
ImgLib2 – Generic Image Processing in Java
Tobias Pietzsch,1,∗ Stephan Preibisch,1,2,∗ Pavel Tomančák 1 and Stephan Saalfeld 1,∗ ,†

1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,
2Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA

ABSTRACT
Summary: ImgLib2 is an open-source Java library for n-dimen-
sional data representation and manipulation with focus on image
processing. It aims at minimizing code duplication by cleanly sepa-
rating pixel-algebra, data access, and data representation in memory.
Algorithms can be implemented for classes of pixel types and generic
access patterns by which they become independent of the specific
dimensionality, pixel type, and data representation. ImgLib2 illustrates
that an elegant high-level programming interface can be achieved
without sacrificing performance. It provides efficient implementations
of common data types, storage layouts, and algorithms. It is the data
model underlying ImageJ2, the KNIME Image Processing toolbox,
and an increasing number of Fiji-Plugins.
Availability: ImgLib2 is licensed under BSD. Documentation and
source code are available at http://imglib2.net and in a public
repository at https://github.com/imagej/imglib.
Contact: saalfeld@mpi-cbg.de

1 INTRODUCTION
Many algorithmic concepts from computer vision and image
processing are applicable to the analysis of biological image data.
However, re-using existing code is often difficult because it is
implemented for a specific data type, limited image size, or fixed
number of dimensions, e. g., small 2d grayscale images. Biological
imaging techniques generate images of varying dimensionality and
a multitude of sample types (e. g., wavelength, frequency spectra,
diffusion tensors) with varying precision. Improvements in imaging
speed and resolution result in gigantic datasets that require well-
designed strategies for data handling (e. g., tiled or compressed
storage, streaming access). Writing code that is re-usable across
many combinations of dimensionality, sample type, and storage
strategy is challenging and requires an appropriate abstraction layer.

We present ImgLib2, an open-source image processing frame-
work that achieves code re-usability through a generic interface
architecture that abstracts from dimensionality, sample type, and
storage strategy. It is highly extensible, providing developers
with great flexibility in adding new sample types and image
representations that will seamlessly work with existing algorithms,
and vice versa. ImgLib2 shares basic concepts with the C++
frameworks ITK (Yoo et al., 2002) and Vigra (Köthe, 2000) for
n-dimensional, generic image processing. It is the first framework
that introduces generic programming to the Java image processing
community (Preibisch et al., 2010). We chose Java for its simplicity
and wide acceptance among biological researchers due to the
popular image processing toolbox ImageJ (Rasband, 2012).
∗equal contribution
†to whom correspondence should be addressed

2 ARCHITECTURE
The ImgLib2 core design is based on three main concepts: Accessibles
(i. e., images), Accessors, and Types. We define an image as any mapping
from a subset of n-dimensional Euclidean coordinate space to a generic
pixel value type. Image properties are expressed by Accessible interfaces:
Coordinates can be either integer or real-valued, the coordinate domain
can be either bounded or infinite, the image may support random access at
arbitrary coordinates and/or iteration of all samples. Consider a conventional
pixel image. It comprises samples of a specific value type in bounded
n-dimensional space, arranged on an integer grid, and is both, random-acces-
sible (at arbitrary integer coordinates) and iterable. Importantly, ImgLib2
supports concepts beyond the conventional pixel image, e. g. infinite,
procedurally generated images or continuous images interpolated from
sparsely sampled data. Access to sample (pixel) values and coordinates is
provided by Accessor interfaces. These exist in variants for integer and
real coordinates, as well as iterating and random access. For iterating
accessors, iteration order is subject to implementation, specialized for each
memory layout to minimize access time. Accessors provide value access via
Types. ImgLib2 has a hierarchy of Type interfaces that describe algebraic
properties of families of concrete types. Examples are Comparable types or
NumericTypes that support basic arithmetic operations (+,-,*,/).

Access patterns and type properties allow fine-grained specification of
algorithmic requirements. An algorithm that is built using appropriate
interfaces applies to any specific image implementing those interfaces. Re-
usability of algorithms is maximized by specifying them for the minimal set
of required properties. Consider, for example, summing all pixel values in an
image. This can be implemented in two lines of Java code for, e. g., a gray-
level image stored as a byte[] array. However, it has to be re-implemented,
over and over, for every combination of data type, dimensionality, and
storage layout. Using ImgLib2, this can be written generically as

for (T value : image) sum.add(value);

where we specify that image implements Iterable〈T〉 and that T extends
NumericType〈T〉. The same code handles all pixel images with appropriate
value type, virtual views into such images, sparsely sampled data-sets,
procedural images, etc. In Java, this level of generality requires pixels to
be objects. Storing simple pixel values (e. g., bytes) as individual objects,
however, comes with significant memory overhead. Conversely, creating
new objects per pixel access introduces significant runtime overhead and
triggers frequent garbage collection. Both approaches do not scale well with
large images. To address this issue, ImgLib2 uses proxy types to access pixel
data that can be mapped into Java primitive type arrays (byte[], float[], etc).
In this way, an accessor can re-use one proxy instance for all pixel accesses.
In the above example, a proxy of type T is instantiated once and then re-used
in every iteration, changing only internal state. This virtualization pattern
has no performance overhead compared to direct array access, thanks to the
optimizations performed by Java’s just-in-time compiler (JIT).

3 IMPLEMENTATION
ImgLib2 incorporates common value types (BitType, UnsignedByteType,
ARGBType, ComplexFloatType, . . . ) efficiently implemented as proxies that

1

Associate Editor: Dr. Jonathan Wren

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/

by/3.0/), which permits unrestricted, distribution, and reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published September 8, 2012



map into Java primitive type arrays. Various implementations for pixel data
in a discrete n-dimensional grid (conventional pixel images) are provided:
ListImg stores pixels as individual object instances and thus supports
arbitrary value types, but does not scale to large numbers of pixels. ArrayImg
maps proxy types into a single primitive type array, providing optimal
performance and memory efficiency. However, Java arrays are limited to
a size of 231 (e. g. a square 2d image with maximally 46,340 px side-length)
which is easily exceeded in todays microscopy recordings. CellImg splits
the coordinate domain into a n-dimensional grid of cells, each mapping into
one primitive type array. This enables significantly larger images (262 px)
at slightly reduced performance. In generic code we can transparently
switch between image implementations using image factories. This allows
performance tuning for specific datasets without any modification to the
algorithm implementation. We compared the performance of ImgLib2
generic code and special purpose (fixed dimensionality and value type)
implementations for Java primitive type arrays and ImageJ (Supplementary
Table 1). For simple per-pixel operations, generic ImgLib2 code achieves
100 % of the performance of special purpose implementations using native
arrays. For a more complex operation involving an inner loop over
the unknown number of dimensions, the ImgLib2 code was on average
1.6× slower than native arrays (1.5× slower than ImageJ). We consider
this a reasonable abstraction penalty as the ImgLib2 code supports any
dimensionality, image and value type. In contrast, native arrays and
ImageJ images require specialized implementations for each supported
dimensionality and value type. For the cases tested in our benchmark, this
amounts to an order of magnitude increase in lines of code. Even so, only
ImgLib2 is able to handle all test cases due to dimensionality and image size
limits of both ImageJ and primitive type arrays.

ImgLib2 permits virtualization of sample access. We use this for
accessors that perform on-the-fly coordinate and value transformations
without copying the underlying data. The Views framework creates
accessibles that provide coordinate-transforming accessors. Integer coordi-
nate transformations include slicing, windowing, axes permutations, and
90◦ rotations. Consecutive transformations are reduced and simplified,
yielding accessors with optimal performance. For real coordinates we
support n-dimensional affine transformations. Interpolating and rasterizing
views convert between discrete and continuous coordinate spaces. Finally,
some algorithms (e. g. convolution) require access to pixels outside of the
image which are usually created by padding or mirroring. This is achieved
by extending views, whose accessors generate outside values on demand.
Note, that views may be cascaded and act both as input and output for
pixel processing. Similarly, the Converters framework realizes transparent
transformation of values. For instance, a FloatType image can be addressed
as ByteType using an arbitrary mapping function.

ImgLib2 uses Bio-Formats (Linkert et al., 2010) to read and write a large
number of image file formats. Interoperability with ImageJ is provided by
non-copying wrappers of ImageJ data structures as ImgLib2 accessibles
and vice versa. This makes it straightforward to integrate ImgLib2 into
existing ImageJ-based processing pipelines. Light-weight wrappers for other
data models are easy to implement and currently exist for Java AWT
BufferedImage, Java primitive type arrays, and remotely stored image stacks
(Saalfeld et al., 2009). ImgLib2 comprises a growing collection of generic
algorithms that are fundamental building blocks for n-dimensional image
analysis: the Fast Fourier Transform (FFT) can be used for tomography
reconstruction, pattern detection, or (de-)convolution; sub-pixel edge-
detection (Devernay, 1995), component trees (Nistér and Stewénius, 2008),
and automatically detected interest-points (e. g. DoG and MSER Lindeberg,
1998; Matas et al., 2002) are important tools for image segmentation, image
registration, and tracking; k-d trees enable fast n-dimensional search.

Sparsely and irregularly sampled data is supported, stored either as a
sample-list or in a k-d tree. Both implement interfaces for nearest-neighbor
search, allowing extrapolation of sparse data into a continuous image.
Sparsely sampled data, interpolation, extension, coordinate-transformation,
and several algorithms are illustrated in Supplementary Figure 1.

4 DISCUSSION
ImgLib2 is an open-source image processing framework that
increases code re-usability by promoting generic implementations.
It provides an abstraction layer that focuses on flexible and efficient
image storage and access. The core paradigm is a clean separation
of pixel-algebra (how sample values are manipulated), data access
(how sample coordinates are traversed), and data representation
(how the samples are stored, laid out in memory, or paged to
disc). ImgLib2 relies on virtual access to both sample values and
coordinates, facilitating parallelizability and extensibility.

ImgLib2 aims to connect software projects through an interface
design that is easily adapted to existing data structures. ImgLib2
is the first image processing library available for Java that
combines a flexible high-level programming interface with optimal
performance. It enables developers of bioimage analysis software
to focus on the design of complex algorithms instead of data
management. Conversely, software engineers can develop efficient
infrastructure without interfering with algorithm design. This
becomes particularly interesting in the emerging field of bioimage
informatics that is coping with the enormous amount of n-
dimensional image data generated by recent developments in
microscopy. Consequently, ImgLib2 is already being used by
several high-profile projects of the Java bioimaging community
(Berthold et al., 2009; Rueden et al., 2010; Schindelin et al., 2012).
It is easily integrated into other projects providing an ideal basis for
sharing interoperable, generic algorithms.

ACKNOWLEDGEMENT
ImgLib2 and ImgLib have been supported by Fiji Hackathons at the
MPI-CBG, EMBL and LOCI. We gratefully thank all developers
and users that contributed, notably C. Rueden, B. DeZonia, C. Dietz,
M. Horn, L. Kamentsky, A. Cardona, J. Schindelin, G. Harris, L.
Lindsey, M. Longair, J.-Y. Tinevez, N. Perry, J. Funke, S. Jaensch.

Funding: The authors were funded by MPI-CBG.

REFERENCES
Berthold, M. R. et al. (2009). Knime - the konstanz information miner: version 2.0 and

beyond. SIGKDD Explor. Newsl., 11(1), 26–31.
Devernay, F. (1995). A non-maxima suppression method for edge detection with sub-

pixel accuracy. Technical Report RR-2724, INRIA.
Köthe, U. (2000). STL-style generic programming with images. C++ Report

Magazine, 12(1), 24–30.
Lindeberg, T. (1998). Feature detection with automatic scale selection. International

Journal of Computer Vision, 30(2), 79–116.
Linkert, M. et al. (2010). Metadata matters: access to image data in the real world. The

Journal of Cell Biology, 189(5), 777–782.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust wide baseline stereo

from maximally stable extremal regions. In BMVC, volume 1, pages 384–393.
Nistér, D. and Stewénius, H. (2008). Linear time maximally stable extremal regions. In

ECCV , pages 183–196.
Preibisch, S. et al. (2010). Into imglib—generic image processing in java. In

Proceedings of the ImageJ User and Developer Conference, Luxembourg.
Rasband, W. (1997–2012). ImageJ: Image processing and analysis in Java [v 1.46j].
Rueden, C. et al. (2010). Imagejdev: Next generation imagej. In Proceedings of the

ImageJ User and Developer Conference, Mondorf-les-Bains, Luxembourg.
Saalfeld, S. et al. (2009). CATMAID: Collaborative annotation toolkit for massive

amounts of image data. Bioinformatics, 25(15), 1984–1986.
Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis.

Nature Methods, 9, 676–682.
Yoo, T. S. et al. (2002). Engineering and algorithm design for an image processing API:

A technical report on ITK - the insight toolkit. In MMVR, pages 586–592.

2


