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Abstract 

There is a need of non invasive techniques for simultaneous imaging of the stress and vibration 

mode shapes of nanomechanical systems in the fields of scanning probe microscopy, 

nanomechanical biological and chemical sensors, and semiconductor industry. Here we show a 

novel technique that combines a scanning laser, the beam deflection method and digital 

multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane 

displacement and the shape of five vibration modes of nanomechanical systems. The out-of-

plane resolution is of at least 100 pm/Hz
1/2

 and the lateral resolution being determined by the 

spot size, is here of 1-1.5 µm.  The capability of the technique is demonstrated by imaging the 

residual surface stress of a microcantilever together with the shape of the first 22 vibration 

modes. The vibration behavior is compared with rigorous finite element simulation. The 

technique is suitable to major improvements addressed to imaging in liquids, higher bandwidth 

measurements of nanoscale systems and enhanced spatial resolution. 
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1. Introduction 

Cantilevers represent one of the most simple and ubiquitous mechanical structures 

used in engineering and by nature. Aircraft wings[1] and antennal mechanosensory organs of 

insects[2] are two prominent examples of the importance of the mechanical behaviour of 

cantilevers to perform their function. At the mid eighties of the last century, scientists realized 

that when the cantilevers are reproduced at the microscale, typically 0.2–1 μm thick, 20–100 μm 

wide, and 100–500 μm long, the cantilevers are able to deflect of the order of few nanometers in 

response to forces in the piconewton range, a range where concur the forces between atoms, 

molecules, and biomolecules that govern many of the physicochemical properties of materials 

as well as many fundamental life processes[3,4]. This concept is the heart of the atomic force 

microscope (AFM) invention: a sharp tip attached to the free end of a microcantilever scans a 

surface in a similar way to the stylus of a vinyl record player, for mapping the topography and 

intermolecular interactions coming from the surface.  The corresponding microcantilevers 

deflections can be optically or electrically detected with a resolution of at least 100 pm/Hz
1/2

. 

Batch fabrication of microcantilevers by adopting the well-established lithography and etching 

processes from semiconductor industry has enabled the fast and large expansion of the atomic 

force microscopy and created the optimum conditions for the development of biological and 

chemical nanomechanical sensors almost one decade later[5,6,7,8,9,10]. In these devices, 

tipless microcantilevers are coated on one side with a receptor layer that specifically binds the 

targeted molecules in gas or liquid phase. In this case, the in-plane forces that develop between 

the molecules at the cantilever surface give rise to a bending.  

 

In addition to the static deformation of the cantilevers, the resonant frequencies have 

been also measured for gentle imaging of soft surfaces in AFM[11,12] and for developing 

cantilever sensors based on the added mass and stiffness of the molecules captured on the 

cantilever surface[13,14,15,16,17]. In both fields, there is an increasing interest in the use of 

higher resonant modes to enhance the sensitivity and the detection limits [18,19,20,21,22]. 

However, it is extremely complex to determine the vibration mode shape that corresponds to 

each resonant frequency[23], which is clearly important to quantify and interpret the 

measurements[14,21,22]. There are also long standing issues on the dynamic behavior of 

microcantilevers that have not been solved such as the effect of surface stress on the resonant 

properties[24,25] or the coupling between modes induced by the viscous damping, elastic 

elements or by intermittent contact[26,27,28]. The advent of finite element simulations and 

increasingly fast computer processing is shedding light to these questions. However, these 

simulations can be time-consuming and ignore the defects and imperfections inherent to the 

micro- and nanofabrication processes. 

 

It is thus clear, that the development of non invasive optical tools for the 

characterization of the mechanical behaviour is becoming a need to obtain reliable results with 

nanomechanical systems and for the validation of micro- and nanofabrication processes.  
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Recently scanning Doppler laser vibrometry(SDLV) [29] and white light  interferometry 

(WLI)[23,30,31] have demonstrated a significant ability for the characterization of 

nanomechanical systems. SDLV can image with high sensitivity the out-of-plane vibration of 

nanomechanical systems with sub-angstrom resolution and submicrometer lateral resolution. 

WLI provides information on the topography of nanomechanical systems with a vertical 

resolution of 1-10 nm. In addition, the implementation of stroboscopic illumination in WLI has 

enabled analysis of vibration modes, although the process is slow, the bandwidth is limited, and 

the resolution is still poor. In our opinion, there is a need for microscopy techniques that can 

simultaneous image the static and dynamic features of nanomechanical systems with high 

sensitivity and high resolution in a quick and simple manner.  

 

Here, we present an optical microscopy technique based on the beam deflection 

method[32,33,34] that simultaneously provides a spatial map of the static deflection and shape 

of any five vibration modes of choice with sub-angstrom vertical resolution. We apply the 

technique to determine the spatial distribution of the surface stress and vibration shape of the 

first 22 eigenmodes of a gold-coated microcantilever sensor (Concentris). The cantilever is 500 

µm long, 100 µm wide, and 1 µm thick.  

 

2.  The laser beam deflection microscopy technique 

The experiments were performed by adapting the SCALA platform (MecWins) for 

multifrequency analysis[35,36]. The core of the laser beam deflection technique is the 

automated two-dimensional scanning of a laser beam across the surface of a nanomechanical 

system, in this case a microcantilever, and the collection of the reflected beam on the surface of 

a two-dimensional position sensing linear detector (PSD) orthogonally oriented to the reflected 

beam (Fig. 1(a)). We define a coordinate system in which the X-Y plane is the device plane and 

X and Y are along the scanning directions. Hence the out-of-plane displacement of the 

cantilever is along the Z axis. The incident laser beam is in the X– Z plane and the PSD is 

oriented with one axis along the Y direction. In this configuration, the photocurrents along the 

PSD axes (that are determined by the coordinates of the reflected laser beam on the PSD) are 

linearly proportional to the slope of the device surface along the X and Y directions at the point 

of reflection (Fig. 1(b)). The photocurrents are converted to voltage by current-to-voltage 

amplifiers in order to obtain three output voltages that give the X and Y slopes of the surface 

and the reflected intensity. Since the photocurrents are normalized with respect to the total 

photocurrent, the slope values are insensitive to intensity fluctuations and variations in the 

optical properties of the surface. In the experiments, we oriented the cantilever along the X 

direction, so the variations in the X and Y slope channels can be related to the flexural and 

torsional displacements of the cantilever.  

 

For obtaining dynamic information, the cantilever was driven by a signal composed by 

the sum of five time-varying sinusoidal signals with different frequencies. In the experiments, the 
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frequencies were chosen to be at the frequency of five resonant vibration modes, and the 

amplitude of each frequency component was tuned to obtain similar amplitude responses in the 

cantilever (Fig. 2). The excitation voltage signal was applied across a piezoelectric bimorph 

placed near the cantilevers’ bases. The method can be extended to more frequencies; however, 

we chose five frequencies in order to limit the amount of generated data. By implementing a 

digital lock-in detection, the raw data from the slope signals of the PSD are multiplexed in static, 

and in- quadrature amplitudes with respect to each frequency component of the driving force. 

Thus, in a single imaging scan, 23 images are obtained, which correspond to static X and Y 

slopes, reflectivity; and in-phase and quadrature amplitudes of the X and Y slopes at the five 

driving frequencies. After the scanning, the system defines a mask based on the reflected light 

intensity that provides the shape of the cantilever. This mask is applied to the static and 

dynamic components of the X and Y slopes in order to obtain the static and multifrequency 

surface normal vector. To reconstruct the topography and the shape of the five driven vibration 

modes, we adopt an iterative integration method used for image reconstruction in photometric 

stereo to calculate the height of the object from the normal vector data[36,37]. 

 

Figure 3 shows the resulting static topography and shape of five vibration modes 

obtained from a single scan consisting of 512 lines acquired at a rate of one line per second. 

The acquisition time per pixel is of about 2 ms. The topography data shows that the cantilever is 

bent down (from the gold to the silicon) about 22 µm. This bending is a consequence of the high 

residual compressive stress developed during the thermal evaporation of a 50 nm thick gold 

layer that in our case is used for functionalization with single stranded DNA for nucleic acid 

detection[38].  The five driving frequencies correspond with the 1
st
, 6

th
, 14

th
, 17

th
 and 22

th
 

eigenmodes of the cantilever. A remarkable feature of the technique is the large frequency 

span, from few kHz to around 1 MHz, exhibited by the dynamic characterization. This range can 

be still expanded by improving the bandwidth of the PSD readout electronics[39,40]. The 

frequencies were chosen in order to show the different ways in which a cantilever can vibrate. In 

addition to the well-known flexural vibration modes as those shown at 4.58 and 158.2 kHz 

corresponding with the1
st
 and 4

th
 flexural modes, and torsional vibration modes as that shown at 

594.6 kHz corresponding with the 7
th
 torsional vibration mode, the cantilever can vibrate in more 

complex and unpredictable ways, like the U-shaped motion found at 825.1 kHZ or the drum-like 

vibration found at 1031 kHz. It is important to emphasize that although the use of higher 

vibration modes is advantageous in terms of sensitivity due to the higher both frequency and 

quality factor[18,20,22], the knowledge on the vibration mode shape is absolutely necessary for 

obtaining a quantitative measurement. For instance, in nanomechanical sensors, the 

quantification of the adsorbed mass and mechanical properties requires of the shape of the 

used vibration mode, which is usually approximated by applying the one dimensional Euler-

Bernoulli equation[14,22]. However, this approach only keeps approximately valid for the first 

flexural and torsional cantilever eigenmodes[22]. 
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2.  Distribution of the residual surface stress 

The surface stress is usually measured by applying the so-called ‘‘bending plate’’ 

method that consists in measuring the cantilever curvature and relating it to the surface stress 

by applying the Stoney’s equation[8,41]. This method assumes that for isotropic or cubic 

materials (as silicon and silicon nitride, most widely used materials in cantilever fabrication) the 

cantilever bends with uniform and isotropic curvature. The curvature is usually obtained by 

measuring the cantilever deflection at the free end and assuming parabolic deformation, or by 

measuring the cantilever deflection at few points along the longitudinal direction. An important 

limitation of this approach is that it neglects the effect of the clamping constriction, i.e., the 

method is only strictly applicable to plates that are unrestrained along their edges [41]. This 

constriction, as shown below, has profound implications in the quantification of the surface 

stress, and hence in the effectiveness of the ‘‘bending plate’’ method. Here we have derived the 

two-dimensional spatial distribution of the surface stress by calculating the local curvature and 

applying the Euler-Bernoulli relationship between bending moment and curvature. We split the 

surface stress into longitudinal and transversal components, x and y, which are related to the 

curvatures along and across the cantilever, x and y, through, 

 (     )        (     )      (1) 

 

where E is the Young’s modulus of the cantilever,  is Poisson’s ratio, and h is 

cantilever thickness. Figures 4(a) and (b) show the spatial map of the longitudinal and 

transversal components of the surface stress. The profiles of the longitudinal and transversal 

surface stress along the longitudinal cantilever axis are shown in fig. 4(c). The results clearly 

demonstrate that the surface stress is neither uniform across the cantilever nor isotropic. The 

absolute value of the longitudinal surface stress is maximal near the clamp and it decays up to 

reach a constant value at a distance from the clamp of about twice the cantilever’s width. 

Contrarily, we observe that the absolute value of transversal stress is zero at the clamp and it 

increases up to reach the asymptotic value of the longitudinal surface stress.  This is in 

consistency with the model proposed by Sader, in which there exists a region near the clamp, 

with a length of the order of the cantilever´s width, where a non-uniform curvature exists[41]. In 

this region, nonzero in-plane stresses are developed that affect the resonance frequencies[24]. 

The fact that the transversal surface stress is zero at the clamp comes from the displacement 

restraint imposed by the clamp that induces a rigid body displacement in order to keep the 

transversal strain zero along the boundary between the cantilever and the chip base[24,41].  

 

Finally, it is worth to note the noise of the curvature measurement due to the inherent 

noise produced by the numerical derivatives. In this context, the scanning laser beam deflection 

exhibits advantages for the quantification of the in-plane stresses in micromechanical 
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structures. When the out-of-plane displacement is directly measured, as it is the case of the 

interferometric techniques, the curvature calculation requires of the second derivative of the 

measurement that results into a two-step noise amplification.  Advantageously, the beam 

deflection technique directly measures the slope, so it reduces the numerical derivation steps to 

one. Moreover, the laser-beam deflection is extremely sensitive, with noise below the 100 

pm/Hz
1/2

 that is about ten times smaller than the noise in white light interferometers, the 

standard technique for imaging static out-of-plane displacements in micromechanical structures.  

 

3.  Comparison between the experimental vibration mode shapes and finite 

element simulations 

We have applied the implementation of the multifrequency excitation/detection 

technique in the scanning laser beam microscope for the characterization of the first 22 

vibration modes of the microcantilever sensor. We split the vibration modes in flexural, torsional 

and U-shape. The experimental images of the first three modes of each category are shown at 

the top of figure 5. The resonance frequencies of the measured vibration modes are plotted at 

the bottom of figure 5. Based on our finite element simulations (FEM), one vibration mode was 

identified as the first lateral vibration mode (triangle symbol in fig. 5). Although this vibration 

mode consists on lateral motion of the cantilever in the XY plane, the simulations show that the 

lateral motion also induces a Z-displacement with a pattern very similar to that found 

experimentally (inset in the bottom of fig. 5). The details of the FEM simulations are provided in 

the supplementary material.  

 

As shown in the previous section, the gold-coated side of the microcantilevers exhibits 

large surface stress that induces a significant cantilever bending. Previously, we reported that 

the surface stress induced resonant frequency shift has two components: i) a linear term related 

to the unreleased in-plane stresses near the clamp and ii) a non linear term related to the 

cantilever bending moment that is negative and approximately independent of the surface 

stress sign[25]. The contribution of each term depends on the vibration mode in a complex way. 

In order to compare the experiments with rigorous FEM, we introduced the effect of the surface 

stress in the FEM simulations. The simulations show that although the surface stress negligibly 

modifies the vibration mode shape in our conditions, it induces a significant frequency shift of 

the vibration modes as shown in figure 6 (top). Interestingly, the amount and sign of the 

frequency shift are related to the kind of motion. In general, the resonance frequencies of the 

flexural vibration modes slightly increase. This increase is of about 2% for the fundamental 

mode and it is getting smaller as flexural mode index increases. In contrast, the frequencies of 

the torsional vibration modes decrease by a significant amount, from 4 to 7% for the first five 

modes, following a complex dependence on the mode-index. The surface stress induced 

frequency shift of the U-shaped vibration modes is positive and it goes from 2% for the first 

mode to 4% for the second mode, and then it slightly decreases with the mode index. 

Interestingly, the lateral vibration mode exhibits the highest sensitivity to the surface stress, of 
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about 10%.  Figure 6 (bottom) shows the deviation between the experimental and simulation 

values of the resonance frequencies. We find a good agreement (<5%) for the first six flexural 

and torsional modes. The deviation increases for the higher flexural modes, and it is significant 

for the U-shaped vibration modes, of about a 10%.  

 

Finally, we show the images of the experimental vibration modes and the comparison 

with finite element simulations for the first ten vibration modes in figure 7. The rest of the 

measured vibration modes, up to the 22
nd

 are shown in the supplementary data. Despite the 

differences in the values of the resonance frequency, the experimental images accurately follow 

the simulation data. The results show the ability of the presented technique to rapidly obtain the 

multimodal vibration shape of nanomechanical systems and the capability to link this dynamic 

behavior with the stress/strain field of the nanomechanical system. 

 

4.  Coclusions  

In conclusion, we have developed a technique, so-called, scanning laser beam 

deflection microscopy for characterization of nanomechanical systems that enables the 

simultaneous imaging of the static out-of-plane displacement and several vibration modes in a 

simple and quick manner. The out-of-plane resolution is of at least 100 pm/Hz
1/2

 and the lateral 

resolution that is determined by the spot size, is here of 1-1.5 µm. The multimodal 

characterization relies on synthesizing a driving waveform signal composed of several 

frequency components (at least five) together the digital lock-in multifrequency detection of the 

cantilever response. The capability of the technique is demonstrated by imaging the residual 

surface stress and shape of the first 22 vibration modes of a microcantilever sensor. The results 

reveal significant features of the mechanical response of microcantilever sensors that illustrate 

the capability of the presented technique. One relevant finding is that the surface stress cannot 

be quantified using the widely extended bending plate method as this method assumes uniform 

surface stress across the cantilever. The images show a region near the clamp, with a length of 

the order of the cantilever width’s, where non-uniform curvature exists as it had been 

theoretically predicted. This effect seems to be the origin of the controversial issue about the 

influence of the surface stress on the resonance frequencies of singly clamped beams [24]. The 

rich and complex information obtained by the presented technique can be then compared to 

finite element simulations in order to gain further insight on the underlying mechanics of 

nanomechanical systems. Here, we found that whereas the experimental vibration mode 

shapes show little differences with the FEM simulations, the resonance frequencies significantly 

deviate from the FEM data for high vibration modes. In addition, the comparison between 

experimental data and FEM allows the identification of the first lateral vibration mode, that in 

principle it should not be perceptible as the in-plane motion negligibly influences on the laser 

beam deflection. However, the sensitivity of the technique allows the detection of the cross-

talking between the in-plane and out-of-plane displacements.  The technique is suitable to major 

improvements such as imaging in liquids addressed to biological applications as well as higher 
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acquisition bandwidth and enhanced spatial resolution addressed to extend the technique to 

nanoscale mechanical systems[29,42,43]. 
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FIGURES 
  

 

Figure 1. (a). Schematic representation of the scanning laser beam deflection system. A laser 
beam tightly focused on the surface of a nanomechanical system scans across its surface. The 
reflected beam is collected on the surface of a two-dimensional position linear photodetector 
(PSD). (b) Schematic representations of the displacement of the reflected laser beam on the 
PSD due to a change of the sample slope around the Y-axis and X-axis.  

 
Figure 2. Schematic representation of the multifrequency excitation/detection in the scanning 
laser beam deflection microscope. A driving waveform signal consisting in the sum of five 
sinusoidal signals at different frequencies is synthesized. The frequencies are chosen to be at 
the resonant frequency of different vibration modes. A fast Fourier transform of the PSD 
channels corresponding with the X-slope and Y-slope of the sample reveal the static and 
multimodal out-of-plane displacements. The intensity PSD channel is used as a mask to obtain 
the cantilever shape. To reconstruct the topography and the shape of the five driven vibration 
modes, we adopt an iterative integration method.  
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Figure 3. Simultaneous detection of the static out-of-plane displacement and the shape of five 
vibration modes of a microcantilever sensor. 
 

 

 

Figure 4. Images of the longitudinal (a) and transversal (b) components of the differential 
surface stress derived from the corresponding curvatures. The images are 320 µm long and 70 
µm wide. This size is chosen in order to highlight the cantilever region near the clamping 
where there are non-uniform curvatures and to exclude the cantilever edges where the 
curvature measurement is very nosy. 
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Figure 5. Top. Images of the first three vibration modes in which the vibrations consist of 
flexural, torsional and U-shaped motion. Bottom. Experimental values of the resonance 
frequencies of the first 20 vibration modes of a microcantilever sensor. The frequencies are 
split into flexural, torsional, U-shaped and lateral vibration modes. The inset in the graph 
shows the out-of-plane displacement of the first lateral vibration mode as a consequence of 
the cross-talking between in-plane and out-of-plane displacements.  
 

 

Figure 6. The graph at the top shows the FEM simulations of the surface-stress induced shift in 
the resonance frequencies of the microcantilever sensor examined here. In order to simulate 
the surface stress, cantilever was subject to a change in the temperature in order to obtain a 
bending similar to that found experimentally. The graph at the bottom shows the deviation 
between the experimental values of the resonance frequencies and the FEM data. The 
vibration modes are arranged in flexural, torsional, U-shaped and lateral modes (see text and 
fig. 5). 
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Figure 7. Comparison between the experimental shape of the first ten vibration modes and the 
FEM simulations.   
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

 

SUPPORTING INFORMATION 

 

Imaging the surface stress and vibration modes of a microcantilever by 

laser beam deflection microscopy 

 

Javier Tamayo1, Valerio Pini1, Prisicila Kosaka1, Nicolas F. Martinez2, O. Ahumada2 

and M. Calleja1 

 

1
Instituto de Microlectrónica de Madrid (IMM, CSIC), Isaac Newton 8 (PTM), Tres Cantos, 

28760 Madrid, Spain 

2
MecWins, Santiago Grisolía 2 (PTM), Tres Cantos, 28760 Madrid, Spain 

 

E-mail: jtamayo@imm.cnm.csic.es 

 

 

FEM SIMULATION 

 

The natural frequencies and mode shapes of the microcantilever sensors were 

simulated by the finite element method (FEM) using the commercial software Comsol 

4.2.  A gold-coated cantilever of length 500 µm, width 100 µm, and substrate and 

coating thicknesses of 950 nm and 50 nm, respectively was modeled. These 

dimensions are the nominal dimensions of the microcantilever sensor used in the 

experiments. Since the microcantilever is fabricated in monocrystalline silicon with the 

edges along the <110> direction, we used in the simulations an anisotropic elasticity 

model that accurately describes the silicon elasticity [1]. The simulation process 

consisted of two sequential steps. First, we calculated the static cantilever strains when 

the cantilever is subject to a uniformly distributed temperature change. The 

temperature value is chosen in order to achieve a cantilever bending due to the 

bimetallic effect similar to that experimentally found due the residual stress generated 

in gold coating.  The simulations include large deformation effects that arise from the 

geometric nonlinearity. Thus, the Green strain tensor and the second Piola Kirchhoff 

stress tensors are used and the solution is achieved by using a total Lagrangian 

formulation. In the second simulation step, we obtain the cantilever eigenfrequencies 

by including the static cantilever deformation previously obtained in the first simulation 

step. In order to avoid time-consuming inefficient calculations and to achieve accurate 

solutions, the meshing of the cantilever structure is individually adapted to each 
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direction. We applied a customized free tetrahedral meshing. In addition, since the 

stress and strain near the clamping region play a critical role in the vibration response 

of the cantilevers, the meshing of this regionn was refined with an extremely fine 

meshing. A convergence study was performed by refining the mesh element size until 

the relative error in the cantilever eigenfrequency was below 10-4. This corresponds to 

a mesh of 500 000 elements, approximately. 

 

[1] Matthew A. Hopcroft, Member, IEEE, William D. Nix, and Thomas W. Kenny, What is the Young’s 

Modulus of Silicon? JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 19, NO. 2, APRIL 

2010 

 

COMPARISON BETWEEN THE EXPERIMENTAL AND SIMULATED VIBRATION 

MODES 

The manuscript shows the images of the experimental vibration modes and the 

comparison with finite element simulations for the first ten vibration modes (figure 7). 

The rest of the measured vibration modes, up to the 22nd are shown here (Fig. S1). 

Despite the differences in the values of the resonance frequency, the experimental 

images accurately follow the FEM data. Only two vibration modes (based on the FEM 

simulations) were not detected, 16th and 17th. We relate this to the frequency 

overlapping of the resonance peaks of these modes with neighboring vibration modes 

that are more efficiently excited by the piezoelectric actuator.  
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Figure S1. Comparison between the experimental shape of the vibration modes from the 11th 

to the 22nd and the FEM simulations.   

 


