IMBEDDING COMPACT 3-MANIFOLDS IN E^{3}

TOM KNOBLAUCH

ABSTRACT. We show that in a large finite disjoint collection of compacta in a closed orientable 3 -manifold there is a compactum that imbeds in E^{3}. However, given a closed 3 manifold M^{3}, there is a pair of compact 3-manifolds (L, N) such that L contains infinitely many disjoint copies of N but N does not imbed in M^{3}.

It is sometimes useful to know that a subset of a 3 -manifold can be imbedded in E^{3}. For example, it is sometimes desirable to use a linking argument in a neighborhood of an element of a decomposition. We will prove that in a large enough disjoint collection of compacta in a closed orientable 3 -manifold there is a compactum with a neighborhood that imbeds in E^{3}. We will then show that no closed 3 manifold is an imbedding manifold for nonorientable 3 -manifolds in the sense that E^{3} is for orientable 3 -manifolds.

Definitions. A surface is a closed connected 2 -manifold. A surface S is incompressible in the 3 -manifold M^{3} means (1) S is not a 2 -sphere and if $D \subseteq M^{3}$ is a disk with $D \cap S=\operatorname{Bd} D$, then $\operatorname{Bd} D$ bounds a disk in S; or (2) S is a 2 -sphere that bounds no 3-cell in M^{3}. The surfaces S_{1} and S_{2} are said to bound a parallelity component U of M^{3} and the disjoint collection of surfaces $\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$ if U is a component of $M^{3}-\bigcup_{i=1}^{n} S_{i}$, \bar{U} is homeomorphic to $S_{1} \times I$, and $\operatorname{Bd} \bar{U}=S_{1} \cup S_{2}$.

We assign some constants to a given compact 3 manifold M^{3}. Let $\beta_{1}\left(H_{1}\left(M^{3}, G\right)\right)$ be the rank of $H_{1}\left(M^{3}, G\right)$. When $G=\mathbf{Z}$ we sometimes write just β_{1}. Also let α be the maximum number of disjoint nonparallel incompressible 2 -sided surfaces in M^{3}. We know a exists by [1].

Theorem 1. Suppose M^{3} is a closed orientable 3-manifold and $\left\{C_{1}\right.$, $\left.\ldots, C_{a+\beta_{1}+2}\right\}$ is a disjoint collection of compacta in M^{3}. Then there is a C_{i} with a neighborhood imbeddable in E^{3}.

Proof. Let $\left\{U_{1}, \cdots, U_{a+\beta_{1}+2}\right\}$ be a disjoint collection of compact poly-

[^0]hedral 3 -manifolds such that U_{i} is a neighborhood of C_{i} for each i. We will show that some U_{i} imbeds in E^{3}.

We first alter the U_{i} 's. If for some i there is a component of $\operatorname{Bd} U_{i}$ that is a compressible surface not a 2 -sphere, then we can find a disk D so that $D \cap \operatorname{Bd} U_{j}=\operatorname{Bd} D$ for some j, and either $D \subseteq U_{j}$ or $D \cap\left(\bigcup_{i=1}^{\alpha+\beta_{1}+2} U_{i}\right)$ $=\operatorname{Bd} D$.

In the first case we alter the collection by replacing U_{j} by $\overline{U_{j}-N(D)}$, where $N(D)$ is a regular neighborhood of D in U_{j}, and in the second case we replace U_{j} by $U_{j} \cup N(D)$, where $N(D)$ is a regular neighborhood of D in $\overline{M^{3}-\bigcup_{i=1}^{a+\beta_{1}+2} U_{i}}$. Since each such step reduces the sum $\Sigma_{S \in C}(x(S)-2)^{2}$, with C the collection of surfaces in $\bigcup_{i=1}^{a+\beta_{1}+2} B d U_{i}$ (where x stands for Euler characteristic), in a finite number of steps we get a disjoint collection $\left\{V_{1}, \cdots, V_{a+\beta_{1}+2}\right\}$ of compact 3-manifolds so that each component of each $\mathrm{Bd} V_{i}$ is incompressible in M^{3} or a 2 -sphere bounding a 3 -cell.

Lemma 2. If M^{3} is a closed 3 manifold and $\left\{V_{1}, \ldots, V_{a+2}\right\}$ is a dis joint collection of compact connected 3 manifolds in M^{3} such that each component of each $\mathrm{Bd} V_{i}$ is incompressible in M^{3}, then there is an i_{0} such that $V_{i_{0}}$ is the product of a surface and an interval.

Proof. Let

$$
\begin{equation*}
\left\{S_{1}, \cdots, S_{a+2+k}\right\} \tag{1}
\end{equation*}
$$

be the collection of boundary components of the V_{i} 's. We know $M^{3}-$ $\bigcup_{i=1}^{a+2+k} S_{i}$ has at most $a+3+k$ components, so $M^{3}-\bigcup_{i=1}^{\alpha+2} V_{i}$ has at most $k+1$ components $\left\{W_{1}, \cdots, W_{l}\right\}$ with $l \leq k+1$. We now change the collection (1) by removing, for each W_{j}, one surface $S_{i} \subseteq \operatorname{Bd} W_{j}$. Our collection still contains at least $a+1$ surfaces and so there are two surfaces, call them S_{1} and S_{2}, such that S_{1} and S_{2} bound V, a parallelity component of the changed collection [1]. Notice that $S_{1} \cup S_{2}$ is not the entire boundary of any W_{j}. Then there is an i_{0} such that $V_{i} \subseteq \bar{V}$. Now by [1, p. 91], Bd $V_{i_{0}}$ has exactly two components and $V_{i_{0}}$ is topologically the product of a surface and an interval.

Let $\left\{X_{1}, X_{2}, \cdots, X_{\alpha+2}\right\}$ be a collection of components of $\bigcup_{i=1}^{\alpha+\beta_{1}}+2 V_{i}$. We claim that some X_{i} imbeds in E^{3}. We first consider all components of $\bigcup_{i=1}^{a+2} \mathrm{Bd} X_{i}$. If some component is a 2 -sphere bounding a 3 cell, then either that 3 -cell contains an X_{i} or else we can add the 3 -cell to the appropriate X_{j} to get a new collection of $\alpha+2$ disjoint compact connected 3 manifolds. Eventually we have either some X_{i} in a 3-cell or all the boundary components incompressible and Lemma 2 applies to establish the claim.

It follows from the claim that at most $\alpha+1$ of the V_{i} 's have components that do not imbed in E^{3}, and therefore at least $\beta_{1}+1$ of the V_{i} 's obtained from the U_{i} 's can be imbedded in E^{3}. So we may assume that each of

$$
\begin{equation*}
\left\{V_{1}, \cdots, V_{\beta_{1}+1}\right\} \tag{2}
\end{equation*}
$$

can be imbedded in E^{3}.
Notice that we can go step by step in M^{3} from the collection (2) to the collection

$$
\begin{equation*}
\left\{U_{1}, \cdots, U_{\beta_{1}+1}\right\} \tag{3}
\end{equation*}
$$

by performing the operations preceding Lemma 2 backwards, so that each step consists of adding a 1 handle to a compact 3 -manifold or removing a regular neighborhood of a properly imbedded arc from (digging a tunnel in) a compact 3-manifold.

Lemma 3. If we reconstruct (3) from (2) as above, then there is an i_{0} so that in the reconstruction of U_{i}, whenever we attach a 1 handle to a connected compact 3-manifold, we attach both ends to the same boundary component.

Proof. Suppose that in the reconstruction of U_{i} for each i, we attach a 1 -handle H_{i} to the compact connected 3-manifold M_{i} with one end on boundary component S_{i} and one end on another boundary component. Then we can draw a simple closed curve $J_{i} \subseteq M_{i} \cup H_{i}$ made up of an arc in H_{i} and an arc in M_{i} so that the intersection number of J_{i} and S_{i} is one. In subsequent steps we dig all tunnels to miss J_{i}.

Since we have more than β_{1} curves, there is a nontrivial relation in $H_{1}\left(M^{3}, \mathrm{Z}\right)$,

$$
n_{1}\left[J_{1}\right]+\cdots+n_{\beta_{1}+1}\left[J_{\beta_{1}+1}\right]=0
$$

where [J] is the element of $H_{1}\left(M^{3}, \mathbf{Z}\right)$ represented by J. We may assume $n_{1} \neq 0$ and that J_{1} is the last such curve formed in the sequence going from (2) to (3). The relation tells us that the intersection number of S_{1} and the 1 -manifold $n_{1} J_{1} \cup \ldots \cup n_{\beta_{1}+1} J_{\beta_{1}+1}$ is zero, where $n_{i} J_{i}$ is the 1 -manifold consisting of n_{i} copies of J_{i} near J_{i}. But $J_{i} \cap S_{1}=\varnothing$ for $i \neq 1$ and the intersection number of J_{1} and S_{1} is one. We have arrived at a contradiction and the lemma is proved.

We now complete the proof of Theorem 1. For each V_{i} in the collection (2) we attempt to mimic in E^{3} the step by step reconstruction of U_{i} from V_{i} occurring in M^{3}.

There is no problem if the ends of a 1 handle are to be attached to different components of a compact 3 -manifold; we imbed one component in E^{3}, and then we imbed the other component in the proper complementary domain of the first, being careful to imbed so that the boundary components to which the 1 handle is to be attached are adjacent.

We face a problem only if the ends of a 1-handle are attached to different boundary components of a compact connected 3-manifold. By Lemma 3 we may assume this problem never occurs in the construction of U_{1} from V_{1}, and so U_{1} can be imbedded in E^{3}.

Notice that U_{1} is constructed from the product of orientable surfaces with an interval by removing 3 -cells from the interior, adding 1 handles, and drilling tunnels.

The referee has pointed out the following corollary to Theorem 1.
Corollary. Let M^{3} be a closed 3-manifold that is not sufficiently large (that is, M^{3} contains no incompressible surfaces). If X_{1} and X_{2} are dis. joint compacta in M^{3}, then one of X_{1} and X_{2} imbeds in E^{3}.

Proof. It follows from [2, p. 774] that M^{3} is orientable and $\beta_{1}\left(M^{3}\right)=$ 0 . Since M^{3} is not sufficiently large, $\alpha=0$ and the Corollary follows from Theorem 1.

In contrast, if we drop the orientability hypothesis from Theorem 1, then given a closed 3 -manifold W^{3}, we can construct a pair of compact 3manifolds (L, N) with the following properties:
(1) L contains infinitely many disjoint copies of N, and
(2) N cannot be imbedded in W^{3}.

We first construct a sequence of auxiliary pairs $\left\{\left(L_{i}, N_{i}\right) \mid i=1,2, \ldots\right\}$. We let $N_{1}=L_{1}=P \times I$, the product of a projective plane and an interval. If $i \geq 2$, the construction of L_{i} begins with i copies of $P \times l$. We label them $\left\{P_{j} \times I \mid 1 \leq j \leq i\right\}$. We then connect $P_{j} \times 0$ with $P_{1} \times 0$ by a 1 handle H_{j} for each j with $2 \leq j \leq i$. This is L_{i}. We construct N_{i} from a copy of L_{i} by removing regular neighborhoods of $i-1$ disjoint arcs $\left\{A_{j} \mid 2 \leq j \leq i\right\}$, where A_{j} has one end in $P_{j} \times 1$ and one end in $P_{1} \times 1$. The arc A_{j} runs from $P_{j} \times 1$ through H_{j}, around an orientation reversing curve in $P_{1} \times I$, and back through H_{j}, around an orientation reversing curve in $P_{j} \times I$, and back through H_{j} to $P_{1} \times I$.

Now given W^{3} let

$$
K=\beta_{1}\left(W^{3}, \mathbf{Z}_{3}\right) .
$$

Then we choose N to be the disjoint union

$$
N=N_{2 K+1} \cup N_{4 K+2} \cup \cdots \cup N_{2} K+1_{K+2} K
$$

and we let L be the disjoint union

$$
L=L_{2 K+1} \cup L_{4 K+2} \cup \cdots \cup L_{2} K+1_{K+2} K
$$

Property (1). To prove that (L, N) has Property 1 it is clearly enough to imbed infinitely many disjoint copies of N_{i} in L_{i} for a given i. As above we write L_{i} as

$$
L_{i}=\left(\bigcup_{j=1}^{i} P_{j} \times I\right) \cup\left(\bigcup_{j=2}^{i} H_{j}\right)
$$

We construct $N_{i, 1}$, our first copy of N_{i}, starting with $\bigcup_{j=1}^{i} P_{j} \times[1 / 4,1 / 2]$. Then $P_{1} \times 1 / 4$ is joined to $P_{j} \times 1 / 4$ by a 1 handle running through H_{j} for $2 \leq j \leq i$. The tunnels are drilled by removing appropriate arcs. The $N_{i, 2}$ starts with $\bigcup_{j=1}^{i} P_{j} \times[3 / 4,7 / 8]$. Then $P_{1} \times 3 / 4$ is joined to $P_{j} \times 3 / 4$ by a 1 -handle running through the j th tunnel in $N_{i, 1}$ for each j with $2 \leq j \leq i$. The tunnels are then drilled to complete $N_{i, 2}$. The rest of the construction is clear.

Property (2). Suppose N can be imbedded in W^{3}. Let $B_{1,2^{i} K+2^{i-1}}$ be the boundary component of $N_{2^{i} K+2^{i-1}}$ that intersects $P_{1} \times 1$ for each i with $i=1,2, \cdots, K+1$, and let $B_{2,2^{i} K+2^{i-1}}$ be the other boundary component of $N_{2}{ }^{i} K+2^{i-1}$. By our choice of K there is a smallest r such that $B_{1,2^{r} K+2^{r-1}}$ separates $W^{3}-\bigcup_{i=1}^{r-1} B_{1,2^{i} K+2^{i-1}}$. We let

$$
B_{1}=B_{1,2^{r} K+2^{r-1}}, \quad B_{2}=B_{2,2^{r} K+2^{r-1}} \quad \text { and } \quad N^{\prime}=N_{2^{r} K+2^{r-1}}
$$

Then we let U and V be the components of $M^{3}-\bigcup_{i=1}^{r} B_{1,2^{i} K+2^{i-1}}$ with $N^{\prime} \subseteq \bar{U}$.

Lemma 4. $\beta_{1}\left(H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right)\right) \leq \beta_{1}\left(H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right)\right)+\beta_{1}\left(H_{1}\left(\bar{U} \cup \bar{V}, \mathbf{Z}_{3}\right)\right)-$ $\beta_{1}\left(H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right)\right)$.

Proof. The Mayer-Vietoris sequence

$$
\rightarrow H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right) \xrightarrow{i^{*}} H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) \oplus H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right) \xrightarrow{j^{*}} H_{1}\left(\bar{U} \cup \bar{V}, \mathbf{Z}_{3}\right) \rightarrow
$$

generates the short exact sequence

$$
0 \rightarrow H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right) \mid \operatorname{Ker} i^{*} \rightarrow H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) \oplus H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right) \rightarrow \operatorname{Im} j^{*} \rightarrow 0
$$

so we can think of $H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right) \mid$ Ker i^{*} as a subgroup of $H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) \oplus$ $H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right)$ and

$$
\left(H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) \oplus H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right)\right) \mid\left(H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right) \mid \operatorname{Ker} i^{*}\right)=\operatorname{Im} j^{*}
$$

Then $H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) \oplus H_{1}\left(\bar{V}, \mathbf{Z}_{3}\right)$ has as many generators as $H_{1}\left(\bar{U} \cap \bar{V}, \mathbf{Z}_{3}\right)$ Ker i^{*} and $\operatorname{Im} j^{*}$ combined, which implies the conclusion of the lemma.

Lemma 5. If \bar{V} is a compact 3-manifold with nonempty boundary, then $\beta_{1}\left(H_{1}(\bar{V}, \mathbf{Z})\right) \geq 1-1 / 2 \times(\operatorname{Bd} \bar{V})$.

Proof. We know by [3, p. 233] that $2 x(\bar{V})=x(\operatorname{Bd} \bar{V})$ (where x stands for Euler characteristic). For compact 3-manifolds, $x(\bar{V})=\beta_{0}-\beta_{1}+\beta_{2}-\beta_{3}$ and $\beta_{0} \geq 1$ and $\beta_{3}=0$. So we have $1-\beta_{1}+\beta_{2} \leq 1 / 2 X(\operatorname{Bd} \bar{V})$ or $\beta_{1} \geq 1$ $1 / 2 X(\operatorname{Bd} \bar{V})$.

By Lemmas 4 and 5 we have

$$
\begin{aligned}
& \beta_{1}\left(H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right)\right) \leq \sum_{s}\left(2^{i} K+2^{i-1}-1\right)+K-\left(1+\frac{1}{2} \sum_{s}\left(2^{i} K+2^{i-1}-2\right)\right) \\
& \quad \text { (where } i \in S \text { if } B_{\left.1,2^{i} K+2^{i-1} \subseteq \text { Bd } \bar{V}\right)} \\
&= \frac{1}{2}\left(\sum_{s}\left(2^{i} K+2^{i-1}-2\right)\right)+K+|S|-1 \\
& \leq \frac{1}{2}\left(\sum_{i=1}^{r} 2^{i} K+2^{i-1}-2\right)+K+r-1=2^{r} K+2^{r-1}-1^{1 / 2}
\end{aligned}
$$

We know that $\beta_{1}\left(H_{1}\left(B_{1}, Z_{3}\right)\right)=2^{r} K+2^{r-1}-1$, so there is a $g \epsilon$ $H_{1}\left(B_{1}, \mathrm{Z}_{3}\right)$ with $g \neq 0$ and $j_{*} g=0$ in $H_{1}\left(\bar{U}, \mathrm{Z}_{3}\right)$, where j_{*} is the inclusion induced homomorphism.

Now consider the Mayer-Vietoris sequence

$$
\rightarrow H_{1}\left(B_{2}, \mathbf{Z}_{3}\right) \xrightarrow{r_{*}} H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right) \oplus H_{1}\left(\overline{U-N^{\prime}}, \mathbf{Z}_{3}\right) \xrightarrow{s_{*}} H_{1}\left(\bar{U}, \mathbf{Z}_{3}\right) .
$$

Since $s_{*}\left(i_{*} g, 0\right)=j_{*} g=0$, where i_{*} is here the homomorphism induced by the inclusion of $\operatorname{Bd} N^{\prime}$ in N^{\prime}, there is an $l \in H_{1}\left(B_{2}, \mathbf{Z}_{3}\right)$ such that $r_{*} l=$ $\left(i_{*} g, 0\right)$ or $i_{*} l=i_{*} g$ in $H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)$.

We now investigate $H_{1}\left(N^{\prime}, Z\right)$. Let a_{j} be the orientation reversing
curve in $P_{j} \times 1$ and b_{j} be the orientation reversing curve in $P_{j} \times 0$ for each j with $1 \leq j \leq 2^{r} K+2^{r-1}$. If the curves are oriented properly and if $\left[a_{j}\right]$ and $\left[b_{j}\right]$ represent the homology classes of a_{j} and b_{j} in $H_{1}\left(N^{\prime}, \mathbf{Z}\right)$, then $\left[b_{j}\right]=3\left[a_{j}\right]$ in $H_{1}\left(N^{\prime}, \mathbf{Z}\right)$ by our construction of the tunnels in N^{\prime}. Therefore $\left[b_{j}\right]=0$ in $H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)$. Since the $\left[b_{j}\right]$'s generate $H_{1}\left(B_{2}, \mathbf{Z}_{3}\right)$ we have $i_{*} H_{1}\left(B_{2}, \mathbf{Z}_{3}\right)=0$ in $H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)$ and $i_{*} g=i_{*} l=0$ in $H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)$ so $\beta_{1}\left(H_{1}\left(N^{\prime}, \mathrm{Z}_{3}\right)\right) \leq 2^{r} K+2^{r-1}-1$. But since $i_{*} g=0$ in $H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)$,

$$
\beta_{1}\left(H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)\right) \leq 2^{r} K+2^{r-1}-2 .
$$

However by Lemma 5

$$
\begin{aligned}
\beta_{1}\left(H_{1}\left(N^{\prime}, \mathbf{Z}_{3}\right)\right) & \geq \beta_{1}\left(H_{1}\left(N^{\prime}, \mathbf{Z}\right)\right) \geq 1-1 / 2 X\left(\operatorname{Bd} N^{\prime}\right) \\
& =1-1 / 2\left(2\left(2-2^{r} K-2^{r-1}\right)\right)=2^{r} K+2^{r-1}-1 .
\end{aligned}
$$

The last two inequalities are incompatible, and Property (2) is established.

REFERENCES

1. Wolfgang Haken, Some results on surfaces in 3 -manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39-98. MR 36 \# 7118.
2. W. Heil, On P^{2}-irreducible 3 manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. MR 40 \#4958.
3. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934; reprint, Chelsea, New York, 1947.

DE PARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAM TON, NEW YORK 13901

Current address: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069

[^0]: Received by the editors November 26, 1973 and, in revised form, January 10, 1974.

 AMS (MOS) subject classifications (1970). Primary 57A10.
 Key words and phrases. 3 -manifold, parallelity component, Euler characteristic.

