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Abstract

We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique
reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-
millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared
interferometers, by utilizing two regularization functions: the ℓ1-norm and total variation (TV) of the brightness
distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and
effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an
application of this technique, we present simulated observations of M87 with the EHT based on four physically
motivated models. We confirm that ℓ1+TV regularization can achieve an optimal resolution of ∼20%–30% of the
diffraction limit λ/Dmax, which is the nominal spatial resolution of a radio interferometer. With the proposed
technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole
shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale
structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – submillimeter: general –
techniques: interferometric

1. Introduction

Supermassive black holes (SMBHs) reside in the majority of
the galactic nuclei in the universe. In a subset of such galaxies,
accretion drives a highly energetic active galactic nucleus often
associated with powerful jets. Understanding the nature of
these systems has been a central goal in astronomy and
astrophysics. The SMBHs at the centersof our galaxy (Sgr A*

)

and the giant elliptical galaxy M87 provide unprecedented
opportunities to directly image the innermost regions close to
the central black hole, since the angular size of the event
horizon is the largest among known black holes. The angular
size of the Schwarzschild radius (Rs) is ∼10μas for Sgr A* for
a distance of 8.3 kpc and a mass of 4.3×106M

e
(e.g.,

Chatzopoulos et al. 2015), and ∼3–7 μas for M87 with a
distance of16.7Mpc (Blakeslee et al. 2009) and a mass of
3–6×109 M

e
(e.g., Gebhardt et al. 2011; Walsh et al. 2013).

The apparent diameter of the dark silhouette of the black hole is
27 Rs for the non-rotating black hole. It corresponds with

∼52 μas for Sgr A* and ∼16–36 μas for M87, which changes

by only 4% with the black hole spin and viewing orientation
(Bardeen 1973).
Very long baseline interferometric (VLBI) observations at

short/submillimeter wavelengths (λ1.3 mm, ν230 GHz)
can achieve a spatial resolution of a few tens of microarcseconds
and therefore are expected to resolve event-horizon-scale
structures, including the shadow of SMBHs. Indeed, recent
significant progress on 1.3mm VLBI observations with the
Event Horizon Telescope (EHT; Doeleman et al. 2009) has
succeeded in resolving compact structures of a few Rs in the
vicinity of the SMBHs in both Sgr A* and M87 (e.g., Doeleman
et al. 2008, 2012; Fish et al. 2011, 2016; Akiyama et al. 2015;
Johnson et al. 2015). Direct imaging of these scales will be
accessible in the next few years with technical developments and
the addition of new (sub)millimeter telescopes such as the
Atacama Large Submillimeter/millimeter Array (ALMA) to the
EHT (e.g., Fish et al. 2013).
Regardless of the observing wavelength, angular resolution

(often referred to as “beam size” in radio astronomy and
“diffraction limit” in optical astronomy) is simply given by
θ≈λ/Dmax, where λ and Dmax are the observed wavelength
and the diameter of the telescope (or the longest baseline length
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for the radio interferometer), respectively. A practical limit for
a ground-based, 1.3mm VLBI array like the EHT is ∼25 μas
(=1.3 mm/10,000 km), which is comparable to the radius of
the black hole shadow in M87 and Sgr A*. Hence, imaging
techniques with good imaging fidelity at a spatial resolution
smaller than λ/Dmax would be desirable, particularly for future
EHT observations of M87 and Sgr A*.

The imaging problem of interferometry is formulated as an
under-determined linear problem when reconstructing the
image from full-complex visibilities that are Fourier compo-
nents of the source image. In the context of compressed sensing
(also known as “compressive sensing”), it has been revealed
that an ill-posed linear problem may be solved accurately if the
underling solution vector is sparse (Candes & Tao 2006;
Donoho 2006). Since then, many imaging methods16 have been
applied to radio interferometry after pioneering work by Wiaux
et al. (2009a) and Wiaux et al. (2009b); (see Garsden
et al. 2015, and references therein). We call these approaches
“sparse modeling” since they utilize the sparsity of the ground
truth.

In Honma et al. (2014), we applied LASSO (Least Absolute
Shrinkage and Selection Operator; Tibshirani 1996), a
technique of sparse modeling, to interferometric imaging.
LASSO solves under-determined ill-posed problems by utiliz-
ing the ℓ1-norm (see Section 2.2 for details). Minimizing the
ℓ1-norm of the solution reduces the number of non-zero
parameters in the solution, equivalent to choosing a sparse
solution. The philosophy of LASSO is therefore similar to that
of the traditional CLEAN technique (Högbom 1974), which
favors sparsity in the reconstructed image and has been
independently developed as Matching Pursuit (Mallat &
Zhang 1993) in statistical mathematics for sparse reconstruc-
tion. In Honma et al. (2014), we found that LASSO can
potentially reconstruct structure ∼4 times finer than λ/Dmax.
Indeed, it works well for imaging the black hole shadow for
M87 with the EHT in simulations.

Our previous work (Honma et al. 2014) has three relevant
issues. The first issue is reconstructing the image only from the
visibility amplitudes and closure phases (see Section 2.1),
which have been the standard data products of EHT
observations (Lu et al. 2012, 2013; Akiyama et al. 2015;
Wagner et al. 2015; Fish et al. 2016) and optical/infrared
interferometry. The algorithm of Honma et al. (2014) is
applicable only for full-complex visibilities, which are the
usual data products from longer-wavelength radio interferom-
eters. We have recently developed a fast and computationally
cheap method to retrieve the visibility phases from closure
phases (PRECL; Ikeda et al. 2016), which can reconstruct the
black hole shadow of M87 combined with LASSO in simulated
EHT observations. However, since the phase reconstruction in
PRECL adopts a different prior on visibilities than LASSO, the
resultant image may not be optimized well in terms of ℓ1-norm
minimization and sparse image reconstruction. Another
potential approach is to solve for the image and visibility
phases with ℓ1-norm regularization simultaneously, enabling us
to reconstruct the image with thefull advantage of the
regularization function.

The second issue is that the ℓ1-norm regularization might
not provide a unique solution and/or could reconstruct an
image that is too sparse of animage if the number of pixels

with non-zero brightness is not small enough compared to the
number of pixels. This violates a critical assumption in
techniques with ℓ1-norm regularization that the solution (i.e.,
the true image) should be sparse. Such a situation may occur
for an extended source or also even for a compact source if the
imaging pixel size is set to be much smaller than the size of
the emission structure. Pioneering work has made use of
transforms to wavelet or curvelet basesin which the image
can be represented sparsely (e.g., Li et al. 2011; Carrillo
et al. 2012, 2014; Dabbech et al. 2015; Garsden et al. 2015).
As another strategy to resolve this potential issue, in Honma
et al. (2014), we proposed the addition ofanother regulariza-
tion, Total Variation (TV; e.g., Rudin et al. 1992), which is
another popular regularization in sparse modeling. TV is a
good indicator for sparsity of the image in its gradient domain
instead of the image domain (see Section 2.2 for details)
and it has been applied to astronomical imaging (e.g.,
Wiaux et al. 2010; McEwen & Wiaux 2011; Carrillo
et al. 2012, 2014; Uemura et al. 2015; Chael et al. 2016)
that includes optical interferometric imaging without the
visibility phases (e.g., MiRA; Thiébaut 2008; and also see
Thiébaut 2013 for a review). TV regularization generally
favors a smooth image (i.e., with larger effective resolution)
but with a sharp edge, in contrast with maximum entropy
methods (MEM; e.g., Narayan & Nityananda 1986), which
favor a smooth edge (see, e.g., Uemura et al. 2015, for
comparison between TV and MEM). Inclusion of TV
regularization enables reconstruction of an extended image
while preserving sharp emission features preferred by ℓ1-norm
regularization, thereby extending the class of objects where
sparse modeling is applicable. Indeed, regularization with
both the ℓ1-norm and TV has been shown to be effective for
imaging polarization with full-complex visibilities in our
recent work (Akiyama et al. 2017).
An important detail is the determination of regularization

parameters (e.g., weights on regularization functions), which
is common in the vast majority of existing techniques. Since
one cannot know the true image of the source a priori, one
should evaluate goodness-of-fitting and select appropriate
regularization parameters from the data themselves. In
well-posed problems, one can use statistical quantities
considering residuals between data and models as well as
model complexity to avoid over-fitting, such as reduced χ2,
the Akaike information criterion and the Bayesian inform-
ation criterion using the degrees of freedom to constrain
model complexity. However, for ill-posed problems like
interferometric imaging, degrees of freedom cannot be
rigorously defined, preventing the use of such statistical
quantities.
In this paper, we propose a new technique to reconstruct

images from interferometric data using sparse modeling. The
proposed technique directly solves the image from visibility
amplitudes and closure phases. In addition to the ℓ1-norm
(LASSO), we also utilize another new regularization term, TV,
so that a high-fidelity image will be obtained even with a small
pixel size and/or for extended sources. Furthermore, we
propose a method to determine optimal regularization para-
meters with cross-validation (CV; see Section 2.3), which can
be applied to many existing imaging techniques. As an
example, in this paper, we applied our new technique to data
obtained from simulated observations of M87 with the array of
the EHT expected in Spring 2017.

16 A list of papers are available in https://ui.adsabs.harvard.edu/#/public-
libraries/wmxthNHHQrGDS2aKt3gXow.
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2. The Proposed Method

2.1. A Brief Introduction of the Closure Phase

A goal of radio and optical/infrared interferometry is to
obtain the brightness distribution I(x, y) of a target source at a
wavelength λ or a frequency ν, where (x, y) is a sky coordinate
relative to a reference position, so-called the phase-tracking
center. The observed quantity is a complex function called
visibility V(u, v), which is related to I(x, y) by two-dimensional
Fourier transform given by

ò= p- +( ) ( ) ( )( )V u v dxdy I x y e, , . 1i ux vy2

Here, the spatial frequency (u, v) corresponds to the baseline
vector (in units of the observing wavelength λ) between two
antennas projected to the tangent plane of the celestial sphere at
the phase-tracking center.

Observed visibilities are discrete quantities, and the sky
image can be approximated by a pixellated version where the
pixel size is much smaller than the nominal resolution of the
interferometer. The image can therefore be represented as a
discrete vector I, related to the Stokes visibilities V by a
discrete Fourier transform F:

= ( )V FI. 2

The sampling of visibilities is almost always incomplete. Since
the number of visibility samples V is smaller than the number
of pixels in the image, solving the above equation for the image
I is an ill-posed problem.
Here, we consider that the complex visibility Vj is obtained from

observation(s) with multiple antennas. Let us define its phase and
amplitude as fj and V̄j, respectively, denoted as follows

= f¯ ( )V V e , 3j j
i j

where j is the index of the measurement. Each measurement
corresponds to a point ( )u v,j j in the (u, v)-plane and recorded at
time tj. In actual observations, some instrumental effects and the
atmospheric turbulence primary from the troposphere induce the
antenna-based errors in the visibility phase, leading to the observed
phase f̃j being offset from the true phase fj of the true image. In
particular, this is a serious problem in VLBI observations
performed at different sites (see Thompson et al. 2001).

However, the robust interferometric phase information can
be obtained through the measurements of the closure phase,
defined as a combination of triple phases on a closed triangle of
baselines recorded at the same time. It is known that the closure
phase is free from antenna-based phase errors (Jennison 1958),
which can be seen from the following definition of the closure
phase,

y f f f f f f= + + = + +˜ ˜ ˜ ( ), 4m j k l j k l
123 12 23 31 12 23 31

where m is the index of the closure phase, and upper numbers (1,
2, 3) mean the index of stations involved in the closure phase or
the visibility phase. The closure phase is also known as a phase
term of the triple product of visibilities on closed baselines

recorded at the same time, V V Vj k l
12 23 31, known as the bi-

spectrum.17 Closure phases have been used to calibrate visibility
phases in VLBI observations (e.g., Rogers et al. 1974).
In short/submillimeter VLBI or optical/infrared interfero-

metry, the stochastic atmospheric turbulence in the troposphere
over each station induces a rapid phase rotation in the visibility,
making it difficult to calibrate or even measure the visibility
phase reliably (e.g., see Rogers et al. 1995; Thiébaut 2013).
Thus, image reconstruction using more robust closure phases,
free from station-based phase errors, is useful for interfero-
metric imaging with such interferometers.

2.2. Image Reconstruction from Visibility Amplitudes and
Closure Phases

In this paper, we propose a method to solve the two-
dimensional image = { }I Ii j, by the following equations:

( ) ( )IC Imin subject to 0. 5
I

i j,

The cost function C(I) is defined as

c h h= + +( ) ( ) ∣∣ ∣∣ ∣∣ ∣∣ ( )I I I IC , 6l t
2

1 tv

where ∣∣ ∣∣I p is lp-norm of the vector I given by

åå= >
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∣∣ ∣∣ ∣ ∣ ( ) ( )I I pfor 0 , 7p

i j

i j
p

,

p
1

and ∣∣ ∣∣I tv indicates an operator of TV.
The first term of Equation (6) is the traditional χ2 term

representing the deviation between the reconstructed image and
observational data (i.e., the visibility amplitude =¯ {∣ ∣}V Vj and
closure phase yY = { }m ), defined by

c Y= - + -( ) ∣∣ ¯ ( )∣∣ ∣∣ ( )∣∣ ( )I V A FI B FI , 82
2
2

2
2

where A and B indicate operators to calculate the visibility
amplitude and closure phase, respectively. Deviations between
the model and observational data are normalized with the
errors. This form of the residual sum of squares (RSS) is
originally proposed in the Bi-spectrum Maximum Entropy
Method (Buscher 1994) and also for modeling EHT data (e.g.,
Lu et al. 2012, 2013). Note that it could be replaced with an
RSS term for bi-spectra (e.g., Bouman et al. 2015; Chael
et al. 2016).
The second term represents LASSO-like regularization using

the ℓ1-norm. Under the non-negative condition, ℓ1-norm is
equivalent to the total flux. ηl is the regularization parameter for
LASSO, adjusting the degree of sparsity by changing the
weight of the ℓ1-norm penalty. In general, a large ηl prefers a
solution with very few non-zero components, while ηl=0
introduces no sparsity. In this paper, we use the normalized
regularization parameter h̃l defined by

h hº +˜ ( ) ( ¯ ) ( )VN N max , 9l l amp cphase

which is less affected by the number of visibility amplitude and
closure phase data points, Namp and Ncphase, respectively, and
also by the total flux density of the target source.

17 Data products of visibility amplitudes and closure phases are also
sometimes named as “bi-spectrum” in the literature (e.g., Buscher 1994). In
this paper, we strictly distinguish them.
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The third term is the TV regularization, defined by the sum
of all differences of the brightness between adjacent image
pixels. In this paper, we adopt a typical form for two-
dimensional images (Rudin et al. 1992) that has been used in
astronomical imaging, (e.g., Wiaux et al. 2010; McEwen &
Wiaux 2011; Uemura et al. 2015; Chael et al. 2016), defined as

åå= - + -+ +∣∣ ∣∣ ∣ ∣ ∣ ∣ ( )I I I I I . 10
i j

i j i j i j i jtv 1, ,
2

, 1 ,
2

TV is a good indicator of image sparsity in its gradient domain
instead of the image domain. TV is highly affected by the
effective spatial resolution of the image. For instance, an image
with a small TV value has blocks of image pixels whose
brightness are similar, since the image is sparse in the gradient
domain. The size of such blocks is equivalent to the effective
spatial resolution, getting smaller for images with higher TV
values. Thus, the regularization parameter ηt adjusts the
effective spatial resolution of the reconstructed image. In
general, a larger (smaller) ηt prefers asmoother (finer)
distribution of power with less (higher) discreteness, leading
to larger (smaller) angular resolution. In the present work, we
use the normalized regularization parameter h̃t defined by

h hº +˜ ( ) ( ¯ ) ( )VN N 4max , 11t t amp cphase

similar to the LASSO term. A factor of four is based on a
property of TV that displaysa difference in the brightness in all
four directions at each pixel. Note that a major difference to
maximum entropy methods, which also favor smooth images,
is that TV regularization has a strong advantage in edge-
preserving; strong TV regularization favors a piecewise smooth
structure, but with clear and often sharp boundaries between
non-emitting and emitting regions.

The problem described in Equations (5) and (6) is nonlinear
minimum optimization. In this work, we adopt a nonlinear
programming algorithm L-BFGS-B (Byrd et al. 1995; Zhu
et al. 1997) that is an iterative method for solving bound-
constrained nonlinear optimization problems. L-BFGS-B is one
of the quasi-Newton methods that approximates the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited
amount of computer memory. In L-BFGS-B, the cost function
and its gradient are used to determine the next model
parameters at each iterative process. We approximately set
partial derivatives to 0 at non-differentiable points for both the
ℓ1-norm and TV. The partial derivatives of χ2 are calculated
numerically with central differences. We use the latest Fortran
implementation of L-BFGS-B (L-BFGS-B v3.0; Morales &
Nocedal 2011). We note that the problem is non-convex like
other imaging techniques using closure quantities (e.g.,
Buscher 1994; Thiébaut 2008; Bouman et al. 2015; Chael
et al. 2016), and a global solution is generally not guaranteed.

2.3. Determination of Imaging Parameters

In the proposed method, the most important tuning
parameters are the regularization parameters for the ℓ1-norm
(h̃l) and TV (h̃t), which determine the sparseness and effective
spatial resolution of the image, respectively. Smaller regular-
ization parameters generally favor images with larger numbers
of non-zero image pixels and more complex image structure,
which could give better χ2 values by over-fitting. On the other
hand, large regularization parameters provide images that are

too simple and that do not fit the data well. To determine
optimal parameters, we need to evaluate the goodness-of-fit
using Occam’s razor to prevent over-fitting.
In this work, we adopt CV to evaluate goodness-of-fit. CV is

a measure of the relative quality of the models for a given set of
data. CV checks how the model will generalize to an
independent data set by using separate data sets for fitting the
model and for testing the fitted model. CV consists of three
steps: (1) randomly partitioning a sample of data into
complementary subsets, (2) performing the model fitting on
one subset (called the training set), and (3) validating the
analysis on the other subset (called the validation set). To
reduce variability, multiple rounds of CV are performed using
different partitions, and the validation results are averaged over
the rounds. If the regularization parameters are too small, the
established model from the training set would be over-fitted
and too complicated, resulting in a large deviation in the
validation set. On the other hand, if the regularization
parameters are too large, the established model would be too
simple and not well-fitted to the training set, also resulting in a
large deviation in the validation set. Thus, reasonable
parameters can be estimated by finding a parameter set that
minimizes deviations (e.g., χ2

) of the validation set.
In this work, we adopted 10-fold CV for evaluating the

goodness-of-fit. The original data were randomly18 partitioned
into 10 equal-sized subsamples. Nine subsamples were used in
the image reconstruction as the training set, and the remaining
single subsample was used as the validation set for testing the
model using χ2. We repeated the procedure by changing the
subsample for validation data 10 times, until all subsamples
were used for both training and validation. The χ2 values of the
validation data were averaged and then used to determine
optimal tuning parameters.
An important advantage of this method compared with

previously proposed methods is that it is applicable to any type
of regularization functions and also imaging with multiple
regularization functions. For instance, Carrillo et al.
(2012, 2014) and subsequent work solve images by utilizing
the ℓ1-norm on wavelet-transformed image or TV regulariza-
tion alone. In this case, the parameter can be uniquely
determined from the ℓ2-norm of the estimated uncertainties
on observational data (see Carrillo et al. 2012, for details).
However, it is not straightforward to extend the idea for the
problems with multiple regularization functions. For another
example, Garsden et al. (2015) proposes another heuristic
method to determine the regularization parameters on ℓ1-
regularization on the wavelet/curvelet-transformed image by
estimating its noise level on each scale, which is successful.
However, the method would not work for all types of
regularization functions. On the other hand, CV is a general
technique that can be applied to imaging with any other
regularization functions or any combination of them, in
principle, which include MEM (e.g., Buscher 1994; Chael
et al. 2016) and patch priors (e.g., Bouman et al. 2015). This
advantage is particularly important for Sgr A*, which needs to
involve a regularization function to mitigate the interstellar

18 In this work, subsamples are obtained with a uniform probability regardless
of baselines following the most basic style of the CV. However, there could be
amore effective way of choosing subsamples for interferometric imaging. The
optimum partitioning for CV is in the scope of our next studies in thenear
future.
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scattering effects (scattering optics; Johnson 2016) in addition
to the general regularization function(s) for imaging.

A relevant disadvantage of this method is its computational
cost, since n-fold CV requires the reconstruction (n+ 1) of
images for each set of regularization parameters. Recently, an
accurate approximation of CV, which can be derived from a
single imaging on full data set for each parameter set, has been
proposed for imaging from full-complex visibilities with
ℓ1+TV regularizations (Obuchi & Kabashima 2016; Obuchi
et al. 2016). Future development of such heuristic approxima-
tions for other types of data and regularization functions could
overcome this issue.

3. Imaging Simulations

3.1. Physically Motivated Models

In this paper, we adopt four physical models previously
proposed for 1.3 mm emission on event-horizon scales.

The first model is a simple, but qualitatively correct, force-
free jet model (hereafter BL09) in the magnetically dominated
regime presented in Broderick & Loeb (2009) and Lu et al.
(2014). We adopted a model image presented in Akiyama et al.
(2015), which is based on the model parameters fitted to the
results of 1.3 mm observations with the EHT in Doeleman et al.
(2012) and the SED of M87 (A. E. Broderick et al. 2017, in
preparation). The approaching jet is predominant for this model
(see Akiyama et al. 2015, for more details).

The second and third models are based on results of
GRMHD simulations presented in Dexter et al. (2012). We
used the representative models DJ1 and J2, which are based on
the same GRMHD simulation but with different energy and
spatial distributions for radio-emitting leptons. The dominant
emission region is the accretion flow in DJ1 and the counter jet
in J2 illuminating the last photon orbit in J2. We adopt model
images in Akiyama et al. (2015), where the position angle of
the large-scale jet for models is adjusted to −70° inferred for
M87 (e.g., Hada et al. 2011).

The last model is based on results of GRMHD simulations
presented in Mościbrodzka et al. (2016), which models M87
core emission as radiation produced by the jet sheath. We use
the image averaged for ∼3 months for our simulation (hereafter
M16). The image has its dominant contribution from the
counter jet illuminating the last photon orbit similar to J2 of
Dexter et al. (2012), but the M16 model assumes energy
distributions of leptons quite different from J2. We rotate the
original model image of Mościbrodzka et al. (2016) to adjust
the position angle of the large-scale jet to −70°.

3.2. Simulated Observations

We simulate observations with the EHT at 1.3 mm
(230 GHz) using the MAPS (MIT Array Performance

Simulator) package19 based on the above models. The
simulated observations are performed for the array expected
to comprise in Spring 2017.
We assume an array consisting of stations at six different

sites: a phased array of the Submillimeter Array (SMA)

antennas and the James Clerk Maxwell Telescope (JCMT) on
Mauna Kea in Hawaii; the Arizona Radio Observatory’s
Submillimeter Telescope (ARO/SMT) on Mt. Graham in
Arizona; the Large Millimeter Telescope (LMT) on Sierra
Negra, Mexico; a phased array of the Atacama Large
Millimeter/submillimeter Array (ALMA) in the Atacama
desert, Chile; the Institut de Radioastronomie Millimétrique
(IRAM) 30 m telescope on Pico Veleta, Spain; and a single
dish telescope of the Northern Extended Millimeter Array
(NOEMA) in France. We adopt the system equivalent flux
density (SEFD) of each station shown in Table 1 based on the
proposer’s guide of 1 mm VLBI observations in ALMA
Cycle 4.
The simulations assume a bandwidth of 3.5 GHz for Stokes

I, which is half of the standard setting in ALMA Cycle 4.20 We
assume a correlation efficiency of 0.7, including a quantization
efficiency of 0.88 for 2 bit sampling and other potential losses
such as bandpass effects and pointing errors.
We simulate observations as a series of 5minutescans with a

cadence of 20minutes over a GST range of 13–0 hr, corresp-
onding to the timerange when M87 can be observed by ALMA
or LMT at an elevation greater than 20°. ALMA and LMT are
sensitive stations near the middle of the east–west extent of the
array, and they may be important anchor stations for fringe
detection. This provides an observational efficiency of 25% in
time, expected for VLBI observations with ALMA in 2017. Data
are integrated for the duration of each scan (i.e., 5 minutes)
following previous EHT observations (e.g., Doeleman et al. 2012;

Table 1

Stations Used in Simulated Observations

Telescope SEFD (Jy)

Phased ALMA 100
Phased SMA and JCMT 4000
LMT 1400
IRAM 30 m 1400
NOEMA single dish 5200
ARO/SMT 11000

Figure 1. uv-coverage of the simulated observations with the EHT array
expected in spring 2017. Each baseline is split into two colors to show
involving stations.

19 http://www.haystack.mit.edu/ast/arrays/maps/
20 https://science.nrao.edu/observing/call-for-proposals/1mm-vlbi-cycle4/
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Akiyama et al. 2015). Figure 1 shows the resultant uv-coverage of
simulated observations. The maximum baseline length of
observations is 7.2 Gλ, corresponding to λ/D= 28.5μas.

We note that the conditions of our simulation are much
worse than previous simulations in Lu et al. (2014) in terms of
the baseline sensitivity, uv-coverage, angular resolution (i.e.,
the maximum baseline length), and the exposure time of
observations. Nevertheless, our simulated conditions are much
closer to the observational conditions in Spring 2017.

3.3. Imaging

We reconstruct images from simulated data sets based on the
method described in Section 2.1. We adopt a field of view
(FOV) of 200 μas gridded by 100 pixels in both the R.A. and
decl. directions for all models, giving a pixel size of ∼1.6 μas
corresponding to a physical scale of ∼0.21Rs. Images are
reconstructed at four regularization parameters for both h̃l and h̃t,
ranging as 10−1, 100,K, 10+2. As a result, we obtain 4× 4= 16
images for each model.

Since the problem described in Section 2.1 is non-convex, our
algorithm may be trapped in a local minimum and therefore may
end up at an initial-condition dependent solution, similar to other
algorithms using techniques minimizing non-convex functions
with gradient descent methods. To avoid this, we start
reconstructing images at h h= =˜ ˜ 10l t

2, which is expected to
derive the simplest image among parameters we adopt, assuming
a point source as initial images. This is then used as the initial
image at other values of the regularization parameters.

At each parameter, we do iterations until achieving
convergence or 1000 iterations, and then filter the output
image with a hard thresholding defined by

=
<⎧

⎨
⎩
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where t is a threshold. We repeat this process until the
normalized root mean square error (NRMSE) between the
previous and latest filtered images becomes smaller than 1%.
NRMSE is defined by (e.g., Chael et al. 2016)
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where I and K are the image to be evaluated and the reference
image, respectively. We adopt the latest non-filtered image as
the final product. Although this procedure makes the
computational time longer, we found thatthis works very well
for avoiding convergence at some local minima. In this paper,
we set 10% of the peak flux as a threshold t. For the simulated
observational data in this paper, it takes typically about several
to 10minutes on a standard desktop computer with six intel
core-i7 CPU cores to reconstruct an image at each set of two
regularization parameters.

We evaluate the goodness-of-fit for each image and then
selected the best-fit images with 10-fold CV as described in
Section 2.3. The quality of the reconstructed images is
evaluated with the NRMSE. Since all model images have finer
resolutions with narrower FOVs than the reconstructed
images, we calculated these metrics as follows. First, we
adjusted the pixel size of the reconstructed image to that of the
model image with bi-cubic spline interpolation. Second, we

adjusted the position offsets between these two images so that
the positions of their centers of mass coincide with each
other,21because absolute positions cannot be defined from
visibility amplitudes and closure phases alone. Finally, the
metrics were evaluated. In addition to NRMSE, we also
measure structural dissimilarity (Wang et al. 2004) between
the model and reconstructed images using the DSSIM metric
adopted work by Lu et al. (2014) and Fish et al. (2014). Since
both metrics show similar trends, we show only the behavior
of the NRMSE in the figures that follow.

3.3.1. Imaging with the Cotton–Schwab CLEAN

For evaluating the performance of our techniques, we also
reconstructed images with the most widely used Cotton–
Schwab CLEAN (henceforth CS-CLEAN; Schwab 1984)
implemented in the Common Astronomy Software Applica-
tions (CASA) package22 with uniform weighting. Since
CLEAN requires complex visibilities, we adopted the simu-
lated complex visibilities with thermal noises. We set a gain of
0.1 and a threshold of 0.08 mJy beam−1, comparable to the
image sensitivity of simulated observations. Since the fast
Fourier transform is often used in CLEAN, a very small FOV
can require a grid size in uv-plane that is too large, which could
cause additional deconvolution errors. Hence, we set 1024
pixels with the same pixel size in each axis for the entire map,
and put a CLEAN box in the central 100×100 pixels to put
CLEAN components in the same region as other techniques.
We use the model image instead of the CLEAN map for
calculating metrics, since the residual map, which is generally
added to the CLEAN map, cannot be calculated for the
proposed method.

4. Results

4.1. The Best-fit Images

We show the best-fit images selected with CV in Figure 2. A
clear shadow feature is well reproduced for the counter-jet- and
accretion-flow-dominated models (J2, M16 and DJ1). This
demonstrates that the EHT will achieve effective sufficient
spatial resolution to image the black hole shadow of M87 if the
mass-loading radius of the jet is not too large (Broderick &
Loeb 2009; Lu et al. 2014; Akiyama et al. 2015).
Figure 3 shows the NRMSE metric for reconstructed images.

The black curve labeled “Model” shows the NRMSE calculated
when the model image is convolved with a circular Gaussian
beam with a full width at half maximum (FWHM) as shown on
the abscissa and compared against the original (unconvolved)
model image. The Model curve effectively quantifies the best-
case scenario in which the differences from the original input
are due solely to a loss of resolution, not to errors in
reconstructing the image. Figure 3 also shows the NRMSE of
each of the reconstructed images convolved with circular
Gaussian beams.
Figure 3 clearly shows that closure-phase imaging with ℓ1+TV

regularization works well compared to CS-CLEAN,particularlyat

21 Previous works (e.g., Fish et al. 2014; Lu et al. 2014) derived position
offsets between the model and reconstructed images by taking cross-
correlations of the two images. However, we found that the position offsets
derived from cross-correlations induce an additional error in the metrics due to
errors in position offsets. We found that the center of mass for the image is a
better indicator of the position offsets than the cross-correlation minimum.
22 https://casa.nrao.edu/
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finer resolutions, despite the fact that CS-CLEAN uses full-
complex visibilities with more information and higher SNRs than
closure phases. Both CS-CLEAN and ℓ1+TV images achieve
similar NRMSEs on scales comparable to or greater than the
diffraction limit. On the other hand, the NRMSEs of the
reconstructed images start to deviate from the model images in
the super-resolution regime—namely on scales smaller than the

diffraction limit. In this regime, the NRMSEs differ by technique.
CS-CLEAN has a common trend for all four models, which is
broadly consistent with results of Chael et al. (2016). They achieve
minimum errors at a resolution of ∼30%–60% of the diffraction
limit and then show a rapid increase in errors at smaller scales. In
contrast, closure-phase imaging with ℓ1+TV regularizations
show much more modest variations in the super-resolution regime.

Figure 2. Model and reconstructed images. All images are convolved with circular Gaussian beams with the FWMH sizes corresponding to diameters of the yellow
circles, which coincide with the optimal resolutions for ℓ1+TV regularization shown in Figure 3. Top panels: the approaching-jet-dominated model BL09 taken from
Akiyama et al. (2015; originally from Broderick & Loeb 2009 and Lu et al. 2014). The second and third panels from the top: the counter-jet-dominated models J2
taken from Akiyama et al. (2015; originally from Dexter et al. 2012) and M16 (Mościbrodzka et al. 2016), respectively. Bottom panels: the accretion-flow-dominated
model DJ1 taken from Akiyama et al. (2015; originally from Dexter et al. 2012).
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They achieve minimum errors at a resolution of∼20%–30% of the
diffraction limit, smaller than CS-CLEAN, and show only a slight
increase at smaller scales. ℓ1+TV reconstructions produce images
that have a smooth distribution similar to the model images,
resulting in smaller errors than CS-CLEAN, even if the ℓ1+TV
reconstructions are not convolved with a restoring beam.

In super-resolution regimes, the errors in ℓ1+TV images
mostly arise from the presence of tiny substructures in the
image. For instance, we show model, reconstructed and
residual images filtered with different baseline lengths for
DJ1 in Figure 4. As shown in Figure 4, residuals are small
when filtering baseline lengths are shorter than the maximum
baseline length. On the other hand, for longer filtering baseline
lengths, systematic residuals due to tiny substructures much
smaller than the diffraction limit start to appear, which can be
traced only with baselines longer than the simulated
observations.

Although NRMSEs are better than CS-CLEAN at finer
resolutions, ℓ1+TV images have broader emission region
sizes regardless of models. This is due to a typical feature of
images reconstructed with the isotropic TV, which prefers flat
images with sharp edges. Since the simulated data do not have
visibilities at baseline lengths long enough to resolve the width
of ring- or crescent-like features, TV enlarges their widths until
images start to deviate from observed visibilities. This property
of the isotropic TV regularization would be useful to constrain
the upper-limit size of the emission regions and black hole
shadow (see Section 5.1 for further discussions). On the other
hand, in terms of the image fidelity, these results suggest that
regularizations preferring much smoother edges are preferable;

smoother gradients in the image lead to images with higher
contrast (i.e., brighter/fainter pixels become even brighter/
fainter, respectively) to conserve the total flux, which often
makes the effective emission region size smaller. In Section 5.2,
we discuss alternative regularizations of sparse imaging
reconstruction for improving the image fidelity in the super-
resolution regime.

4.2. Regularization Parameters and CV

Reconstructed images for all 16 sets of the regularization
parameters are shown in Figure 5 for the accretion-flow-
dominated model. As shown in Figure 5, the reconstructed
images with h h˜ ˜, 1l t have noisy artifacts. This is true for all
four models. Such artifacts may appear because the images are
poorly constrained by both regularization functions at lower
regularization parameters.
CV works as an Occam’s razor and prevents over-fitting. In

Figure 6(a), we show the residual χ2 between the validation set
and the model image reconstructed from the training set, which
is averaged for all 10 trials (henceforth, the CV value). As
expected in Section 2.2, the CV value tends to be large for large
regularization parameters, since the regularization functions too
strongly constrain the image so that the model image is
inconsistent with observational data. Once the CV value
achieves its minimum value (at a parameter set marked with
stars in Figure 6(a)), it starts to increase again for lower
regularization parameters, since the model image is over-fitted
to the training set and then shows larger deviations from the
validation set.

Figure 3. NRMSE between the non-beam-convolved original model image and beam-convolved model/reconstructed images of all four models, as a function of the
FWHM size of the convolving circular beam. The red and blue arrows indicate the optimal resolution of ℓ1+TV regularization and CS-CLEAN, respectively, which
minimize the NRMSE.
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Figure 4. Model, reconstructed, and residual images of DJ1 for different filtering baseline lengths. The left and middle panels show the model and best-fit images,
while the right panels show the difference between these two images normalized with the peak brightness of the model image. Images at panels (a), (b), and (c) are
low-pass filtered with spatial frequencies (or baseline lengths) of l= ´∣ ∣ ( )u D0.5, 1, 2cutoff max , which are equivalent to convolving images with modified Bessel
functions with FWHM sizes of ∼(1.2, 0.6, 0.3)×λ/Dmax, respectively. The panels (d) show original images without filtering.
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Since the ground truth images are known in this work, one
can compare CV-selected images with images on other
parameter sets, which cannot be done for real observational
data with unknown ground truth images. Although CV
selects the optimal parameter based on the noise level of the
data, it does not guarantee that the selected parameter
achieves the best imaging fidelity among all parameter sets
examined. In Figure 6(b), we show the NRMSE of non-
Gaussian-convolved images for all parameter sets. Although
metrics for the image fidelity of best-fit images are slightly
larger than the minimum values forthree of four models (J2,
M16, and DJ1), they are consistent to within a few percent.
These slight differences between the best-fit and best-fidelity
parameters would not produce substantial differences in the
image, and the resulting images are good enough.

The above results clearly demonstrate that CV is a useful
technique to determine the regularization parameters so that the
reconstructed image does not overfit noises in the data. We
emphasize that CV is a general technique and can be applied to
imaging regardless of the specific data products used (e.g., full-
complex visibilities, visibility amplitudes, and/or closure quan-
tities) or chosen regularization (for instance, sparse modeling;
MEM: e.g., Buscher 1994, Chael et al. 2016; patch priors: e.g.,
Bouman et al. 2015; scattering optics: Johnson 2016).

5. Discussions

5.1. Implications for Future EHT Observations of M87

The proposed method successfully reproduces a clear
signature for the black hole shadow for the models J2, M16,

Figure 5. Parameter dependences of the reconstructed images in the regularization parameters for the accretion-flow-dominated model (DJ1). The yellow star indicates
the regularization parameters for the best-fit images with the minimum CV. The units of the tick labels are μas.
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and DJ1. This is as expected from the visibility distribution of
these models, which have null amplitude regions, created
by the shadow feature, at intermediate baseline lengths of
∼3–4 Gλ (Akiyama et al. 2015). MEM also succeeds in
reproducing the black hole shadow in these models (Lu
et al. 2014). Presence of a clear shadow feature is tightly
connected to where the dominant emission originates, since the
silhouette of the black hole is created by the photons produced
a few Rs from the black hole, illuminating the last photon orbit
(see thediscussion in Akiyama et al. 2015). As demonstrated
in previous imaging simulations (Lu et al. 2014), future EHT
observations can constrain the loading radius of the high-
energy leptons producing synchrotron emission at 1.3mm via
the appearance of the black hole.

The most important implication of this work is that our
regularization function TV and parameter selection with CV
will enlarge the ring- or crescent-like emission illuminating the
last-photon orbit of the black hole as much as possible, within
the range that the model image neither over-fits nor deviates too
much from the observed visibilities. Hence, the obtained width
of the surrounding emission in the reconstructed image is close
to an upper limit on the width of the emission region, and
simultaneously, the obtained diameter of the black hole shadow
should be interpreted as a reasonable lower limit for it. The
clear shadow features in the reconstructed images for models
J2, M16, and DJ1, therefore, strongly indicate that the EHT can
sample a large enough range of visibilities with appropriately
low noise levels to image the black hole shadow. In addition,
the raw reconstructed image with the proposed method can be
used to constrain the lower-limit size of the shadow. This
would be useful to constrain the mass of M87, which has an
uncertainty of an factor of about two between the stellar-
dynamical (e.g., Gebhardt et al. 2011) and gas-dynamical (e.g.,
Walsh et al. 2013) modeling, and therefore be informative to
clarify that which of modeling methods is desirable to measure
the mass of supermassive black holes.

Another important implication is that, at least for the black
hole images, post-processing Gaussian convolution would not
be required with the +ℓ TV1 regularization, although the
CLEAN techniques do require it to reduce many compact
artifacts in the image. As shown in Figure 3, the NRMSE
curves for the ℓ1+TV regularization are shallow for smaller
convolving sizes, and applying a circular Gaussian beam
therefore makes only small improvements of a few percent in
the NRMSE regardless of the input model images. Similar
results are also shown in recent work with the MEM (Chael
et al. 2016). Our results support that application of the beam is
not required for the recent state-of-the-art imaging methods
utilizing multi-resolution regularization functions for imaging
the Rs-scale structure of M87 and Sgr A* with the EHT.

5.2. Relevant Future Issues

5.2.1. Other Sparse Regularization for Smoothed Images

In this paper, we adopt TV regularization, which favors a
smooth image, so that images can be reconstructed with smaller
pixel sizes and/or for more extended sources. As shown in
Section 4, the reconstructed images have good image fidelity.
In particular, it is noteworthy that CV-selected high values of
h =˜ –10 10t

0 1 for all models (see Figure 6(a)), suggesting that
the solutions would be over-fitted without TV regularization.
These results demonstrate that inclusion of the TV regulariza-
tion can extend the range of objects where sparse modeling is
applicable.
However, as described in Section 4.1, the reconstructed

images have larger emission regions than the original model,
since the isotropic TV (Rudin et al. 1992) adopted in this work
prefers a flat brightness distribution in super-resolution regimes
where the image cannot be constrained well. Hence, a
regularization preferring more smoothed edges is required to
improve the fidelity for the black hole imaging with the EHT.

Figure 6. Logarithm of the CV value (a) and the NRMSE of the non-Gaussian convolved image (b) for models BL09, J2, M16, and DJ1. The yellow stars indicate the
regularization parameters for the best-fit images with the minimum CV value. Note that, in panel (a), we set the upper limit of the color contours to values (1.8) lower
than the maximum CV (>2 for all models) in order to highlight differences in CV around the best-fit parameters.
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In the context of sparse reconstruction, there are several
candidates for improving the image fidelity as a natural
extension of this work. First of all, there are other forms of
regularization functions, which prefer sparse images in the
gradient domain with smoother edges. For instance, an
alternative form, given by,

åå= - + -+ +∣∣ ∣∣ (∣ ∣ ∣ ∣ ) ( )I I I I I . 14
i j

i j i j i j i jtv 1, ,
2

, 1 ,
22

is also convex like the isotropic TV term adopted in this work,
and prefers images with smoother edges. Furthermore, previous
studies of sparse image reconstruction techniques have shown
that regularization with ℓ1+wavelet/curvelet transformation is
also a promising approach (e.g., Li et al. 2011; Carrillo
et al. 2012, 2014; Garsden et al. 2015; Dabbech et al. 2015).
We will test these sparse regularizations in a forthcoming
paper.

5.2.2. Enhancing Dynamic Range with Self-calibration

In VLBI, the visibility phase is initially calibrated with fringe
fitting (also calledfringe search), which is a self-calibration
technique using phase closure (see Thompson et al. 2001). The
fringe fitting can mitigate most station-based errors due to
atmospheric and instrumental effects, though errors may remain
if an incorrect source model is assumed. Traditionally, self-
calibration with hybrid/differential mapping (e.g., Walker 1995)
has been employed to solve for residual structural phase errors
and images simultaneously, which has been successful for VLBI
imaging.

This work and previous works on closure-phase imaging
techniques using other regularizations such as MEMs (Fish
et al. 2014; Lu et al. 2014, 2016; Chael et al. 2016) and patch
priors (CHIRP; Bouman et al. 2016) demonstrate that an image
can be reconstructed with high fidelity even from closure
quantities. However, since closure phases and other closure
quantities have less information about the source structure and
also larger thermal noises than full-complex visibilities,
imaging with closure quantities can limit the dynamic range,
image sensitivity, and optimal spatial resolution.

A promising approach to improve the dynamic range is to
use a reconstructed image from closure imaging techniques as
an initial image for hybrid/differential mapping. It can also be
used as a model for fringe fitting becauseself-calibrated images
are often applied to detect more fringes on faint sources (e.g.,
Hada et al. 2016). In a forthcoming paper, we will evaluate the
performance of such a hybrid-mapping technique including
closure-phase/full-closure imaging priors. We emphasize that,
for this purpose, one does not need to reconstruct the image
with pixels much smaller than scales where the brightness
distribution cannot be constrained by data and therefore will
not affect results of self-calibration.

6. Conclusions

We have presented a new imaging technique reconstructing
images from visibility amplitudes and closure phases by
utilizing two regularizations of sparse modeling: the ℓ1-norm
and TV. Furthermore, we also propose a method to select
optimal regularization parameters with CV, which can be
applied to most existing imaging algorithms. As an example,
we applied our technique to simulated observations of M87

with the EHT at 1.3mm. Here, we summarize our
conclusions.

1. We find that ℓ1+TV regularization can achieve an
optimal resolution of ∼20%–30% of the diffraction limit
λ/Dmax, which is the nominal spatial resolution of a radio
interferometer. This optimal resolution is better than that
of the most widely used Cotton–Schwab CLEAN, which
uses full-complex visibilities.

2. We confirm that CV works as an Occam’s razor and
prevents over-fitting when selecting the optimal regular-
ization parameters. CV is a general method that can be
applied to interferometric imaging more generally, such
as imaging with full-complex visibilities and/or using
other regularizations.

3. Using ℓ1+TV regularization, the reconstructed image
maximizes the width of the emission region within
the range that it neither over-fits nor deviates too strongly
from the data. Hence, the clear reproduction of the black
hole shadow in the reconstructed image suggests
that future EHT observations will have the uv-coverage
and sensitivity sufficient for imaging it. In addition,
the reconstructed image will be able to constrain the sizes
of the black hole shadow and surrounding emission
region.

Finally, we remark that all of the above results demonstrate the
clear promise of the EHT for providing an unprecedented view
of the event-horizon-scale structure of the supermassive black
hole in M87 and also the Galactic center Sgr A*.
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