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Imaging the two-component nature of
Dirac–Landau levels in the topological
surface state of Bi2Se3

Ying-Shuang Fu1†, M. Kawamura1, K. Igarashi2, H. Takagi3,4,5, T. Hanaguri1* and T. Sasagawa2

Massless Dirac electrons in condensed matter1–6 are, unlike
conventional electrons, described by two-component wave-
functions associated with the spin degrees of freedom in
the surface state of topological insulators5,6. Hence, the
ability to observe the two-component wavefunction is useful
for exploring novel spin phenomena. Here we show that
the two-component nature is manifest in Landau levels, the
degeneracy of which is lifted by a Coulomb potential. Using
spectroscopic-imaging scanning tunnelling microscopy, we
visualize energy and spatial structures of Landau levels in
Bi2Se3, a prototypical topological insulator. The observed
Landau-level splitting and internal structures of Landau orbits
are distinct from those in a conventional electron system7

and are well reproduced by a two-component model Dirac
Hamiltonian. Our model further predicts energy-dependent
spin-magnetization textures in a potential variation and
provides a way for manipulating spins in the topological
surface state.

Landau quantization associated with the quasi-classical
cyclotron motion of electrons in a magnetic field B is a fundamental
phenomenon and highlights the difference between conventional
and Dirac electrons. In conventional systems, the energy of the nth
Landau level (LLn), En, is proportional to (n+γ )B, where γ =1/2.
Distinct from this, En in two-dimensional massless Dirac systems
behave as ∝

√
|n|B (refs 8,9). Importantly, the Berry-phase effect

in Dirac systems eliminates γ and ensures the B-independence of
E0, which is equal to the Dirac-point energy10,11. Such an unusual
LL sequence has been observed by scanning tunnelling microscopy
and spectroscopy (STM/STS) in graphene12,13 and in the topological
surface state14,15.

In addition to the unique energy spectrum, the wavefunctions
of Dirac LLs are remarkably different from their conventional
counterparts because of their two-component nature9. To study the
details of wavefunctions, spectroscopic-imaging STM (SI-STM) is
a powerful technique because tunnelling-conductance maps, which
include information of the internal structures of wavefunctions
through local-density-of-states (LDOS) variations, can be obtained
with high energy resolution and high spatial resolution. If the system
is uniform, the spatial degeneracy of Landau orbits results in a
homogeneous LDOS. The introduction of a potential variation lifts
the spatial degeneracy, making it possible to access the localized
Landau orbit16–19. The Landau orbit drifts along the equipotential
lines and the LDOS variation across the orbit contains information

of the internal structure of the wavefunction. Indeed, a recent SI-
STM study on a conventional two-dimensional electron system
revealed the n-dependent nodal structure in the wavefunction7.

Wavefunction imaging could be even more interesting in
Dirac systems, because a potential variation not only lifts the
spatial degeneracy of Landau orbits but may also affect the
interplay between the two components in the wavefunction. This
is particularly important for the topological surface state, where the
interplay determines the magnetic properties. Thus, exploring the
two-component nature by wavefunction imaging will give us a clue
towards developing a novel spin-manipulation protocol. For this,
we study LL wavefunctions of a prototypical topological insulator
Bi2Se3 using SI-STM.

Figure 1a represents LL spectra at B = 11 T taken at the
marked points in the topographic image shown in Fig. 1b. We
confirm that En exhibits a dependence on B and n typical for
Dirac electrons14,15. Moreover, the energy–momentum dispersion
obtained by the scaling analysis14 agrees quantitatively with that
obtained by angle-resolved photoemission spectroscopy on crystals
from the same source20. These results guarantee that the obtained
data faithfully represent intrinsic properties of the topological
surface state (Supplementary Section 1.1). The potential landscape
can be visualized by mapping the spatial variation of E0. As LL0 is
independent of B and is located at the Dirac-point energy, the E0

map faithfully represents the potential landscape, albeit it is smeared
over the size of the LL0 wavefunction given by the magnetic length
lB =

√
~/(|e|B). Here, ~ is the Planck constant divided by 2π and

e is the elementary charge. At 11 T, lB is ∼7.7 nm. As shown in
Fig. 1c, there is a well-defined potential minimum in the field of
view which may be generated by subsurface charged defects (such
as Se vacancies). There is a line-shaped protrusion in the lower right
corner of Fig. 1b, but it hardly affects the potential map shown in
Fig. 1c. Potential variations with a similar length scale were also
observed in graphene21 and doped topological insulators22.

We find that the potential-gradient map (Fig. 1d) exhibits strong
correlation with the map of the apparent width of the LL0 peak
(Fig. 1e), implying that the spatial variation of potential lifts the
degeneracy of the LLs. This is clearly manifested in the individual
tunnelling-conductance spectra shown in Fig. 1a. The LL0 peaks
are sharp and single peaks at the potential minimum (blue) and at
the edge of the potential dip where the potential becomes almost
flat (red). At the potential-gradient maximum (green), the LL0

peak is not simply broadened but splits into multiple peaks which
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Figure 1 | Landau-level spectra at 11 T and potential landscape in the topological surface state of Bi2Se3. a, Tunnelling spectra taken at representative

points along the line indicated in b–e. Blue, green and red curves (from bottom to top) denote the data taken at the potential minimum (blue filled circle), at

the potential-gradient maximum (green filled triangle) and near the edge of the potential dip (red filled square), respectively. Each curve is offset vertically

for clarity. The zero-line for each curve is denoted by a short horizontal line. Data were taken at 1.5 K with conditions of sample-bias voltage Vs=+50mV,

tunnelling current It=50 pA and bias modulation amplitude Vmod=2.1mVrms. Note that the apparent LL0 peak consists of a few peaks at the

potential-gradient maximum and the LL1 peak at the potential minimum splits into two peaks (black arrows). b, Constant-current scanning tunneling

microscopy topograph of the cleaved surface. Inset shows the atomic-resolution image obtained by scanning the small area. c, Potential landscape of the

same field of view obtained by mapping E0. d, Potential-gradient map calculated from c. e, Map of the apparent width (half-width at half-maximum) of the

LL0 peak. These four images (b–e) were taken simultaneously with Vs=+50mV, It=50 pA and Vmod=2.8mVrms. (For the inset of b, Vs=−100mV,

It=50 pA.) The LL0 peak in the individual spectrum was fitted with a single Lorentzian function to obtain E0 and the apparent width of the peak.
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Figure 2 | Spatial and energy evolutions of localized Landau orbits trapped inside the potential dip at B = 11 T. Conductance images taken at different

energies exhibit the ring-like trajectory of Landau orbits drifting along the equipotential lines. a–c,d–f and g–i are for LL0, LL1 and LL2, respectively. The

complete data set is presented as a movie in the Supplementary Information. The width of the ring increases and the concentric-ring structure becomes

evident for LL2. The magnetic length lB, which is a measure of the size of the LL0 orbit, is shown in each panel for comparison.

correspond to different quantum states as described later. Recently,
similar splitting has also been observed in graphene23. Interestingly,
the LL1 peak splits into two peaks even at the potential minimum.
We will show below that this splitting of the LL1 peak is a direct
consequence of the two-component nature.

Next we show the results of SI-STM around the potential
minimum. Figure 2 shows a series of conductance maps at 11 T in
the same field of view as in Fig. 1b–e. All themaps exhibit prominent
ring-like structures, which are ascribed to the Landau orbits drifting

along the equipotential lines17. The ring corresponding to the
LL0 state emerges at the potential minimum and expands with
increasing energy (Fig. 2a–c). With further increasing energy, the
ring expands out of the field of view and another ring associated
with the LL1 state evolves (Fig. 2d–f). Expansion of the ring is also
observed in the LL2 state (Fig. 2g–i) and even higher LLn states
(not shown). The ring gets wider with increasing n and splits into
two concentric rings for LL2, characterizing the internal structure of
Landau orbits.
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Figure 3 | Branching of Landau subbands and internal structures of Landau orbits at 11 T. a, A false colour plot of the conductance-spectrum evolution

from the potential minimum along the line shown in Fig. 1b–e. Inset depicts the second derivative of conductance with respect to the bias voltage, which

highlights the splitting features in the lower (n=0 and n= 1) LLs. Higher LLs evolve smoothly, but split into two apparent branches. Spectra shown in Fig. 1a

correspond to the horizontal line-cuts from this panel at distances marked by the horizontal arrows. b, Vertical line-cuts from a at energies marked by the

vertical arrows, showing internal structures of drifting Landau orbits for different n. Each curve is offset vertically for clarity. Although the number of peaks

increases with n in a conventional two-dimensional electron system7, there appear at most two peaks in the topological surface state of Bi2Se3. The scale

bar denotes lB.

We further investigate the internal structure by analysing a series
of conductance spectra taken along the line shown in Fig. 1b–e. As
shown in Fig. 3a, the LDOS evolution shows the spatially dispersing
Landau subbands. Corresponding to the peak splitting shown in
Fig. 1a, n=0 and n=1 Landau subbands are broken at the potential-
gradient maximum and at the potential minimum, respectively. The
spatial evolutions of higher (n>1) Landau subbands are smooth but
each subband broadens and splits into two apparent branches at the
intermediate region, which correspond to the two concentric rings
in Fig. 2.

We examined the detailed LDOS distribution across the drifting
Landau orbits by taking vertical line-cuts from Fig. 3a (Fig. 3b).
As is already seen in Fig. 2, the Landau orbit gets wider with
increasing n. This behaviour is common to both conventional7

and Dirac24 systems, because the quantum Larmor radii for n>0
LLs, which characterize the widths of the Landau orbits, are given
by lB

√
2n+1 and lB

√
2|n| for conventional and Dirac systems,

respectively (Supplementary Section 1.2).
A remarkable difference between the two systems appears

in the internal structures. In the case of conventional systems,
the LDOS variation across the drifting LLn orbit exhibits n + 1
peaks because the corresponding wavefunction contains n nodes7,25

(Supplementary Fig. 2). In contrast, in the case of the topological
surface state of Bi2Se3, the number of peaks never exceeds two, even
for n>1 LL states, as shown in Fig. 3b.

In the following, we show that our observations can be cap-
tured by model calculations and are direct consequences of the
two-component wavefunction. We adopt a model Hamiltonian
H =H0 +V (r)σ0, where H0 represents the unperturbed Hamilto-
nian for two-dimensional Dirac electrons inB andV (r) is a circular-
symmetricCoulombpotential generated by a subsurface charge23.σ0

is the unit matrix.
It should be noted that the good quantumnumber here is the total

angular momentum jz , which is a consequence of strong spin–orbit
coupling. This is in contrast to the case of conventional systems,
where the orbital angular momentum lz specifies the quantum
states25. Therefore,H is block diagonalized with respect to jz and we

can calculate the energy spectrum En,jz , the wavefunction 9n,jz (r),
and the LDOS D(E, r) =

∑
n,jz

Γ/((E−En,jz )
2 +Γ 2)|9n,jz (r)|2,

assuming a Lorentzian broadening with a damping parameter Γ .
Details are given in the Supplementary Information.

Figure 4a shows an intensity plot of the calculated LDOS as a
function of energy and |r|, which reproduces the overall features
of the experimental results shown in Fig. 3a. The discrete vertical
ridges seen in the n=0 Landau subband correspond to the different
jz states, which are degenerate for V (r)= 0. Once V (r) is turned
on, this degeneracy is lifted because the Landau orbit with higher jz
drifts at larger |r|, where the potential energy is higher.

Figure 4b depicts the calculated LDOS spectra at representative
points, resembling the observed tunnelling spectra shown in Fig. 1a.
In particular, the splitting of the LL1 peak at the bottom of the
potential is well captured. The physical picture of this splitting can
be understood by looking into the nature of the wavefunction at
r= 0. By inspecting the functional form of 9n,jz (r) given in the
Supplementary Information, one finds that9n6=0,jz (r=0) consists of
only two quantum states, with jz =+1/2 and−1/2, which originate
from the up-spin and down-spin components, respectively. Because
these two states have different spatial extent, their energies are
different; the LDOS peak splits accordingly. Thus, the splitting
of the LL1 peak at r = 0 is a direct consequence of the two-
component nature. The splitting should also occur for LLn with
n>1, but its detection is much harder because the energy difference
between jz =±1/2 states becomes smaller with increasing n. Note
that the LL0 peak does not split at r= 0 because only the down-
spin component of 90,jz (r= 0) is non-zero. The relevance of this
scenario is highlighted by looking at the spin-resolved LDOS at r=0
(Fig. 4b).

The two-component nature also explains the absence of nodal
structure in the LDOS distributions. The |r|-dependence of the
calculated LDOS (Fig. 4c, thick black curves) exhibits only twopeaks
for n> 0, being in agreement with the experiment. We also plot
the spin-resolved partial LDOS associated with the eigenstate at
a given energy. Such a ‘dominating eigenstate’ mainly contributes
to the total LDOS, albeit other states also participate if Γ is finite
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Figure 4 | Results of model calculations based on the two-component Dirac Hamiltonian. a, Intensity plot of the calculated LDOS as a function of energy

and distance from the bottom of the potential. The yellow solid line denotes the radial variation of the potential used for the calculation. The length is

measured in units of lB and the energy is measured in units of ~ωc, where ωc=
√
2v/lB is the cyclotron frequency and v is the electron velocity. The damping

parameter Γ was set to 0.05~ωc. See Supplementary Section 1.2 for details. b, LDOS spectra, in arbitrary units (a.u.), obtained by taking horizontal

line-cuts at the representative points shown by horizontal arrows in a. (From bottom to top, distance |r|=0, 1.4lB and 7.0lB, respectively.) Each curve is

offset vertically for clarity. At the bottom of the potential, partial LDOS spectra associated with the up-spin (filled red curve) and down-spin (filled blue

curve) components are also shown. It is clear that LL0 consists of a down-spin component only and the splitting of the LL1 peak is associated with the spin

degrees of freedom. c, Thick solid lines represent internal structures of Landau orbits obtained by taking vertical line-cuts at the representative energies

shown by vertical arrows in a. Partial LDOS (thin black lines) from the dominating eigenstate and its up-spin (filled red curves) and down-spin (filled blue

curves) components are also shown. Data for each n are offset vertically for clarity. Nodes in the up-spin component are filled by the down-spin component

and vice versa. d–f, Spatial distribution of energy-dependent spin-magnetization vectors defined bymi=~/2
∑

n,jz
Γ/((E−En,jz )

2+Γ 2)9†

n,jz
(r)σi9n,jz (r),

where σi (i=x,y,z) are Pauli matrices. The in-plane components are indicated by arrows and the out-of-plane component is indicated by colours. The

line-cut at y=0 is also shown above each panel.

(Supplementary Section 1.5). Although the down-spin component
(blue) has n nodes, as in the case of conventional systems, the
number of nodes for the up-spin component (red) is n − 1.
Therefore, the nodes for one component are always filled by the
other, and two enhanced LDOS peaks are formed near the edges.
These features are also expected in other two-dimensional Dirac
systems such as graphene.

A unique feature of the topological surface states is that the po-
tential variation not only affects the orbital motion but also induces
non-trivial spin-magnetization textures through the strong spin–
orbit coupling. Indeed, calculated spin-magnetization distributions
shown in Fig. 4d–f exhibit energy-dependent cycloidal-helix-like
patterns along the radial direction. A future spin-polarized STM
experiment may detect these patterns directly. Such an emergence
of spin-magnetization textures is not expected in graphene, where
the Dirac electron nature is associated with the sublattice degrees
of freedom. We anticipate that the combination of Landau quanti-
zation and a tailored potential landscape in the topological surface

statesmay provide a novel ‘magnetoelectric’ control of spins, leading
to intriguing spintronic and topological applications.

Methods
Bi2Se3 crystals were prepared by the melt-growth technique. SI-STM experiments
were performed at 1.5 K with a commercial low-temperature ultrahigh-vacuum
STM (Unisoku USM-1300) modified by ourselves26. The clean and flat surface
was obtained by in situ cleaving at ∼77K. After the cleaving, the sample was
transferred quickly to the STM unit, which was kept below 10K. Magnetic field
was applied perpendicular to the cleaved surface. An electro-chemically etched
tungsten wire was used as an STM tip, which was cleaned and characterized
in situ with a field-ion microscope. Tunnelling spectra were taken with a software
lock-in detector integrated in a commercial STM controller (Nanonis).
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