IMBEDDING COMPACT 3-MANIFOLDS IN E³

TOM KNOBLAUCH

ABSTRACT. We show that in a large finite disjoint collection of compacta in a closed orientable 3-manifold there is a compactum that imbeds in E^3 . However, given a closed 3-manifold M^3 , there is a pair of compact 3-manifolds (L, N) such that L contains infinitely many disjoint copies of N but N does not imbed in M^3 .

It is sometimes useful to know that a subset of a 3-manifold can be imbedded in E^3 . For example, it is sometimes desirable to use a linking argument in a neighborhood of an element of a decomposition. We will prove that in a large enough disjoint collection of compacta in a closed orientable 3-manifold there is a compactum with a neighborhood that imbeds in E^3 . We will then show that no closed 3-manifold is an imbedding manifold for nonorientable 3-manifolds in the sense that E^3 is for orientable 3-manifolds.

Definitions. A surface is a closed connected 2-manifold. A surface S is *incompressible* in the 3-manifold M^3 means (1) S is not a 2-sphere and if $D \subseteq M^3$ is a disk with $D \cap S = BdD$, then BdD bounds a disk in S; or (2) S is a 2-sphere that bounds no 3-cell in M^3 . The surfaces S_1 and S_2 are said to bound a *parallelity component* U of M^3 and the disjoint collection of surfaces $\{S_1, S_2, \dots, S_n\}$ if U is a component of $M^3 - \bigcup_{i=1}^n S_i$, \overline{U} is homeomorphic to $S_1 \times I$, and $Bd\overline{U} = S_1 \cup S_2$.

We assign some constants to a given compact 3-manifold M^3 . Let $\beta_1(H_1(M^3, G))$ be the rank of $H_1(M^3, G)$. When $G = \mathbb{Z}$ we sometimes write just β_1 . Also let α be the maximum number of disjoint nonparallel incompressible 2-sided surfaces in M^3 . We know α exists by [1].

Theorem 1. Suppose M^3 is a closed orientable 3-manifold and $\{C_1, \dots, C_{a+\beta_1+2}\}$ is a disjoint collection of compacta in M^3 . Then there is a C_i with a neighborhood imbeddable in E^3 .

Proof. Let $\{U_1, \dots, U_{a+\beta_1+2}\}$ be a disjoint collection of compact poly-

AMS (MOS) subject classifications (1970). Primary 57A10.

Key words and phrases. 3-manifold, parallelity component, Euler characteristic.

Copyright © 1975, American Mathematical Society

Received by the editors November 26, 1973 and, in revised form, January 10, 1974.

hedral 3-manifolds such that U_i is a neighborhood of C_i for each *i*. We will show that some U_i imbeds in E^3 .

We first alter the U_i 's. If for some *i* there is a component of $\operatorname{Bd} U_i$ that is a compressible surface not a 2-sphere, then we can find a disk *D* so that $D \cap \operatorname{Bd} U_j = \operatorname{Bd} D$ for some *j*, and either $D \subseteq U_j$ or $D \cap (\bigcup_{i=1}^{\alpha+\beta} 1^{+2}U_i) = \operatorname{Bd} D$.

In the first case we alter the collection by replacing U_j by $\overline{U_j - N(D)}$, where N(D) is a regular neighborhood of D in U_j , and in the second case we replace U_j by $U_j \cup N(D)$, where N(D) is a regular neighborhood of Din $\overline{M^3} - \bigcup_{i=1}^{a+\beta} 1^{+2}U_i$. Since each such step reduces the sum $\sum_{S \in C} (x(S) - 2)^2$, with C the collection of surfaces in $\bigcup_{i=1}^{a+\beta} 1^{+2} Bd U_i$ (where x stands for Euler characteristic), in a finite number of steps we get a disjoint collection $\{V_1, \dots, V_{a+\beta_1+2}\}$ of compact 3-manifolds so that each component of each Bd V_i is incompressible in M^3 or a 2-sphere bounding a 3-cell.

Lemma 2. If M^3 is a closed 3-manifold and $\{V_1, \dots, V_{a+2}\}$ is a disjoint collection of compact connected 3-manifolds in M^3 such that each component of each Bd V_i is incompressible in M^3 , then there is an i_0 such that V_{i_0} is the product of a surface and an interval.

Proof. Let

(1)
$$\{S_1, \cdots, S_{\alpha+2+k}\}$$

be the collection of boundary components of the V_i 's. We know $M^3 - \bigcup_{i=1}^{a+2+k} S_i$ has at most a + 3 + k components, so $M^3 - \bigcup_{i=1}^{a+2} V_i$ has at most k + 1 components $\{W_1, \dots, W_l\}$ with $l \le k + 1$. We now change the collection (1) by removing, for each W_i , one surface $S_i \subseteq BdW_i$. Our collection still contains at least a + 1 surfaces and so there are two surfaces, call them S_1 and S_2 , such that S_1 and S_2 bound V, a parallelity component of the changed collection [1]. Notice that $S_1 \cup S_2$ is not the entire boundary of any W_i . Then there is an i_0 such that $V_{i_0} \subseteq \overline{V}$. Now by [1, p. 91], Bd V_{i_0} has exactly two components and V_{i_0} is topologically the product of a surface and an interval.

Let $\{X_1, X_2, \dots, X_{\alpha+2}\}$ be a collection of components of $\bigcup_{i=1}^{\alpha+\beta} 1^{+2} V_i$. We claim that some X_i imbeds in E^3 . We first consider all components of $\bigcup_{i=1}^{\alpha+2} \operatorname{Bd} X_i$. If some component is a 2-sphere bounding a 3-cell, then either that 3-cell contains an X_i or else we can add the 3-cell to the appropriate X_j to get a new collection of $\alpha + 2$ disjoint compact connected 3-manifolds. Eventually we have either some X_i in a 3-cell or all the boundary components incompressible and Lemma 2 applies to establish the claim. It follows from the claim that at most $\alpha + 1$ of the V_i 's have components that do not imbed in E^3 , and therefore at least $\beta_1 + 1$ of the V_i 's obtained from the U_i 's can be imbedded in E^3 . So we may assume that each of

$$\{V_1, \cdots, V_{\beta_1+1}\}$$

can be imbedded in E^3 .

Notice that we can go step by step in M^3 from the collection (2) to the collection

(3)
$$\{U_1, \cdots, U_{\beta_1+1}\}$$

by performing the operations preceding Lemma 2 backwards, so that each step consists of adding a 1-handle to a compact 3-manifold or removing a regular neighborhood of a properly imbedded arc from (digging a tunnel in) a compact 3-manifold.

Lemma 3. If we reconstruct (3) from (2) as above, then there is an i_0 so that in the reconstruction of U_i , whenever we attach a 1-handle to a connected compact 3-manifold, we attach both ends to the same boundary component.

Proof. Suppose that in the reconstruction of U_i for each *i*, we attach a 1-handle H_i to the compact connected 3-manifold M_i with one end on boundary component S_i and one end on another boundary component. Then we can draw a simple closed curve $J_i \subseteq M_i \cup H_i$ made up of an arc in H_i and an arc in M_i so that the intersection number of J_i and S_i is one. In subsequent steps we dig all tunnels to miss J_i .

Since we have more than β_1 curves, there is a nontrivial relation in $H_1(M^3, \mathbb{Z})$,

$$n_1[J_1] + \cdots + n_{\beta_1+1}[J_{\beta_1+1}] = 0,$$

where [J] is the element of $H_1(M^3, \mathbb{Z})$ represented by J. We may assume $n_1 \neq 0$ and that J_1 is the last such curve formed in the sequence going from (2) to (3). The relation tells us that the intersection number of S_1 and the 1-manifold $n_1 J_1 \cup \cdots \cup n_{\beta_1+1} J_{\beta_1+1}$ is zero, where $n_i J_i$ is the 1-manifold consisting of n_i copies of J_i near J_i . But $J_i \cap S_1 = \emptyset$ for $i \neq 1$ and the intersection number of J_1 and S_1 is one. We have arrived at a contradiction and the lemma is proved.

We now complete the proof of Theorem 1. For each V_i in the collection (2) we attempt to mimic in E^3 the step by step reconstruction of U_i from V_i occurring in M^3 .

There is no problem if the ends of a 1-handle are to be attached to different components of a compact 3-manifold; we imbed one component in E^3 , and then we imbed the other component in the proper complementary domain of the first, being careful to imbed so that the boundary components to which the 1-handle is to be attached are adjacent.

We face a problem only if the ends of a 1-handle are attached to different boundary components of a compact connected 3-manifold. By Lemma 3 we may assume this problem never occurs in the construction of U_1 from V_1 , and so U_1 can be imbedded in E^3 .

Notice that U_1 is constructed from the product of orientable surfaces with an interval by removing 3-cells from the interior, adding 1-handles, and drilling tunnels.

The referee has pointed out the following corollary to Theorem 1.

Corollary. Let M^3 be a closed 3-manifold that is not sufficiently large (that is, M^3 contains no incompressible surfaces). If X_1 and X_2 are disjoint compacta in M^3 , then one of X_1 and X_2 imbeds in E^3 .

Proof. It follows from [2, p. 774] that M^3 is orientable and $\beta_1(M^3) = 0$. Since M^3 is not sufficiently large, $\alpha = 0$ and the Corollary follows from Theorem 1.

In contrast, if we drop the orientability hypothesis from Theorem 1, then given a closed 3-manifold W^3 , we can construct a pair of compact 3-manifolds (L, N) with the following properties:

(1) L contains infinitely many disjoint copies of N, and

(2) N cannot be imbedded in W^3 .

We first construct a sequence of auxiliary pairs $\{(L_i, N_i)|i = 1, 2, \dots\}$. We let $N_1 = L_1 = P \times I$, the product of a projective plane and an interval. If $i \ge 2$, the construction of L_i begins with *i* copies of $P \times I$. We label them $\{P_j \times I | 1 \le j \le i\}$. We then connect $P_j \times 0$ with $P_1 \times 0$ by a 1-handle H_j for each *j* with $2 \le j \le i$. This is L_i . We construct N_i from a copy of L_i by removing regular neighborhoods of i - 1 disjoint arcs $\{A_j | 2 \le j \le i\}$, where A_j has one end in $P_j \times 1$ and one end in $P_1 \times 1$. The arc A_j runs from $P_j \times 1$ through H_j , around an orientation reversing curve in $P_1 \times I$, and back through H_j , to $P_1 \times I$. Now given W^3 let

$$K = \beta_1 (W^3, Z_3).$$

Then we choose N to be the disjoint union

$$N = N_{2K+1} \cup N_{4K+2} \cup \cdots \cup N_{2}K + 1_{K+2}K,$$

and we let L be the disjoint union

$$L = L_{2K+1} \cup L_{4K+2} \cup \cdots \cup L_{2}K + 1_{K+2}K.$$

Property (1). To prove that (L, N) has Property 1 it is clearly enough to imbed infinitely many disjoint copies of N_i in L_i for a given *i*. As above we write L_i as

$$L_i = \left(\bigcup_{j=1}^i P_j \times I\right) \cup \left(\bigcup_{j=2}^i H_j\right).$$

We construct $N_{i,1}$, our first copy of N_i , starting with $\bigcup_{j=1}^{i} P_j \times [\frac{1}{4}, \frac{1}{2}]$. Then $P_1 \times \frac{1}{4}$ is joined to $P_j \times \frac{1}{4}$ by a 1-handle running through H_j for $2 \le j \le i$. The tunnels are drilled by removing appropriate arcs. The $N_{i,2}$ starts with $\bigcup_{j=1}^{i} P_j \times [\frac{3}{4}, \frac{7}{8}]$. Then $P_1 \times \frac{3}{4}$ is joined to $P_j \times \frac{3}{4}$ by a 1-handle running through the *j*th tunnel in $N_{i,1}$ for each *j* with $2 \le j \le i$. The tunnels are then drilled to complete $N_{i,2}$. The rest of the construction is clear.

Property (2). Suppose N can be imbedded in W^3 . Let $B_{1,2^iK+2^{i-1}}$ be the boundary component of $N_{2^iK+2^{i-1}}$ that intersects $P_1 \times 1$ for each iwith $i = 1, 2, \dots, K+1$, and let $B_{2,2^iK+2^{i-1}}$ be the other boundary component of $N_{2^iK+2^{i-1}}$. By our choice of K there is a smallest r such that $B_{1,2^rK+2^{r-1}}$ separates $W^3 - \bigcup_{i=1}^{r-1} B_{1,2^iK+2^{i-1}}$. We let

$$B_1 = B_{1,2^r K + 2^{r-1}}, \quad B_2 = B_{2,2^r K + 2^{r-1}} \text{ and } N' = N_{2^r K + 2^{r-1}}.$$

Then we let U and V be the components of $M^3 - \bigcup_{i=1}^r B_{1,2^{i}K+2^{i-1}}$ with $N' \subseteq \overline{U}$.

Lemma 4. $\beta_1(H_1(\overline{U}, \mathbb{Z}_3)) \leq \beta_1(H_1(\overline{U} \cap \overline{V}, \mathbb{Z}_3)) + \beta_1(H_1(\overline{U} \cup \overline{V}, \mathbb{Z}_3)) - \beta_1(H_1(\overline{V}, \mathbb{Z}_3)).$

Proof. The Mayer-Vietoris sequence

$$\rightarrow H_1(\bar{U} \cap \bar{V}, \mathbb{Z}_3) \xrightarrow{i^*} H_1(\bar{U}, \mathbb{Z}_3) \oplus H_1(\bar{V}, \mathbb{Z}_3) \xrightarrow{j^*} H_1(\bar{U} \cup \bar{V}, \mathbb{Z}_3) \rightarrow$$

generates the short exact sequence

$$0 \to H_1(\overline{U} \cap \overline{V}, \mathbb{Z}_3) | \text{Ker } i^* \to H_1(\overline{U}, \mathbb{Z}_3) \oplus H_1(\overline{V}, \mathbb{Z}_3) \to \text{Im } j^* \to 0,$$

so we can think of $H_1(\overline{U} \cap \overline{V}, \mathbb{Z}_3)$ |Ker i^* as a subgroup of $H_1(\overline{U}, \mathbb{Z}_3) \oplus H_1(\overline{V}, \mathbb{Z}_3)$ and

$$(H_1(\overline{U}, \mathbb{Z}_3) \oplus H_1(\overline{V}, \mathbb{Z}_3))|(H_1(\overline{U} \cap \overline{V}, \mathbb{Z}_3)|\text{Ker } i^*) = \text{Im } j^*.$$

Then $H_1(\overline{U}, \mathbb{Z}_3) \oplus H_1(\overline{V}, \mathbb{Z}_3)$ has as many generators as $H_1(\overline{U} \cap \overline{V}, \mathbb{Z}_3)$ Ker i^* and Im j^* combined, which implies the conclusion of the lemma.

Lemma 5. If \overline{V} is a compact 3-manifold with nonempty boundary, then $\beta_1(H_1(\overline{V}, \mathbb{Z})) \geq 1 - \frac{1}{2} \times (\text{Bd } \overline{V}).$

Proof. We know by [3, p. 233] that $2x(\overline{V}) = x(\operatorname{Bd} \overline{V})$ (where x stands for Euler characteristic). For compact 3-manifolds, $x(\overline{V}) = \beta_0 - \beta_1 + \beta_2 - \beta_3$ and $\beta_0 \ge 1$ and $\beta_3 = 0$. So we have $1 - \beta_1 + \beta_2 \le \frac{1}{2}X(\operatorname{Bd} \overline{V})$ or $\beta_1 \ge 1 - \frac{1}{2}X(\operatorname{Bd} \overline{V})$.

By Lemmas 4 and 5 we have

$$\beta_{1}(H_{1}(\overline{U}, \mathbb{Z}_{3})) \leq \sum_{s} (2^{i}K + 2^{i-1} - 1) + K - \left(1 + \frac{1}{2}\sum_{s} (2^{i}K + 2^{i-1} - 2)\right)$$
(where $i \in S$ if $B_{1,2^{i}K + 2^{i-1}} \subseteq \operatorname{Bd} \overline{V}$)
$$= \frac{1}{2} \left(\sum_{s} (2^{i}K + 2^{i-1} - 2)\right) + K + |S| - 1$$

$$\leq \frac{1}{2} \left(\sum_{i=1}^{r} 2^{i}K + 2^{i-1} - 2\right) + K + r - 1 = 2^{r}K + 2^{r-1} - 1\frac{1}{2}.$$

We know that $\beta_1(H_1(B_1, \mathbb{Z}_3)) = 2^r K + 2^{r-1} - 1$, so there is a $g \in H_1(B_1, \mathbb{Z}_3)$ with $g \neq 0$ and $j_*g = 0$ in $H_1(\overline{U}, \mathbb{Z}_3)$, where j_* is the inclusion induced homomorphism.

Now consider the Mayer-Vietoris sequence

$$\rightarrow H_1(B_2, \mathbb{Z}_3) \xrightarrow{r_*} H_1(N', \mathbb{Z}_3) \oplus H_1(\overline{U-N'}, \mathbb{Z}_3) \xrightarrow{s_*} H_1(\overline{U}, \mathbb{Z}_3).$$

Since $s_*(i_*g, 0) = j_*g = 0$, where i_* is here the homomorphism induced by the inclusion of BdN' in N', there is an $l \in H_1(B_2, \mathbb{Z}_3)$ such that $r_*l = (i_*g, 0)$ or $i_*l = i_*g$ in $H_1(N', \mathbb{Z}_3)$.

We now investigate $H_1(N', Z)$. Let a_j be the orientation reversing License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use curve in $P_j \times 1$ and b_j be the orientation reversing curve in $P_j \times 0$ for each j with $1 \le j \le 2^r K + 2^{r-1}$. If the curves are oriented properly and if $[a_j]$ and $[b_j]$ represent the homology classes of a_j and b_j in $H_1(N', \mathbb{Z})$, then $[b_j] = 3[a_j]$ in $H_1(N', \mathbb{Z})$ by our construction of the tunnels in N'. Therefore $[b_j] = 0$ in $H_1(N', \mathbb{Z}_3)$. Since the $[b_j]$'s generate $H_1(B_2, \mathbb{Z}_3)$ we have $i_*H_1(B_2, \mathbb{Z}_3) = 0$ in $H_1(N', \mathbb{Z}_3)$ and $i_*g = i_*l = 0$ in $H_1(N', \mathbb{Z}_3)$, so $\beta_1(H_1(N', \mathbb{Z}_3)) \le 2^r K + 2^{r-1} - 1$. But since $i_*g = 0$ in $H_1(N', \mathbb{Z}_3)$,

$$\beta_1(H_1(N', \mathbb{Z}_3)) \leq 2^r K + 2^{r-1} - 2.$$

However by Lemma 5

$$\beta_1(H_1(N', \mathbb{Z}_3)) \ge \beta_1(H_1(N', \mathbb{Z})) \ge 1 - \frac{1}{2}X \text{ (Bd } N')$$
$$= 1 - \frac{1}{2}(2(2 - 2^r K - 2^{r-1})) = 2^r K + 2^{r-1} - 1.$$

The last two inequalities are incompatible, and Property (2) is established.

REFERENCES

1. Wolfgang Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968, pp. 39-98. MR 36 #7118.

2. W. Heil, On P²-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. MR 40 #4958.

3. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934; reprint, Chelsea, New York, 1947.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, BINGHAM-TON, NEW YORK 13901

Current address: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069