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Abstract
Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical

evidence indicates that future prognostic signatures need evaluation in the context of early compared with

late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein–

protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate

breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein

kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour

types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking

the plasma membrane to the actin cytoskeleton. In the present article, we demonstrate that our tissue

imaging-derived parameters that pertain to or are a consequence of the PKC–ezrin interaction can be

used for breast cancer prognostication, with inter-cohort reproducibility. The application of fluorescence

lifetime imaging microscopy (FLIM) in formalin-fixed paraffin-embedded patient samples to probe protein

proximity within the typically <10 nm range to address the oncological challenge of tumour heterogeneity, is

discussed.

Introduction
Breast cancer is the most common malignancy in women.

Despite improving survival rates, the global burden of breast

cancer remains high with approximately half a million breast
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cancer related deaths reported worldwide annually. A number

of prognostic tools predicting the risk of metastatic relapse are

used by oncologists to guide clinical decision-making [1,2].

The accuracy of these prognostic models is far from perfect,

and recent clinical evidence indicates that the traditional

clinicopathological parameters (e.g. tumour size, lymph node

status) used in prognostic models such as Adjuvant Online

[1] or the St. Gallen’s Consensus [2] may not correlate

well with clinical outcome in some breast cancer subtypes

[3,4]. Similarly, although prognostic models using multigene

signatures such as Mammaprint [5] or Oncotype Dx [6] have

been shown to outperform clinicopathological parameter-

based tools in predicting distant metastases [7], a number
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of studies have also highlighted their shortcomings. Despite

molecular estimation of high-risk disease in node-negative

breast cancer patients by Oncotype Dx and Mammaprint,

69 % and 44 % of these patients, respectively, experienced

long-term disease-free survival.

In recent years, next-generation sequencing approaches

have demonstrated the cellular heterogeneity of tumours,

comprising distinct subpopulations of cancer cells character-

ized by specific genomic profiles, and thereby representing

the clonal evolution of that tumour [8–10]. In the present

article, we focus on protein expression, post-translational

modification and protein–protein interaction, and their

functional consequences, which offer complementary in-

formation to the transcriptome, copy number variation

(CNV) and mutational profiles in human breast cancer

[11,12]. Currently, the presence/absence of tissue protein

markers such as oestrogen receptor (ER), human epidermal

receptor 2 [HER2 (ErbB2)] and progesterone receptor (PgR);

plus epidermal growth factor receptor (EGFR) status and at

least one basal marker [cytokeratin (CK) 5/6], are used to

predict cancer progression and guide treatment strategy [13].

Despite the use of these markers to guide stratification of

treatment (e.g. anti-ER, HER2 or EGFR targeting inhibitors),

the need for improved prognostic and predictive biomarkers

remain. For instance, Santagata et al. [14] have recently

suggested a new classification based on tissue quantification

by multiplex immunofluorescence imaging-based detection

of ER, vitamin D receptor (VDR), androgen receptor (AR),

CK5 and the proliferation marker Ki67. They showed that

this new classification, which is based on defining tumour

subtypes according to their similarities with specific normal

cell origin subtypes, can be used for disease prognostication.

In the present article, we describe a set of key optical

proteomic parameters [15] pertaining to a protein subnetwork

which is involved in regulating cancer cell motility, for

predicting the time to cancer metastasis among heterogeneous

breast cancer patient populations.

Protein kinase Cα (PKCα) in cancer
development and metastasis
PKCα (a conventional PKC isoform) belongs to the

family of protein kinases initially identified as phospholipid

and calcium-dependent kinases [16], which are involved

in tumour promotion and progression as a response to

stimulation with phorbol ester PMA [17]. More recently,

this PKC isoform has been found to be important for

maintaining the breast cancer stem cell population [18].

Downstream targets include Raf1 [19] which in turn activates

extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun

N-terminal kinase (JNK) and nuclear factor κB (NF-κB)

leading to increased transcription of metalloproteinase-9 and

tumour cell migration [20–23]. Among other targets for active

PKCα, we have identified β1 integrin, fascin and ezrin [24–

26], which form signal complexes on the cell membrane

and propagate the signal to the cytoskeleton, triggering a

migratory response. Many other PKC targets exist within

the motility pathway [27] but are outside the scope of the

present article due to space constraints.

Ezrin and cofilin in cancer cell migration
Ezrin [belonging to the ezrin/radixin/moesin (ERM) family

of proteins] and cofilin are actin-remodelling proteins playing

different roles in reorganization of actin cytoskeleton which

results in directional motility of the cell. ERM proteins and

cofilin are linked in one gene/signalling network [28,29] and

their function depends on the presence of each other [30].

Ezrin expression was found to be necessary for metastasis

[31] and its cytoplasmic or nuclear localization correlated

with aggressiveness and lymph node positivity in human

breast cancer [32,33]. In addition to being a substrate for

PKC [25], it can also be activated by ER signalling via the c-Src

pathway [34]. The phosphorylation/dephosphorylation cycle

of cofilin also plays an important role in actin remodelling

which is required for tumour cell protrusion [35], and

therefore cell invasive potential [36–38]. In addition to the

ERM–cofilin association at a transcriptional level, ERM

and the sodium/hydrogen exchanger 1 (NHE-1) have been

shown to localize to cofilin-positive invadopodia in a talin-

dependent manner to promote invadopodium maturation

[39]. This physical association via talin therefore links these

two important actin-remodelling proteins in a pathway that

can trigger cancer invasiveness. A combined assessment of

the activation of these two classes of proteins should provide

synergistic information for clinical assessment of the risk of

metastasis.

Development and application of imaging
assays for prediction of clinical outcome
In pre-clinical studies, we and others have shown that

various protein–protein interactions, pertaining to the actin

microfilament-associated proteins, ezrin and cofilin, mediate

breast cancer cell migration, a prerequisite for cancer

metastasis [25,35,36,38,40,41]. There is no robust platform to

measure these interactions in large-scale clinical sample sets.

Our automated imaging platform [42] measures FRET, via the

decrease in donor lifetime (reviewed in [43]), by fluorescence

lifetime imaging microscopy (FLIM), to directly monitor

validated protein–protein interactions [24,26,44,45] and

post-translational modifications that include conformational

changes, in cultured cells [24,46–50]. A two antibody

FRET/FLIM assay to measure endogenous protein–protein

interactions (PKC–ezrin) in archived pathological material

was developed together with new fluorescence-based assays

for measuring the phosphorylation and subcellular localiza-

tion of ezrin and cofilin (Figures 1 and 2). We hypothesized

that these protein interaction/localization-based assays can

generate useful information for predicting the likelihood of

metastasis due to the biological function pertaining to these

cytoskeleton-remodelling molecules.

C©The Authors Journal compilation C©2014 Biochemical Society
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Figure 1 Imaging PKCα–ezrin interaction in FFPE samples

Representative images of breast cancer tissue stained with anti-ezrin IgG [labelled with Cy2 (A, C and D) or Alexa Fluor 546

(B)] and anti-PKCα IgG [labelled with Cy3 (A, C and D) or Cy5 (B)]. (A and B) FRET/FLIM images show interaction between

proteins (decrease in lifetime, indicated by red pixels in the pseudocolour tumour map). (C and D) Utilization of images for

AIS algorithm to generate imaging parameters shown to the right of the images.

C©The Authors Journal compilation C©2014 Biochemical Society
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Figure 2 Imaging activation status of ezrin and cofilin in FFPE samples

Representative images of breast cancer tissue stained with anti-ezrin IgG–Cy2 and anti-phospho-ERM IgG–Cy3 (A); and with

anti-cofilin IgG–Cy2 and anti-phospho-cofilin IgG–Cy3 (B). Pseudocolour maps show higher co-localization intensities in one

sample (upper panel) and lower in another sample (low panel).

Specific FLIM-based ezrin–PKCα–protein
interaction detected in formalin-fixed
paraffin-embedded (FFPE) tissues
Two- (Figure 1A) and single- (Figure 1B) photon excitation-

based acquisition of intermolecular FRET efficiency detected

specific protein–protein interactions between ezrin and PKC

(see the FLIM/FRET images of invasive breast carcinoma

samples that were labelled with fluorescently conjugated

anti-ezrin IgG and anti-activated PKCα IgG). Comparison

of the corresponding FRET efficiencies measured with

either two- or single-photon excitation found no significant

difference between the two lifetime acquisition methods and

therefore single-photon excitation was chosen to acquire the

subsequent FLIM data. Although the immune/inflammatory

cell infiltrate (see white arrow in Figure 1B) was autofluores-

cent, this contributed little (since the number of pixels/area

was small proportionally) to the overall mean fluorescence

lifetime per tumour. Similarly, the non-specific nuclear

staining of the acceptor fluorophore-labelled antibody (anti-

activated PKCα IgG) did not interfere with the determination

C©The Authors Journal compilation C©2014 Biochemical Society



1502 Biochemical Society Transactions (2014) Volume 42, part 6

of FRET by FLIM [51,52], which is based on the short-

ening of donor fluorescence lifetime of the donor fluorophore

used to label the anti-ezrin IgG.

Subcellular protein localization and/or
phosphorylation quantification
Ezrin–PKCα protein complex formation should result in

downstream molecular events such as ezrin phosphorylation,

redistribution and stabilization at the membrane [25].

Figures 1 and 2 show ezrin stabilization at the membrane

(Figures 1C and 1D), with concomitant ERM phosphoryla-

tion (Figure 2A) and activation of PKCα (as shown by

Thr250 phosphorylation [53], Figure 1D), preferentially at

the membrane of invasive breast carcinoma cells (see white

arrow). The subcellular localization of proteins in tissue

microarray cores was further quantified by automated image

segmentation (AIS) and a manual scoring system. Nine

image parameters for the subcellular distribution of ezrin

(Figure 1C) across heterogeneous breast tumours were

generated in less than 5 s by AIS. The parallel ‘manual’ scoring

system (Figure 1D) generated five parameters, describing the

subcellular compartment expression levels of both ezrin and

PKCα in each tissue core. Further automated co-localization

analyses demonstrated an increase in the total ezrin/phospho-

ERM and cofilin/phospho-cofilin co-localization intensity at

the cell–cell borders and/or edges of invasive tumour cells

(Figures 2A and 2B).

Selection of a consensus set of
imaging-based covariates for a metastatic
predictive model
We next established that the non-FRET-based image para-

meters (AIS or manual score) pertaining to ezrin and PKC

were associated with FRET positivity, which is a measure

of ezrin–PKCα interaction. Ezrin–PKCα protein complex

formation influences downstream molecular events such as

ezrin phosphorylation, redistribution and stabilization at the

membrane, which are measured by the non-FRET-based

image parameters [25]. Using single-photon FLIM-derived

FRET positivity (>0 %) to define a binary outcome, a support

vector machine (SVM) [54] predicted FRET positivity using a

combination of the ezrin distribution (AIS and manual score)

and phosphorylation parameters to an accuracy of ∼65 %

(Figure 3A). A degree of overfitting was apparent when >

four covariates were used to build the SVM.

Next, two independent breast cancer cohorts were imaged

for cofilin/phospho-cofilin and ezrin/phospho-ezrin co-

localization, along with ezrin localization analysis using AIS

(88 patient samples from the 1980s series and a total of

134 patient samples from the 1990s series were available

for evaluation). There is a high degree of heterogeneity

between the two cohorts (the adjuvant treatments for the

two cohorts differed significantly: 1980s compared with

1990s; chemotherapy 0 % compared with 30 %; endocrine

36 % compared with 76 %, respectively). In exploratory

univariate analysis, the upper quartile of cofilin/phospho-

cofilin co-localization intensities was associated with early

distant metastasis among patients with reported relapse

[Figure 3B; upper quartile (n = 17) compared with lower

values (n = 52); P = 0.022, log-rank test]. This was not the

case for ezrin/phospho-ezrin co-localization (Figure 3C);

furthermore, exploratory analysis of lower and upper

quartiles indicated that lower quartile ezrin/phospho-ERM

co-localization may be associated with poorer distant

metastasis-free survival in the 1980s series (Figure 3D;

P = 0.098, not significant, log-rank test) but not the 1990s

series (Figure 3E; P = 0.73, not significant, log-rank test).

The predictive accuracy of all 18 covariates (16 imaging

parameters, Figures 1C and 1D, and whether or not the

patient had received treatments: tamoxifen or chemotherapy)

was assessed for distant metastasis-free survival using a

Bayesian proportional hazards regression model with cross-

validation for the two temporal cohorts (1980s and 1990s).

A step-down procedure was used to iteratively reduce the

number of covariates in the model, and over-fitting was

observed when greater than six covariates were used to build

the model. The top six covariates were identified for the 1980s

and 1990s (relapse) cohorts. The predictive accuracy (both

training and validation) for 7-year distant metastasis-free

survival in the 1980s cohort is shown in Figures 3(F) and 3(G).

There was an overlap between the top four covariates in

the SVM analysis for FRET positivity (Figure 3A), and the

two separate lists of the top six covariates for predicting

metastatic relapse. On the basis of this overlap with SVM

analysis, a final consensus set of six covariates (average

membrane intensity, relative and absolute; cytoplasm average

intensity and number of pixels inside cytoplasm, manual

ezrin cytoplasm score and membrane length) was selected

and confirmed by re-running the Bayesian proportional

hazards regression against each of the two patient cohorts.

For the 1980s cohort, the model predicted 7-year distant

metastasis-free survival to an accuracy of up to ∼70 %

(Figure 3H). The same consensus set of covariates was found

to be predictive for early relapse (within 3 years) among

patients with reported distant metastases in the 1990s cohort

(Figure 3I).

Conclusions
The remarkable diversity in breast cancer dictates that

prognostic models must be biologically driven. We describe

the first optical imaging-based tumour metastatic signature,

measuring underlying biological variables which are pertinent

in tumour metastases. Our semi-automated tissue imaging

platform is capable of performing an integrated analysis

of protein phosphorylation, protein–protein interaction

and subcellular protein expression/distribution, using FFPE

tissue microarrays. Incorporation of protein interaction data

was shown to also improve the predictive performance of

prognostic gene expression signatures [55,56]. Despite the

importance of adjunct information supplied by the protein

C©The Authors Journal compilation C©2014 Biochemical Society
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Figure 3 Utilization of imaging parameters for clinical outcome prediction model

(A) SVM classification of ezrin–PKCα FRET positivity (1990s cohort, n = 134 patient samples). Prediction accuracy (FRET > 0

or < 0) is shown for a decreasing number of input covariates (AIS and manual scores). Empty points represent the prediction

accuracies achieved for training sets; solid points for validation sets. Error bars represent the S.D. across 100 cross-validation

iterations. Cross-validation (CV; training:validation ratio, 2:1; 100 iterations) was performed with balanced outcome classes

(FRET > 0 or < 0) by randomly selecting an equal number of samples from each class. Ranking of variables was performed by

sequentially removing the input variable with the lowest weight when averaged over CV iterations. (B) Kaplan–Meier curve

for cofilin/phospho-cofilin co-localization for the 1980s/1990s samples with reported distant metastasis (‘relapse subgroup’).

(C–E) Kaplan–Meier curves for ezrin–phospho-ERM co-localization. (C) 1980s/1990s samples with reported distant metastasis

(‘relapse subgroup’) showing the upper quartile of values compared with all other samples; (D) all 1980s samples with

available co-localization data (shown as upper quartile compared with lower quartile); (E) all 1990s samples with available

co-localization data (shown as upper quartile compared with lower quartile). (F) Complexity-optimized Bayesian proportional

hazards regression model showing the predictive accuracy for 7-year distant metastasis-free survival for the 1980s cohort.

Predictive accuracy is shown for training (empty points) and validation sets (filled points) (CV; training:validation ratio, 1:1;

400 iterations). Models with more than six covariates show a decline in predictive accuracy for validation sets, indicating

over-fitting. Models with up to six covariates show a predictive accuracy among validation sets of up to ∼70 %. (Horizontal

broken line indicates the predictive accuracy expected if all samples are assigned to one class.) (G) Predictive accuracy for

3-year distant metastasis-free survival for 1990s samples with reported metastatic relapse, displayed as for (F). (H and I)

Predictive accuracy (training and validation sets, displayed as in F) using up to six covariates from the consensus set derived

from analyses in (A and F) and shown for (H) 7-year distant metastasis-free survival in the 1980s group, and (I) 3-year

distant metastasis-free survival among the 1990s relapse subgroup.

C©The Authors Journal compilation C©2014 Biochemical Society
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interactome configuration to improve the existing prognostic

signatures for predicting patient outcome [56], this protein

interaction information has rarely been incorporated in

diagnostic/prognostic assays.

We report that our imaging parameters could predict the

metastatic risk for early breast cancer patients with a high level

of accuracy (∼70 %; Figure 3). Moreover, reproducibility

across different temporal cohorts, a prerequisite for any

prognostication model to use in ‘real life’ patients, is achieved

with our new multivariate, imaging-based metastatic signa-

ture. Although prospective validations of prognostic tools

are imperative, our study is among the first to compare how

well a predictive/prognostic signature performs, between

patient cohorts that belong to two time periods (i.e. 1980s

compared with 1990s). The clinical implications of this

protein network/function-based design, alongside our key

points of parameter reduction and time-dependent risk

assessment, are likely to provide a novel tool that may be of

generic utility not only for future prognostic models but also

for studying the effects of different signalling pathways on

clinical outcome with the eventual goal of individualization of

cancer care. We aim to prospectively investigate the use of our

new integrated biomarker platform to delineate and quantify

relevant oncogenic protein complexes in clinical specimens

within a clinical trial setting.

This new paradigm is likely to be key to improving our

understanding of tumour biology and factors relating to

recurrence and metastasis as well as characterizing patients

for the eventual goal of treatment individualization.
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