 shows the

95% confidence intervals of the differences between the semi-

automated and manual classification metrics. Noninferiority was

demonstrated for all metrics as the 95% confidence intervals fell

within clinically acceptable differences of 5%. At five to eight

months post-SABR, the AUC and twofold error values were

similar to those at two to five months. Results were also con-

sistent between the manual and semiautomated systems, with

AUC values within 0.04 and twofold errors within 7%.

Overall, classification results showed robustness using the

semiautomatic approach and were comparable to or exceeded

the results using manually delineated regions. Individual feature

values for the recurrence and injury groups, as well as all clas-

sification metrics, are summarized in Tables 3 and 4.

3.3.2 Timing

The average time (�SD) for operator 1 to manually delineate the

consolidative and GGO regions on each image (for a subset of

20 images) was 579� 472 s (i.e., 9.6� 7.9 min). The semiau-

tomatic approach took 27� 25 s to obtain the consolidative and

periconsolidative regions on each image. The increase in seg-

mentation speed was 20-fold, with an average savings of

9 min per image.

4 Discussion

The ability to distinguish benign fibrosis from tumor recurrence

is crucial in determining a patient’s care following SABR and

determining whether salvage surgery or additional radiotherapy

is required. Current clinical guidelines recommend the use of

serial CT imaging for follow-up assessment after treatment

with SABR. Therefore, a reliable measure for determining

recurrence on CT imaging would be extremely valuable as

the utilization of SABR is rapidly increasing. The use of quan-

titative appearance measures could provide an early assessment

of response through quantifying subtle patterns predictive of

recurrence not typically considered by a radiologist or radiation

oncologist.

Our previous work has shown that the entropy texture feature

calculated within manually delineated regions of GGO could

predict recurrence with twofold CV errors of 24% at two to

five months post-SABR.13 The results presented in this study

using manual segmentations by a different operator were con-

cordant, with an error of 27%. There exist radiographic changes

to the tissue surrounding the consolidative regions as a result of

SABR (as shown in Fig. 1), which can cause a substantial loss of

boundary contrast. These observations provide important con-

text for the evaluation of automatic segmentation algorithms

for consolidation regions on post-SABR lung CT images by

quantifying the uncertainty inherent in the manual reference

standard. GGO regions can also have a highly variable appear-

ance and an ill-defined border, rendering them very challenging

to delineate. This emphasizes the difficulties in delineating these

regions and the lack of a single ground truth reference standard

segmentation for this problem. To eliminate the need for time-

consuming manual segmentations and any inherent variability

between them, the goal of this study was to produce an accurate

and reproducible means of recurrence prediction post-SABR

using semiautomatic segmentations.

This work has shown the ability to predict recurrence post-

SABR using texture analysis in regions delineated by means of a

semiautomated segmentation algorithm, initialized using only

the RECIST diameter measurement that is normally collected

during the clinical workflow. This diameter measure on post-

SABR follow-up scans is assessed according to the RECIST

1.1 criteria by comparing it to the pretreatment scan.17

Consequently, it provides a quick and efficient means for initial-

ization of our decision support system. It will also guarantee

localization of our post-SABR consolidative ROIs, regardless

of deformations and retractions from the pretreatment location.

We also considered that in the typical clinical workflow, the

RECIST line segment would be taken by the radiologist reading

the CT image and would be external to our workflow. In other

-5% 0% 5%

Difference in mean error (Semiautomated–manual) (%)

Error

False positive

rate (FPR)

False negative

rate (FNR)

(1)

(3)

(2)

Difference in AUC (Semiautomated–manual)

Area under

the reciever

operating

characteristic

curve (AUC)

(3)

(1)

(2)

-0.05 0.00 0.05 0.10

(b)

(a)

Fig. 6 Noninferiority analysis for the difference between means
(semiautomated-manual) for the (a) classification error metrics and
(b) AUC. Each numbered row of each figure corresponds to a single
operator. The markers indicate themean differences and the whiskers
represent the 95% confidence intervals. The vertical dashed lines re-
present an acceptable clinical difference of 5% for all metrics.
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words, we would obtain this line segment when we obtain the

follow-up image, leading to a fully automatic overall system

based on semiautomated segmentation.

We reported small differences between the semiautomated

segmentations obtained from each operator. This is due to vari-

ability in the placement of the RECIST line segment. It has been

well described that substantial variability exists, both between

and within operators, in the measurement of response in lung

cancer patients.26,27 This variation can be seen in the placement

of line segments measuring longest axial diameter according to

RECIST guidelines. This can be particularly evident in the post-

SABR context due to the highly variable sizes and shapes of the

consolidative masses (they are not typically spherical, as is

common in the case of pretreatment tumors) as shown in

Fig. 1. Consequently, it can be difficult to determine the correct

location on which to place the line segment. However, the

differences we observed in the physical placement of the line

segment had a minor impact on the graph cut algorithm,

since the foreground and background samples (as shown in

Fig. 2) are likely to vary only slightly. The F1 scores were

all >0.85, suggesting high interoperator agreement in the semi-

automatic consolidative regions.

As mentioned previously, the GGO surrounding the consol-

idative regions on follow-up images decreases the boundary

contrast of the consolidation. Overcoming the loss of contrast

using smoothness and/or shape priors may not be straightfor-

ward, given the nonsmooth and highly variable shapes of the

consolidative regions (as seen in Fig. 1). Most importantly, how-

ever, this semiautomatic segmentation provides a basis for the

automatically defined periconsolidative region. As shown in

Fig. 5, the periconsolidative regions are in general dissimilar

to the manual GGO regions seen in Fig. 1. This is intentional,

as our intention is to sample a region surrounding the consol-

idative regions within which to calculate the texture features.

Our previous work demonstrated that sampling a region sur-

rounding the consolidative region was sufficient for predicting

recurrence and that a complete segmentation of GGO was not

required.14

Table 3 Individual texture feature values and classification metrics including error, false positive rate (FPR), false negative rate (FNR), and area
under the receiver operating characteristic curve (AUC) at two to five months post-SABR. All values are reported as mean� standard deviation.

Observer
Feature value—

recurrence
Feature value—

injury p value Error FPR FNR AUC

Correlation Operator 1 (manual) 0.006� 0.002 0.010� 0.007 0.098 33.6� 10.9 37.8� 12.9 29.0� 12.8 0.61� 0.06

Operator 1 (semiauto) 0.008� 0.001 0.014� 0.010 0.082 28.3� 7.4 43.8� 7.0 11.3� 10.8 0.67� 0.06

Operator 2 (semiauto) 0.009� 0.001 0.014� 0.010 0.077 25.8� 7.4 39.0� 7.8 11.4� 9.4 0.69� 0.06

Operator 3 (semiauto) 0.009� 0.001 0.014� 0.010 0.079 26.5� 7.1 38.1� 7.6 13.9� 9.1 0.72� 0.06

Energy Operator 1 (manual) 0.002� 0.001 0.004� 0.003 0.032* 27.2� 4.7 37.8� 6.5 15.8� 5.4 0.70� 0.05

Operator 1 (semiauto) 0.003� 0.001 0.007� 0.010 0.131 27.3� 6.3 45.3� 7.8 7.7� 9.0 0.77� 0.05

Operator 2 (semiauto) 0.003� 0.001 0.007� 0.010 0.142 30.9� 5.4 49.1� 7.5 11.0� 8.5 0.72� 0.05

Operator 3 (semiauto) 0.003� 0.001 0.008� 0.010 0.138 30.9� 5.8 48.1� 8.0 12.2� 8.9 0.73� 0.06

Entropy Operator 1 (manual) 9.35� 0.51 8.62� 0.91 0.030* 27.5� 8.5 29.5� 8.1 25.3� 11.5 0.64� 0.04

Operator 1 (semiauto) 8.68� 0.31 8.05� 0.86 0.032* 24.7� 8.3 25.9� 7.9 23.5� 11.1 0.73� 0.06

Operator 2 (semiauto) 8.64� 0.29 8.02� 0.87 0.036* 27.8� 6.0 30.6� 7.0 24.7� 8.0 0.70� 0.04

Operator 3 (semiauto) 8.58� 0.29 7.96� 0.86 0.035* 26.7� 7.3 28.0� 7.1 25.3� 9.9 0.71� 0.05

Inertia Operator 1 (manual) 56.82� 23.84 47.90� 46.02 0.563 48.5� 12.1 33.4� 22.7 65.1� 12.2 0.54� 0.05

Operator 1 (semiauto) 44.06� 16.49 32.65� 17.24 0.120 34.2� 9.9 21.9� 10.6 47.5� 14.2 0.64� 0.06

Operator 2 (semiauto) 42.70� 16.19 32.64� 17.44 0.166 37.8� 11.1 27.8� 13.7 48.8� 14.7 0.60� 0.05

Operator 3 (semiauto) 42.10� 16.04 31.71� 16.96 0.146 34.0� 10.1 21.8� 10.4 47.4� 15.1 0.63� 0.06

Standard deviation Operator 1 (manual) 240.46� 37.10 205.48� 62.16 0.115 36.1� 9.1 27.6� 10.4 45.5� 12.4 0.59� 0.06

Operator 1 (semiauto) 197.79� 15.92 171.15� 38.56 0.044* 36.2� 5.4 36.5� 6.8 35.8� 7.9 0.58� 0.04

Operator 2 (semiauto) 196.73� 14.81 169.50� 37.89 0.036* 31.0� 4.7 31.3� 4.6 30.6� 8.9 0.64� 0.04

Operator 3 (semiauto) 191.18� 16.69 165.59� 36.13 0.042 33.6� 5.6 29.6� 6.8 38.0� 7.9 0.62� 0.04

Note: *Feature values are significant between recurrence and injury groups at the 0.05 level.
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Our system shows high predictive accuracy using the sec-

ond-order entropy texture feature, with AUCs of 0.70 to 0.73 at

two to five months post-SABR. It was also robust for interop-

erator variability in the initialization of the system by place-

ment of the RECIST diameter measurement. Although

classification performance using the semiautomated method

was compared only against a single operator’s manual segmen-

tations, noninferiority was demonstrated among all three oper-

ators. Robustness in classification performance was also

demonstrated among operators, suggesting a reproducible

means for delineating the consolidative regions even with var-

iations in RECIST line segment placement among operators.

Our semiautomatic approach potentially eliminates the need

for manual segmentations, and this provides an important

avenue for future work on a larger dataset as part of our

ongoing work. Results at five to eight months post-SABR

were comparable to the results at two to five months post-

SABR. This demonstrates stability of system performance

through time, and also that the appearance of radiological

changes at the two earliest clinically scheduled follow-up

time points (approximately three and six months) could be

important in predicting recurrence. As previously demon-

strated in patients with recurrence, these regions have a

more variegated texture, perhaps indicative of early vascular

changes, as seen in Fig. 1. Patients who develop only benign

fibrosis seem to have a more homogenous appearance to the

GGO, or minimal appearance of GGO changes post-SABR.

Our ongoing work is examining these regions of post-

SABR changes histologically, to determine their composition

and correlate this to observations on CT imaging.

Previous studies using qualitative high-risk appearance fea-

tures have shown the utility of categorizing a patient’s risk of

recurrence; however, most of these features do not typically

appear until a year after treatment.6 Other imaging-based fea-

tures, such as size or mass-like shape, can be ineffective for

early detection of local recurrence post-SABR.28–30 FDG-PET

has also been investigated for distinguishing fibrosis from recur-

rence post-SABR, and it has been shown that maximum

Table 4 Individual texture feature values and classification metrics including error, FPR, FNR, and AUC at five to eight months post-SABR. All
values are reported as mean� standard deviation.

Observer
Feature value—

recurrence
Feature value—

injury p value Error FPR FNR AUC

Correlation Operator 1 (manual) 0.006� 0.001 0.009� 0.004 0.030* 31.9� 5.5 22.7� 8.8 43.9� 8.1 0.67� 0.05

Operator 1 (semiauto) 0.008� 0.001 0.012� 0.009 0.086 34.3� 5.8 26.1� 6.0 44.8� 10.1 0.65� 0.06

Operator 2 (semiauto) 0.008� 0.001 0.012� 0.009 0.110 41.3� 5.6 31.1� 6.9 54.7� 10.4 0.60� 0.06

Operator 3 (semiauto) 0.008� 0.001 0.013� 0.009 0.086 33.4� 5.2 27.4� 5.8 41.3� 9.6 0.66� 0.06

Energy Operator 1 (manual) 0.002� 0.001 0.004� 0.003 0.014* 27.9� 4.8 32.2� 6.2 22.4� 6.8 0.68� 0.04

Operator 1 (semiauto) 0.003� 0.001 0.007� 0.012 0.192 31.3� 5.0 10.2� 6.1 58.7� 10.3 0.70� 0.06

Operator 2 (semiauto) 0.003� 0.001 0.007� 0.012 0.212 36.5� 5.3 11.6� 6.7 68.8� 12.7 0.66� 0.06

Operator 3 (semiauto) 0.003� 0.001 0.008� 0.012 0.205 35.2� 5.1 11.7� 6.2 65.8� 13.1 0.68� 0.07

Entropy Operator 1 (manual) 9.29� 0.46 8.48� 0.76 0.005* 30.0� 4.5 25.2� 5.4 36.2� 7.4 0.67� 0.04

Operator 1 (semiauto) 8.87� 0.44 8.13� 0.89 0.019* 22.8� 4.8 22.8� 2.7 22.8� 10.8 0.71� 0.05

Operator 2 (semiauto) 8.73� 0.37 8.15� 0.93 0.057 31.3� 5.0 21.6� 4.6 43.9� 10.8 0.67� 0.07

Operator 3 (semiauto) 8.68� 0.32 8.10� 0.92 0.050 28.3� 5.7 23.3� 3.0 34.7� 12.3 0.69� 0.07

Inertia Operator 1 (manual) 55.14� 19.08 52.35� 53.76 0.864 43.5� 6.4 16.7� 9.2 78.4� 9.8 0.48� 0.06

Operator 1 (semiauto) 47.77� 15.93 34.19� 12.88 0.042* 32.8� 5.2 16.6� 6.1 53.8� 10.0 0.60� 0.05

Operator 2 (semiauto) 46.15� 15.27 34.46� 13.33 0.070 34.9� 6.9 20.8� 8.0 53.3� 12.3 0.58� 0.05

Operator 3 (semiauto) 45.45� 13.79 33.52� 13.05 0.049* 32.3� 7.6 21.1� 6.8 46.9� 13.5 0.61� 0.05

Standard deviation Operator 1 (manual) 240.75� 22.24 206.39� 39.28 0.016* 33.3� 4.8 22.3� 7.4 47.5� 8.7 0.61� 0.04

Operator 1 (semiauto) 206.57� 24.53 175.84� 35.26 0.023* 36.8� 4.9 24.9� 6.8 52.2� 9.1 0.61� 0.05

Operator 2 (semiauto) 200.56� 17.47 176.56� 36.26 0.051 44.0� 5.7 31.8� 6.8 59.9� 11.4 0.55� 0.05

Operator 3 (semiauto) 198.40� 16.76 171.94� 33.53 0.023* 37.3� 4.4 30.0� 5.2 46.7� 7.9 0.60� 0.04

Note: *Feature values are significant between recurrence and injury groups at the 0.05 level.
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standardized uptake values can be predictive of recurrence, but

not until a year post-SABR.31,32 A recent approach using CT

perfusion imaging for response assessment has been investi-

gated for pulmonary metastases undergoing SABR; however,

further analysis is needed in a larger cohort of patients.33 The

combination or addition of these techniques to our decision sup-

port system may be useful for aiding in the assessment of diffi-

cult cases.

To the best of our knowledge, there has been no previous

study of semiautomatic segmentation of post-SABR consolida-

tive changes on CT. An interesting avenue for future work

would be in refining these segmentations to enable quantifica-

tion of shape and size changes of these regions. Another inter-

esting area of further study could look at additional methods for

segmentation. One such possibility is using the tumor delinea-

tion on the planning scan and performing a deformable registra-

tion to the follow-up scan. Such an approach would be fully

automated but would require highly accurate deformable regis-

tration capable of compensating for highly variable and local-

ized post-SABR radiological changes. This would also need

to compensate for tissue retractions that can occur in the

lung post-SABR, displacing the consolidations from their origi-

nal locations in the planning scan. Nevertheless, this would be

an interesting future study and would be considered a fully auto-

mated method, eliminating the impact of variability in RECIST

line segment placement by different physicians. However, our

initial work has shown robustness of the decision support sys-

tem to differences in line segment placement by different

operators.

We must consider our study in the context of its limitations,

including the small sample size of patients with significant

benign fibrosis. Our ongoing work involves validation on a

larger sample set of patients matched based on patient and

treatment characteristics. This will allow for a more compre-

hensive analysis of post-SABR changes. This study also

focused solely on our previously published top five texture fea-

tures for recurrence prediction, and further work on a more

compressive radiomic feature set and machine learning plat-

form may improve prediction results on a larger dataset.

The focus of this study was on the early prediction of recur-

rence and images analyzed at three and six months post-SABR.

Further studies should be completed on additional time points

to determine the usefulness of image features for recurrence

prediction as post-SABR time increases and to determine

the optimal time point for prediction. This study also did

not consider the effect of different scanners and reconstruction

techniques in the analysis; however, all images were taken with

the same acquisition and reconstruction parameters to mini-

mize discrepancies.34 Determining the effect of different

acquisition parameters on classification results is an interesting

avenue for future study. Also, reference manual contours for

classification were completed by a single operator and the val-

idation of our semiautomated algorithm was completed with

only three operators with similar expertise. Further validation

should be completed with additional operators with different

expertise (ex. radiologists or senior radiation oncologists),

who would be considered typical users of this type of algo-

rithm. Another limitation of the current work is the use of

the same imaging dataset as used in our previous publications.

Using the same small dataset could potentially introduce bias

into our results. To enable clinical translation, a comprehensive

validation and user study on a larger dataset is ongoing.

5 Conclusion

Second-order texture features calculated within GGO delin-

eated from a semiautomated algorithm, initialized using

only the RECIST diameter measurement routinely taken dur-

ing the clinical workflow, have shown the potential to predict

recurrence in individual patients within six months of SABR.

At two to five months post-SABR, second-order entropy pro-

vided good recurrence prediction based on semiautomatic seg-

mentations, with AUCs of 0.70 to 0.73; the corresponding

result using a manual segmentation was 0.64. This system

demonstrated consistent segmentations and prediction accura-

cies between operators, which were concordant with prediction

accuracies, based on a single reference manual segmentation

and obtained 20 times faster using the automated approach.

The next step of this study is to validate our algorithm on

an additional 93 patients we have obtained. This work has

the potential to lead to a clinically useful computer-aided diag-

nosis tool, which can be easily integrated into a physician’s

workstation and could eliminate the need for any manual seg-

mentation. An automated decision support system can improve

the physician’s assessment of response following SABR to

predict recurrences as early as possible. This will allow

patients to receive timely salvage therapies and reduce the

risk of patients with only benign fibrosis undergoing risky

biopsy procedures.

Appendix

The regions of the image containing normal lung parenchyma

can be obtained from the planning computed tomography scan

as part of the contouring normally performed during the radi-

ation therapy planning workflow and mapped by image regis-

tration onto follow-up scans, or through the use of several

automatic segmentation algorithms.35–38 Although this step

is outside of the scope of our method, for the purposes of repro-

ducibility, we are providing in this appendix the procedure that

we followed to obtain this segmentation for each of our scans.

Normal lung parenchyma was automatically segmented in

ITK-SNAP (Version 2.4.0) using region competition

snakes.39 For trachea-adjacent tumors, the trachea was sepa-

rately segmented superior to the carina. A three-dimensional

rectilinear region of interest was defined encompassing the

segmentation target (the entire lung volume or the trachea)

and preprocessed using a sigmoid function, implemented as

the intensity region filter in ITK-SNAP, with the threshold

set above −300 HU and smoothness of 1.00. One or more

spheres within the region of interest were used for initialization

of the region competition snakes and were evolved using a

sparse field level set as previously described.14,40 Parameters

for the segmentation were set as follows: curvature velocity

weight of 0.20, propagation force of 1.0, and 1500 and

250 iterations for the lung and trachea, respectively.

Postprocessing was performed in MATLAB® 8.4 (The

Mathworks Inc., Natick, Massachusetts) by a slice-wise mor-

phological filling of small vessels or artifacts <10 mm2 within

plane. This ensures larger vessels and any large consolidative

components are not included in the normal lung parenchyma.

A whole-lung volume was achieved by manually filling in the

normal lung parenchyma to fill any abnormal consolidative

regions.
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