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ABSTRACT Due to the real working conditions and data acquisition equipment, the collected working

data of bearings are actually limited. Meanwhile, as the rolling bearing works in the normal state at most

times, it is easy to raise the imbalance problem of fault types which restricts the diagnosis accuracy and

stability. To solve these problems, we present an imbalanced fault diagnosis method based on the generative

adversarial network (GAN) and provide a comparative study in detail. The key idea is utilizing GAN, a kind

of deep learning technique, to generate synthetic samples for minority fault class and then improve the

generalization ability of the fault diagnosis model. First, this method applies fast Fourier transform to pre-

process the original vibration signal and then obtains the frequency spectrum of fault samples. Second,

it uses the spectrum data as the input of GAN to generate the synthetic minority samples following the data

distribution of the real samples. Finally, it puts the synthetic samples into the training set and builds a stacked

denoising auto encoder model for fault diagnosis. To testify the effectiveness of the proposedmethod, a series

of comparative experiments is carried out on the CWRU bearing dataset. The results show that the proposed

method can provide a better solution for imbalanced fault diagnosis on the basis of generating similar

fault samples. As a comparative study, the proposed method is compared to several diagnostic methods

with traditional time-frequency domain characteristics. Moreover, we also demonstrate that the proposed

method outperforms three widely used sample synthesis techniques, such as random oversampling, synthetic

minority oversampling technique, and the principal curve-based oversampling method in terms of diagnosis

accuracy and numerical stability.

INDEX TERMS Generative adversarial network, fault diagnosis, imbalanced fault, SDAE.

I. INTRODUCTION

Generally speaking, rolling bearing is one of the most impor-

tant components of mechanical equipment. Due to the com-

plex structure and operating conditions, bearing tends to

be damaged easily, causing huge damage even casualties.

Therefore, it is a crucial task to monitor and diagnose rolling

bearings fault. In most time of practical applications, rolling

bearing works in normal state and relatively few fault data

could be collected. Consequently, the data imbalance problem

arises [1]. The so-called data imbalance refers to that the

amount of fault data collected is far less than that of normal

samples, which leads to the model bias of data-driven fault

diagnosis methods. For example, if 90 normal samples and

10 fault samples are available, we can get the prediction

accuracy of 90%, with all normal samples classified correctly

while all fault samples being classified to normal class as

well. This accuracy is relatively high but meaningless, which

is also called "undo" performance. Therefore, it’s of great

significance to improve the prediction performance for data

imbalance problem, especially on the minority class data.

Many research works have been put forward to solve the

data imbalanced problem in bearing fault diagnosis from

two aspects: data and algorithm. From the data perspec-

tive, Chawla et al. [2] proposed a Synthetic Minority Over-

sampling Technique (SMOTE) to randomly insert virtual

samples for balancing the training set. In this kind of work,
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the quality of the synthetic samples may not be good enough

to provide useful information for imbalanced fault diag-

nosis. Thus, Ramentol et al. [3] put forward an improved

SMOTE algorithm based on rough set theory to oversam-

pling the minority samples. Gao et al. [4] combined SMOTE

with particle swarm optimization (PSO) and RBF classi-

fier for enhancing the importance of the minority samples.

Mao et al. [5] proposed a principal curve-based method for

oversampling minority samples and under-sampling major-

ity samples respectively. From the algorithm perspective,

the current works are devoted to improve the traditional algo-

rithm structure or design new algorithms by means of data

characteristics. Jia et al. [6] proposed a deep normalized con-

volutional neural network and a neuron activation maximiza-

tion algorithm for imbalanced fault classification. Aiming at

data imbalanced problem, Yin et al. [7] proposed a kernel

fisher linear discriminant analysis approach. Sun et al. [8]

added a cost item into AdaBoost learning framework to

adjust the weight of the minority samples. Using similar

idea, Xiong et al. [9] improved AdaBoost framework for the

minority class analysis by using a local clustering ensemble

learning method.

Although these methods mentioned above have obtained

good performance, they still have some drawbacks, one of

which is lack of adaptability, i.e., they are unable to learn

the data distribution characteristic of samples automatically.

Thanks to the quick development of deep learning techniques,

Generative Adversarial Network (GAN), proposed by Good-

fellow et al. [10] in 2014 firstly, has received wide attention

in the fields of computer vision [11] and text analysis [12],

etc. GAN is capable of learning the data distribution char-

acteristic of the original samples and then generating new

synthetic samples with similar distribution. Briefly speaking,

GAN is composed of a generator and a discriminator both

of which could be a normal fully-connected neural network.

The generator mainly captures the data distribution, while

the discriminator is used to estimate the probability that a

sample comes from the training data rather than the generator.

The training procedure is a process of game, in which the

generative and discriminative ability of GANwill continue to

rise up until the Nash equilibrium is reached. With the con-

tinuous improvement of GAN, its performance has been fur-

ther promoted and got successful applications. For examples,

Radford et al. [13] combined Deep Convolution Neural

Network (DCNN) with GAN to improve the stability of

the training process and the quality of the generation.

Arjovsky et al. [14] introduced Wasserstein distance to solve

the drawbacks like difficult convergence and mode collapse

in GAN’s training process. As a result, the trained GAN can

generate more similar synthetic images to enlarge the amount

of minority samples. However, according to our literature

research, GAN is still in its infancy in the field of fault diag-

nosis. Among these works, Wang et al. [15] combined GAN

with Stacked Denoising Auto Encoder (SDAE) to perform

gearbox fault diagnosis. GAN was used to expand the sample

amount, and SDAE performed as a discriminator of GAN to

extract deep features adaptively and diagnose fault types as

well. Focusing on the bearing fault diagnosis, Lee et al. [16]

utilized the synthetic samples generated through GAN from

the Empirical Mode Decomposition (EMD) energy spectrum

data, and then obtained better fault diagnosis results than

the traditional over-sampling technologies. Liu et al. [17]

proposed a deep neural network based on GAN to conduct

fault diagnosis, which trains an Auto Encoder through an

adversarial training process and imposes a prior distribu-

tion on the latent coding space. Han et al. [18] introduced

adversarial learning as a regularization into Convolution Neu-

ral Network (CNN) which makes the feature representation

robust and boosts the generalization ability of the trained

model.

Based on the above analysis, it is clear the key issue to

improve the effect of imbalanced fault diagnosis is how to

exploit the data distribution of minority fault samples and

generate good synthetic samples adaptively. Although the

aforementioned works all get satisfactory performance in

fault diagnosis, they still have not gave detailed instruction

of applying GAN in the aspects of selection of data source

and feature extraction method as well as the effect of over-

sampling, etc. Following this idea, this paper tries to provide

a comparative study and give a detailed guidance of applying

GAN in imbalanced fault diagnosis. Specifically, this paper

presents a method which uses GAN to expand the capacity

of the minority samples adaptively and then adopts SDAE

to extract deep feature and conduct final diagnosis. We must

point out that, as thismethod ismerely a direct combination of

two newmachine learning algorithms, some variants of GAN

and SDAE also can be introduced and we will not mention

it specifically. We design two kinds of experiments on the

CWRU bearing dataset, not only verifying the quality of

GAN synthetic samples, but also comparing the classification

performance with some state-of-the-art methods. And the

comparative results demonstrate the effectiveness of GAN in

solving the imbalanced fault diagnosis problem.

The remainder of the paper is organized as follows.

We introduce the basic theory of GAN and SDAE in Back-

ground section. The third part is the method proposed in this

paper. The fourth section shows the simulation experiment

and the results on CWRU dataset. Finally, we analyze and

summarize the whole paper in the last part.

II. BACKGROUND

As a comparative study, we first give some brief introduction

of the two main algorithms, SDAE and GAN.

A. SDAE

We first introduce Denoising Auto Encoder (DAE), and

SDAE can be viewed as multiple DAEs stacked together.

DAE which was proposed by Vincent et al. [19] in 2008 is

a more robust auto-encoder for feature extraction. Like clas-

sical auto encoder, DAE consists of input layer, hidden layer

and output layer. But different from classical auto encoder,

DAE tries to enhance the robustness of the extracted feature
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FIGURE 1. Structure of DAE.

by adding a little noise in the input layer. The structure of

DAE is shown in Fig. 1.

The input of DAE is x̃, with noise added, and the output of

the hidden layer can be expressed as:

h (x̃) = σ (W1x̃ + b1) (1)

where W1 is the weight matrix from input layer to hidden

layer, b1 is the bias, and the activation function σ (·) is gen-

erally chosen as Sigmoid function. Obviously, the function

of W1 and b1 can be summarized as encode of raw data.

And DAE decodes the output of hidden layer by using the

following equation:

h
(

x̂ = W T
1 h (x̃) + b2

)

(2)

Like the traditional Auto Encoder, the aim of DAE is

to reproduce the input signals with as small bias as possi-

ble. Gradient descent algorithm is adopted to minimize the

reconstruction error of DAE. The objective function can be

represented as:

h
(

x̃i,
⌢
x i

)

=
1

N

N
∑

i=1

∥

∥

∥
x̃i−

⌢
x i

∥

∥

∥

2
(3)

By stacking multiple DAEs, SDAE can provide deep and

robust feature extraction from raw input data, as shown

in Fig. 2. The output of previous DAE performs as the input

of next DAE, and the whole SDAE can be trained in the same

manner.

FIGURE 2. Structure of SDAE.

B. GAN

Inspired by a zero-sum game, GAN is composed of a gen-

erator and a discriminator, denoted by G and D respectively.

The purpose ofG is to generate synthetic samples whose data

distribution are more similar to the real ones, while the aim

of D is to discriminate the samples as True or False. For the

sake of understanding, G is often compared to a counterfeit

bill maker who aims to make as realistic a counterfeit bill

as possible. On the contrary, D is often viewed as a police-

man, who tries his best to recognize the bill’s true or false.

How to reach each aim is a process of game. Please note

that G and D both can be any generative and discriminative

algorithm respectively, including neural network. Fig. 3 gives

a sketch map of GAN.

FIGURE 3. Sketch map of GAN.

In the specific training process, the goal of G is to learn

the data distribution of real samples and generate synthetic

samples that can’t be distinguished from the real ones as

far as possible. Specifically, the input of G is a set of ran-

dom noise Z = (z1, z2, · · · , zm). The output of G is the

synthetic samples G(Z ) = (G(z)1,G(z)2, · · · ,G(z)m), which

has the similar distribution with the real one. The input of

D is the synthetic samples G(Z ) or the real samples X =

(x1, x2, · · · , xn), and the goal of D is to identify the true and

false samples by outputting the true or false logical value.

During the training process, G and D are trained alternately

until reach the Nash equilibrium, the loss function is shown

in Equation (4) and (5).

L (D,G) = Ex∼Pdata(x)
[

logD (x)
]

+Ez∼Pz(z)
[

log (1 − D (G (z)))
]

(4)

min
G

max
D

L (D,G) (5)

III. IMBALANCED FAULT DIAGNOSIS BASED

ON GAN AND SDAE

To solve the imbalanced fault diagnosis problem, this paper

presents a new diagnosis method by combining GAN and

SDAE. Getting help from GAN, the method learns the data

distribution adaptively and then generates similar samples

to balance the majority and the minority classes. With the

synthetic samples, SDAE is applied to feature extraction and

final diagnosis. Fig. 4 shows the flow chart of this method.

A. DATA ACQUISITION AND PRE-PROCESSING

In the process of feature extraction for bearings, consider-

ing the complexity of original vibration signal, a common

method [20] is to carry out Fast Fourier Transform (FFT) for
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FIGURE 4. Flow chart of the proposed method.

the vibration signal, obtain signal’s frequency domain repre-

sentation, and then calculate the statistical characteristics to

build heterogeneous feature. Compared to the extracted fea-

ture, the frequency spectrum contains more useful informa-

tion about original signal. For instance, frequency spectrum is

able to analyze composition of original signal quantitatively.

Conversely, some prior information have been dropped out

in statistical calculation. Therefore, in this paper frequency

spectrum data are selected as the objects of GAN to generate

synthetic sample. First, the original vibration signals in time

domain are acquired from the test stand. Then we get the

frequency spectrum samples {xi, yi}
N
i=1 by FFT, where N is

the number of samples. Next, we divided the samples into

training set and test set.

B. OVERSAMPLING OF FAULT SAMPLE USING GAN

Focusing on the imbalanced fault diagnosis problem,

we apply GAN to oversampling the minority fault samples.

Specifically, we use the frequency spectrum of minority fault

samples as real sample in GAN, and then generate the syn-

thetic spectrum samples whose distribution is similar to the

original samples. Here, the G and D in GAN are both three-

layer fully-connected neural networks. The neuron nodes of

the hidden layer are 128 and 256 respectively, and the acti-

vation function is sigmoid function. The schematic is shown

in Fig. 5.

The input ofG is a random noise Z =
(

z1, z2, · · · , zm
)

with

the Pg data distribution. Its output is synthetic samples G (z),

whose data distribution is similar to the real samples Pdata.

The input of D is synthetic samples G (z) or real samples X,

and the output is the probability that the input of D is real

sample. The two networks reached Nash equilibrium when

FIGURE 5. Schematic of GAN used in this paper.

the output is 0.5. G and D are trained alternately and they are

trained as the follow steps:

Step 1: Initialize G and fixed it, then train D by maximiz-

ing the loss function in Equation (6). The discriminator is

upgraded by using stochastic gradient ascending.

max
D

L (D) = logD
(

x(i)
)

(6)

Step 2: Fix the D trained in Step 1, then upgrade G by

minimizing its loss function in Equation (7) via descending

the stochastic gradient.

min
G
L (G) = log

(

1 − D
(

G
(

z(i)
)))

(7)

Step 3: Determine whether the two networks have reached

Nash equilibrium. If they do, the training process ends.

Otherwise, repeat step 1 and step 2 alternately until they

do. The detailed training process of GAN are shown in the

Table 1 [10].

TABLE 1. The detailed training process of GAN.

C. BUILD FAULT DIAGNOSIS MODEL USING SDAE

After training, GAN can generate the synthetic spectrum sam-

ples G (z) whose distribution is similar to the real minority

fault samples. As a result, the original samples {xi, yi}
N
i=1.

Here x̃i is i-th sample of the balanced sample set X̃ =

(x1, x2, · · · , xn,G(z)1,G(z)2, · · · ,G(z)m). Then we feed X̃

into SDAE by setting it as the input of first DAE unit. From

Equation (1), we can get the output h1=σ (W1x̃ + b1) of the
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first DAE unit and then set it as the input of the next unit.

Repeat this process until reach the last Softmax layer.

In this paper we directly use Softmax function to con-

duct classification for normal class and fault class. We also

can extract the final layer as feature, and then introduce

an independent classifier to conduct fault diagnosis. Here

the classifier model can be Support Vector Machine (SVM),

Extreme Learning Machine (ELM), Random Forest (RF) and

any other classification algorithms. Due to space limitation,

here we won’t provide detailed analysis for these algorithms.

IV. EXPERIMENTS

To verify the effectiveness of the proposed method, two

experiments are designed in this section. The Experiment

1 is a verification experiment under the condition of data

balanced. The target here is to check the quality of two kinds

of GAN synthetic samples, i.e. generated from frequency

spectrum sample and heterogeneous feature sample. For con-

venience, we call these two kinds of synthetic samples as

spectrum synthetic samples and feature synthetic samples,

respectively. In Experiment 1, we run Test A and Test B to

evaluate the quality of these two kinds of generated sam-

ples, and check which one is more suitable for fault diag-

nosis. On the base of the results of Experiment 1, we run

the Experiment 2 to testify the performance of the proposed

method. Experiment setting and the corresponding targets are

listed in Table 2.

TABLE 2. Settings of two experiments and their goals.

A. CWRU DATASET INTRODUCE

CWRU bearing fault dataset [21] are obtained from the

electrical engineering laboratory of Case Western Reserve

University, USA. The electric spark is used to create dam-

age on the inner race, outer race and ball of the bearing

with different damage diameter such as 0.007, 0.014, 0.021

and 0.028 inches. Then the various vibration signals are col-

lected under the different loads from 0 to 3 hp. Besides normal

condition, this dataset adopts the fault data with sampling

frequency of 12 kHz at fan end (FE) and drive end (DE)

as well as the fault data with sampling rates of 48 kHz at

DE. Therefore, this dataset contains four kinds of health

condition: normal condition, inner race fault, outer race fault

and ball fault.

B. EXPERIMENT 1

To evaluate the quality of two kinds of synthetic sam-

ples, Experiment 1 adopts 7 kinds models for comparison:

ELM [22], Sparse Bayesian ELM (SBELM) [23], RF[24],

Output Kernel Learning (OKL) [25], SVM [26], Deep Belief

Network (DBN) [27] and SDAE [28]. Among of them, ELM,

SBELM, RF, OKL and SVM are shallowmodels, while DBN

and SDAE are deep models. For the synthetic samples gen-

erated from frequency spectrum, the input of ELM, SBELM,

RF, OKL and SVM are all 59-dimensional features [29] in

time and frequency domain, while DBN and SDAE extract

deep features directly from frequency spectrum including

original spectrum samples plus synthetic samples. For the

synthetic samples generated from heterogeneous features,

we only compare the diagnosis performance on five shallow

models, with no using deep models for comparison.

The 59-dimensional features [29] used here are obtained

from bispectrum analysis, time and frequency domain analy-

sis, EMD, Wavelet Packet Decomposition (WPD) and enve-

lope analysis. The extraction methods and the dimension of

corresponding features are listed in Table 3.

TABLE 3. Extraction method and their feature dimension.

1) SETTING AND ANALYSIS OF EXPERIMENT 1

In Experiment 1, we take ball fault and outer race fault as

example. With the sampling frequency of 48 kHz and the

load of 1 hp, 200 samples with damage radius of 0.007 inch,

0.014 inch and 0.021 inch are selected, respectively. Then we

have 3 kinds of ball fault and 3 kinds of outer race fault,

as shown in Table 4. And we visualize their time-domain

vibration signals of selected samples in Fig. 6. For each

subfigure, we randomly choose 2048 points.

TABLE 4. Information of samples used in Experiment 1.

Fig. 7 illustrates the spectrum synthetic samples generated

by GAN in Test A. For better comparison, we also show the

real frequency spectrum samples from which GAN learns.

In Figure 7, it is clear that the synthetic samples are totally

similar with real spectrum samples. In spite of small deviation

at some peaks, we observe that the synthetic samples can

follow the overall trend of real samples. In fact, we don’t think

it’s preferable to make synthetic samples exactly identical

to the real ones. Just like little noise for SDAE, such small

difference between synthetic and real ones would improve
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FIGURE 6. Time domain charts of vibration signals with (a) three ball
fault types and (b) three outer fault types.

the robustness of fault diagnosis model and enhance the

generalization performance as well, which will be verified by

the following comparative results.

To further check the influence of synthetic samples,

Fig. 8 visualizes the data distribution of 59-dimensional

features with different number of synthetic samples added

in the training set. The X-axis and Y-axis are the main

two-dimensional components obtained by TSNE [30],

respectively.

From Fig. 8, with new synthetic samples added, the data

distribution of different fault types is further separated, espe-

cially in Fig. 8 (c) and (d). Although more samples are

introduced, the clustering effect of features is better obvious.

Please compare Fig. 8 (c) and (d) in terms of blue and red

points. The blue points in Fig. 8 (d) isolate from other color

points apparently. Therefore, it’s indicated that synthetic sam-

ples bring more discriminative information for classification.

For Test B, we use GAN to generate feature synthetic

samples directly from the 59-dimensional features listed

in Table 3. The comparison of real feature samples and the

synthetic samples generated by GAN are shown in Fig.9.

In Fig. 9 (a) and 9(c), the synthetic samples by GAN seem

to be similar to the real samples besides at the peak. However,

from the local enlarged comparison in Fig. 9 (b) and 9 (d), it is

clear that the synthetic samples, quite unlike the real samples,

FIGURE 7. Comparison of the real spectrum samples and the synthetic
samples generated by GAN with (a) three ball fault types and (b) three
outer fault types.

almost tend to be zero. That means GAN is unable to learn the

characteristic information of the feature samples. We notice

that the 59-dimensional features are discrete and rather short,

and more importantly, of no relatedness between them, which

doesn’t like the frequency spectrum data. From GAN the-

ory [10], it’s hard to exploit the specific prior information

about these fault samples, which implies the reason that the

feature synthetic samples are quite divergent from the real

samples. Comprehensively, the synthetic samples generated

from frequency spectrum look better than the ones from

59-dimensional feature in terms of data shape.

We further verify the diagnosis performance using these

synthetic samples in Test A&B.We firstly divide the original

data set into training set and test set in proportion of 5:5,

and then add in training set 300 synthetic samples for each

fault type. The comparative results about test accuracy using

seven classification models are shown in Fig. 10. Here SVM,

SBELM and OKL all use 5-fold cross validation to find

optimal parameters. The SDAE has two hidden layers with

50 and 30 neuron nodes respectively. The DBN has three

hidden layers, and the neuron nodes are 512, 128, and 64.

The number of ELM’s hidden neuron is set 500 with hardlim

activation function. The kernel function of SVM is RBF

kernel while the parameter is set by cross validation.
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FIGURE 8. Visualized feature distribution using TSNE technique with
different number of synthetic samples added, including (a) no synthetic
samples, (b) each fault type added 200 synthetic samples, (c) each fault
type added 350 synthetic samples, (d) each fault type added
500 synthetic samples. For better display effect, we here randomly
choose one-sixth samples for illustration.

From Fig. 10(a), we find that the test accuracy of ELM,

SBELM, SVM, SDAE and DBN are indeed risen up after

300 synthetic samples having been added for each fault type.

FIGURE 9. Comparison of the real feature sample and feature synthetic
sample generated by GAN. Here (a) and (c) are the total comparative
effect of ball fault and outer race fault respectively. (b) and (d) the local
enlarged effect of (a) and (c) between the dimension 10-20 respectively.

FIGURE 10. Test accuracy of different classifiers before and after adding
300 synthetic samples in (a) Test A and (b) Test B.

It indicates that the synthetic spectrum samples by GAN

could provide useful information for model training to some

extent. However, for RF and OKL, the accuracy declined.

With a superficial analysis, we think the reasons may be:

1) the feature used in this experiment is redundant for RF and
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TABLE 5. Comparative results of Test A with different number of
synthetic samples added.

TABLE 6. Comparative results of Test B with different number of
synthetic samples added.

OKL; 2) the quality of generated spectrum samples isn’t good

enough to provide auxiliary information.

From Fig. 10(b), the accuracy of SBELM, RF and OKL all

reduce after adding the feature synthetic samples. Especially

for SBELM, the accuracy falls heavily. This reduction keeps

line with Fig. 9 in which the feature synthetic samples by

GAN look distinctly different from the real samples. This

comparison further demonstrates that generating synthetic

samples by GAN from 59-dimensional feature is not very

helpful for fault diagnosis.

Also from Fig. 10(a), we observe an interesting phe-

nomenon. The accuracies of two deep learning algorithms,

i.e., SDAE and DBN, both have been significantly improved

after adding synthetic samples. That’s because the deep learn-

ing algorithm can extract adaptively rich and representative

features from raw data, avoiding the disadvantages about

insufficient or redundant handcrafted features.

We further add different number of synthetic samples into

the training data set, and provide the comparative results

of all seven classifiers, as in Table 5 and 6. In order to

ensure the confidence of the results, the sample expansion

is only carried out in the training set, and the test set is

composed of the real samples all the time. To make a stable

comparison, we take the mean value of 30 trials as the final

result.

For better comparison, we plot the results in Table 5 and 6

in Fig. 11. Here the X-axis is the amount of added synthetic

samples, and the Y-axis is test accuracy.

From Table 5 and 6 plus Fig. 11, we find that for spec-

trum synthetic samples (Test A), the test accuracy of ELM,

SBELM, DBN and SDAE all rise up. It demonstrates that

the spectrum synthetic samples have provided auxiliary and

useful information for model training. Meanwhile, compared

with these models, the accuracy of SVM is quite stable.

However, the accuracy of RF and OKL both tend to decline

along with the number of synthetic samples increasing. And

for feature synthetic samples (Test B), only SVM and ELM

FIGURE 11. Test accuracy with different number of synthetic samples
added in (a) Test A and (b) Test B.

have ascending lines. Same to Fig. 10, the accuracy of

SBELM descends dramatically. These comparative results

prove again that the frequency spectrum data can serve better

than 59-dimensional feature as the source data learnt by GAN

to generate synthetic samples for fault diagnosis.

TABLE 7. Standard deviation of 30 trials with different number of
synthetic samples added in Test A.

We also verify the numerical stability in Test A and B.

Table 7 and 8 respectively give the standard deviation

of 30 repeated trials with different number of synthetic sam-

ples added. Here to avoid the randomness of deep network,

we only choose five shallow models for comparison.

Frankly speaking, the comparison effects in Table 7 and

8 are quite different. In Table 7, the overall standard deviation

after adding synthetic samples declines obviously, except for

RF. And the standard deviation of OKL just keeps around

the one with no synthetic samples added. These trends are

almost consistent to Fig. 11(a). And in Table 8, the stan-

dard deviation values of all methods fluctuate around the
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TABLE 8. Standard deviation of 30 trials with different number of
synthetic samples added in Test B.

first column except for SBELM which gets drastic climbing.

And we notice another unexpected result about RF which

actually goes down when more synthetic samples are added.

To testify the confidence about these comparative results,

we further introduce Rank-sum Test to calculate the statis-

tical significance between the results before and after adding

synthetic samples. The p-values of Rank-sum Test are listed

in Table 9 and 10.

TABLE 9. The p-values of Rank-sum Test in Test A.

TABLE 10. The p-values of Rank-sum Test in Test B.

Obviously, the p-values in Table 9 are almost less than

0.05, which indicates the existence of significant difference

between the standard deviation values before and after adding

the spectral synthesis sample. And in Table 10, OKL and RF

both have p-values more than 0.05, which indicates in turn

that the results of OKL and RF in Table 8 are of no statistical

confidence.

Therefore, considering the test accuracy in Table 5 and 6,

it can be seen that the synthetic samples generated by GAN,

no matter the synthetic spectrum samples or the feature

samples, are helpful for fault diagnosis in most cases. But

when further considering the stability, we can conclude that

the frequency spectrum data are obviously superior to the

59-dimensional feature data in the generation of synthetic

sample by GAN.

What needs to be supplied here is that, the time-domain

vibration signal is another solution for generating synthetic

samples by GAN. Here we also provide a simple evaluation

for it. Taking ball-1 fault type as example, the synthetic sam-

ples generated from time-domain signal by GAN is shown

in Fig. 12. It is clear that too much noise arouse in the

FIGURE 12. Comparison of (a) original time-domain signal and (b)
synthetic sample by GAN for ball-1 fault type.

FIGURE 13. SVM hyperplanes between normal state and ball fault on
(a) balanced data set and (b) imbalanced data set with ratio 5:1.

synthetic samples, which indicates that GAN can’t learn well

the data distribution of the time-domain vibration signal.

There are two reasons accounting for this. One is that the

original vibration signal indeed contains sort of noise, which

will disturb the true data distribution and then cause decline

of GAN’s learning performance. Compared to time-domain

signal, frequency spectrum obtained by FFT has strong regu-

larity and canmake quantitative interpretation of the vibration

signal. The other one is that the original vibration signal
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FIGURE 14. SVM hyperplanes between normal state and inner race fault
on (a) balanced data set and (b) imbalanced data set with ratio 5:1.

is a time series with coupling between successive sampling

points, and in this scenario, GAN couldn’t learn the coupling

relationship well.

In conclusion, using the frequency spectrum to gener-

ate synthetic samples by GAN, we can supplement the

training set and improve the classification performance.

Thus, we select spectrum synthetic samples by GAN to

improve the diagnosis performance on imbalanced fault data

in Experiment 2.

C. EXPERIMENT 2

In actual applications, the collected rolling bearing data is

generally imbalanced, which means the amount of normal

data is far more than that of fault data. In this case, the clas-

sification accuracy of traditional fault diagnosis methods is

easy to be limited. Here we give some visual explanation

of negative effect of imbalanced fault data, as illustrated

in Fig. 13-15. We choose 500 normal samples and 500 fault

samples for each fault type as well. Then we can establish

three SVM classification models between normal and three

fault classes respectively. And to provide imbalance effect,

we shrink the fault samples to 20% of original scale through

random under-sampling. It’s clear that the SVM hyperplane

tends to move to the ball class (minority) in Fig. 13(b), which

FIGURE 15. SVM hyperplanes between normal state and outer race fault
on (a) balanced data set and (b) imbalanced data set with ratio 5:1.

will cause the test sample to be recognized as normal class

(majority) more easily. Same effects, also called model bias,

can be found in Fig. 14 and 15.

From Experiment 1, we know that GAN can generate

useful synthetic samples to improve the generalization ability

of classification model. In Experiment 2, we use the spectrum

synthetic samples to balance the training set and run SDAE

to complete feature extraction and final diagnosis. The target

is to improve the minority test accuracy as well as the whole

test accuracy and other evaluation indexes in imbalanced fault

diagnosis problem.

1) EXPERIMENTAL SETTING

As a comparative study, this experiment not only compares

with the diagnostic effect of SVM, RF, ELM, SBELM and

OKL, but also compares with some widely-used oversam-

pling methods such as Random Oversampling (RO) tech-

nology [31], SMOTE [32] and the Principal Curve-based

(PC) method [5]. For these five classification models, spec-

trum synthetic samples by GAN are firstly generated to bal-

ance the training data, and time-domain statistical feature

as listed in Table 3 are chosen to construct the training set
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TABLE 11. The sample information used in Experiment 2.

TABLE 12. The various imbalance ratios of the training set.

FIGURE 16. Comparative results of the proposed method for normal vs.
ball fault in terms of (a) Accuracy and (b) three evaluation indexes.

for model training. For short, we call directly these five

models by their name. The proposed method is abbreviated

as GAN_SDAE.

We conduct 3 kinds of imbalanced bi-classification exper-

iment on CWRU dataset: normal state vs. ball fault, normal

state vs. inner race fault, normal state vs. outer race fault.

FIGURE 17. Comparative results of the proposed method for normal vs.
inner race fault in terms of (a) Accuracy and (b) three evaluation indexes.

The sample information is shown in Table 11. We randomly

select 500 samples of each class for training and the rest for

test. To evaluate the effectiveness of the proposed method,

we set various imbalance ratios on the training set in these

experiments, as listed in Table 12.

To make a comprehensive comparison, we adopt five eval-

uation indexes: the minority test accuracy, the whole test

accuracy, F1_Measure [33], G_mean [5] value and AUC

value. The AUC value is defined as the area of the ROC curve.

Among themwemainly focus on theminority test accuracy

and F1_Measure. The larger values of these two indexesmean

better diagnosis performance.

2) RESULT AND ANALYSIS

Due to space limitation, this experiment only takes the values

before and after balance for comparison, with the imbalance

ratio 50:1 as a representative. Figure 16-18 show the compar-

ative results of the proposed method for normal vs. ball fault,

normal vs. inner race fault and normal vs. outer race fault,

respectively. The iteration number of SDAE is set 30. And

the parameter settings of SDAE in Experiment 2 is same as

that of in Experiment 1.

From Fig. 16-18, the proposed method has significant

improvement in terms of all evaluation indexes, indicating

that it is effective to use GAN to generate minority class

VOLUME 7, 2019 9525



W. Mao et al.: Imbalanced Fault Diagnosis of Rolling Bearing Based on GAN

FIGURE 18. Comparative results of the proposed method for normal vs.
outer race fault in terms of (a) Accuracy and (b) three evaluation indexes.

synthetic samples for solving the problem of imbalanced fault

diagnosis.

Besides the indexes mentioned above, we also adopt ROC

curves, which is usually used to evaluate the imbalanced

classification performance due to its invariant property in the

distribution transformation of positive and negative samples.

Here, we only give the ROC curves of the proposed method

on the normal samples and ball fault samples in Fig. 19 with

different imbalance ratios.

In Fig. 19, we observe an interesting phenomenon. With

the ratio 2:1, the ROC curve rises up quickly, no matter on

imbalanced data or balanced set. But with the ratio 100:1,

the blue line in Fig. 19(b) has a slow ascending trend, even if

GAN is introduced to generate synthetic samples which are

supposed to have as similar distribution as possible with the

original signal. That indicates that in the severe imbalance

problem, the minority sample could not provide enough prior

information about data distribution for GAN. This problem

should be considered more in actual applications.

Moreover, some ROC curves in Fig. 19(b) are overlapped.

In order to make a clearer comparison, we bring out the ROC

curves with different imbalance ratios from Fig. 19, and show

them separately in Fig. 20. It can be seen clearly that the

proposed method can improve the performance largely on the

imbalanced fault diagnosis problem.

FIGURE 19. ROC curves on normal and ball fault dataset at different
imbalanced ratios: (a) the original dataset and (b) add the GAN synthetic
samples.

FIGURE 20. ROC curves before and after balance with different imbalance
ratios at (a) 100:1, (b) 50:1, (c) 20:1, (d) 10:1.

As a comparative study, this experiment also compares the

proposed method with SVM, ELM and OKL etc. To make

the results stable, all models for comparison take the mean

value of 30 repeated trials as the final result. For intuitive

understanding, Fig. 21 shows the graphical comparison with

the imbalance ratio fixed as 50:1. Here we only display the
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FIGURE 21. Comparative results of different models with various
imbalance ratios in terms of (a) Minority test accuracy, (b) whole test
accuracy, (c) G_mean, (d) F1_Measure, (e) AUC.

diagnosis result for normal vs. ball fault. Similar comparison

can be found for normal vs. inner/outer race fault.

From Fig. 21, the proposed method gets better overall

performance than other five models. Especially in terms of

minority test accuracy and F1_Measure which two are most

valued, the proposed method obtains best result. And the

other five models all get improvement of prediction perfor-

mance except of SVM in terms of AUC, which demonstrates

again the effectiveness of GAN for oversampling on imbal-

anced fault diagnosis problem.

Another question is the very low performance of SDAE

before balance as shown in Fig. 21, no matter which index

adopted. In this scenario, SDAE is directly used to extract

deep features from original spectrum data. However, as the

imbalance effect is severe, the minority sample wouldn’t

provide too much useful information for feature extraction.

Although the statistical features used for the other fivemodels

look rather simpler than deep feature, theywork effectively on

minority samples. Of course, once the training set is balanced,

deep features start to show their promising performance, even

extracted from synthetic samples.

We further verify the performance of different methods

with various imbalance ratios, as shown in Fig. 22. Along

with the imbalance level going down, almost all methods get

better diagnosis performance. Obviously, with all imbalance

ratios the proposed method outperforms other five models in

terms of minority test accuracy and F1_Measure.

Fig. 23 shows the ROC curve of different models with the

imbalance ratio 50:1. Same to Fig. 21, the proposed method

FIGURE 22. Performance of different methods with various imbalance
ratios in terms of (a) Minority test accuracies, (b) G_mean,
(c) F1_Measure, (d) AUC.

gets worst performance before balance, as show in Fig. 23(a),

and has a largest improvement in terms of AUC after balance.

This comparison testifies again the superior performance of

the proposed method.
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FIGURE 23. ROC curves of different models balance with imbalance
ratios 50:1 on (a) the original imbalanced data and (b) balanced data
with synthetic samples.

As mentioned above, we also plan to compare with three

widely-used oversampling algorithms: RO, SMOTE and PC.

We integrate these three algorithms with different classi-

fication models. For convenience, we abbreviate this kind

of combination method as RO_SDAE, SMOTE_SDAE and

PC_SDAE etc. The imbalance ratio is still fixed as 50:1.

Fig. 24 provides the G_mean and F1_Measure of these

four oversampling methods with SDAE for normal vs. ball

fault. Without doubt, the proposed method GAN_SDAE gets

best performance. More importantly, from the curve trend

in Fig. 24, the proposed method is more stable than the other

three methods.

Moreover, we try to make a comprehensive comparison by

integrating these three oversampling techniques with differ-

ent classification models. Due to space limitation, we only

choose RF and SBELM as representative. Considering the

combination of two methods, we still adopt the naming rule

mentioned above. The comparative results for normal vs.

ball fault are listed in Table 13. The imbalance ratio is set

50:1. The final results of RF and SBELM are the mean value

of 30 trials.

From Table 13, the proposed method outperforms other

methods in terms of minority test accuracy and F1_Measure.

And with RF, SBELM and SDAE, GAN all gets much

better performance than other three oversampling techniques.

FIGURE 24. Comparison of the proposed method and three
oversampeling techniques with SDAE in terms of (a) G_mean and
(b) F1_Measure.

TABLE 13. Comparative results of different methods for normal vs. ball
fault.

Therefore, we think that the proposed method is good at

oversampling for minority class sample as well as the feature

extraction for fault diagnosis.

V. CONCLUSION

In this paper a new imbalance fault diagnosis method is

proposed based on GAN and SDAE. The method combines

the advantage of GAN which can learn the data distribution

automatically and SDAEwhich is able to extract deep feature

adaptively. For this comparative study, we can draw some

conclusions from the experimental results on CWRU dataset:

(1) Compared to the widely-used oversampling techniques,

the proposed method can generate synthetic samples with

better quality which is helpful to improve diagnosis perfor-

mance. And the frequency spectrum of original signal is

preferable for GAN-based fault diagnosis. (2) Compared to

the other shallow classification models, the proposed method

always performs better in terms of minority test accuracy

and F1_Measure. (3) For severe class imbalance problem,
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only using GAN is hard to generate satisfied enough syn-

thetic samples due to lack of prior information. In this sce-

nario, quite different from traditional statistical features, deep

model such as SDAE can make good use of such synthetic

samples and then extract rich and representative features for

final diagnosis.

In the following work, we will focus on exploiting distri-

bution for flow data which locates in the bearing degrada-

tion process. This exploiting technique should consider more

about the online data variation and conduct self-adaptive gen-

eration of synthetic sample. Anomaly detection using GAN

is another interesting problem.
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