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Abstract

This paper presents the method for importing human

dance motion into humanoid robots through visual obser-

vation. The human motion data is acquired from a motion

capture system consisting of 8 cameras and 8 PC clsters.

Then the whole motion sequence is divided into some mo-

tion elements and clusterd into some groups according

to the correlation of end-effectors’ trajectories. We call

these segments as ’motion primitives’. New dance mo-

tions are generated by concatenating these motion primi-

tives. We are also trying to make a humanoid dance these

original or generated motions using inverse-kinematics

and dynamic balancing technique.

Keywords: human motion, humanoid robot, motion prim-

itive, motion capture data

1 Introduction

Importing human motions into a robot through visual ob-

servation is one of the final problem in the humanoid

robot studies [1]. This technology enables robots to im-

itate human motions easily, and be useful for program-

ming the skill of the robot which works around our lifes-

pace. This also interests us from AI aspects because we

must have acquired our motion skills in similar way.

Many studies have been done for this issue. The Jenkins’

approach starts with analyzing the silhouette of a motion

of movements [2]. The human hands’ movements are di-

vided into some basic motions (lines, circles, etc) and

its parameters. Then whole human movements are de-

scribed with these basic motions. Finally original motion

is re-generated from the sequence of the basic motions.

Inamura et.al proposes the idea of the ’minesis’, that are

the sets of basic movement of the human joint angle [5].

The human joint angle movements are divided into the

list of minesis and its parameters. Our group have pro-

posed the idea of ’learning from observation’, such as

APO (Assembly Plan from Observation) and Attention

Point Analysis [4][3]. A robot observes and imitates a

human performing an assembly task by analyzing the tra-

jectory of human hand movements and the contact states

Figure 1: Overview of our project.

of the objects. Basically, all these concepts indicate that

the human motions consist of some variations of simple

motions. It is natural to think that the human motion con-

sists of the limited number of the basic motions, not made

from scratch. We also employ this idea for this study. We

call these basic motions as ”motion primitives”.

We tried to apply this idea for importing human dance

motions into humanoid robots. Our project overview is

shown in Fig.1. The dance motions are one of the good

example of whole body motion, and its characteristic is

having the scenario. This means they must have a struc-

ture of the motion primivies. Our first try is to detect both

ones, the motion primitives and the structure. To gener-

ate the robot movement from the motion primitives, we

developed enhanced methods: the concatenation of the

motion primitives and the modification technique for a

humanoid robot.

2 Acquisition of the human motions

The human dance motion is acquired by the motion cap-

ture system that consists of 8 cameras (SONY DXC-

9000) and PC clusters (Pentium III-800MHz Dual). The

cameras are arranged to surround a person and PCs can

Proceedings of the 2002 IEEE/RSJ 
Intl. Conference on Intelligent Robots and Systems 

EPFL, Lausanne, Switzerland • October 2002 

0-7803-7398-7/02/$17.00 ©2002 IEEE 2539



 

Figure 2: Acquire images from eight cameras.

acquire image frames in the size of 720x480 pixels at

near 30Hz. All internal clock of PCs are rectified by NTP

protocol in advance, and acquisition time of each image

frames are also recorded in millisecond’s accuracy. We

also acquire blur-free images of moving objects by using

the frame-shutter functionality with which this camera is

equipped (Fig.2). All cameras’ calibration parameters are

acquired, then the geometrical relations between cameras

and the internal parameter of each cameras can be deter-

mined.

The human motion acquisition is carried out by attach-

ing lighting markers on the desirable positions of human

body. During the actor performing the dance motion, all

PCs only acquires the multi-viewpoint images and after

that, depth measurement is done by matching markers be-

tween the images [6].

3 Analysis: detecting ’motion primitives’

Our aim of motion analysis is to detect similar motion

elements (’motion primitives’) and describe the whole

dance motion with the sequence of them. According to

the analysis result, we can recognize the structure of the

dance motion, such as the same motion segments, itera-

tive motion sequence or other kinds of regularities. Fur-

thermore, it becomes possible to detect the mutual rela-

tions of different dancing by comparing the primitive mo-

tion of them.

To detect the motion primitives, we paid our attention to

the local velocity minimun frames of the end effectors

(hands and feet). Because it represents the human motion

segment: the start points and the end points of the motion

primitives. Many researchers notice this value for motion

segment points [7] [8].

To evaluate the similarities of the motion segments, we

used the DP distance of the target points’ trajectories in

3D space. According to this value, the motion segments

are clustered into some groups. Consequently, same mo-

tions of the target points has same labels. They are regis-

tered as the ’minimum motion primitives’.

In the structural motions such as the dances, much longer

motion sequences (the regularities of the minimum mo-

tion primitives) can be seen. Our algorithm can detect

these primitive motion patterns and detect final motion

primitives by equalizing the same motion sequences.

3.1 The motion analysis algorithm

We use 15 measurement points for analysis: hands(L,R),

elbows(L,R), shoulders(L,R), head, hip, body center,

waists(L,R), thighs(L,R) and feet(L,R). The analysis

pipeline consists of following steps (Fig.3).

( 1 ) Define the body center coordinate system.

We define the body center coordinate system which set

the X-axis as the direction of the waist and Z-axis as the

perpendicular direction. In order to detect the symme-

try of the right and left arms/feet movements, we used

the symmetry coordinate system for right/left half of the

body portions.

( 2 ) Coordinates conversion of target points.

The target points (both hands and feet) is changed into a

body center coordinate system.

( 3 ) Preliminary segmentation.

Calculate the velocities of the target points and detect the

local minimum. Gaussian filter is applied in advance to

prevent segmentation errors.

( 4 ) Evaluate the correlation between the segments.

Evaluate the correlation between the target points’ trajec-

tories according to the DP matching distance, which is

calculated by following equations.

Assume that segment m, n are described as

Vm = {vm1, vm2, ..., vmim|vmi ∈ R3},

Vn = {vn1, vn2, ..., vnin|vni ∈ R3}, then the

distance between these segments D(M,N) can be

calculated with following :

D(m,n) = S(Vm, Vn)
S(k, l) = dk,l +min(Sk,l−1, Sk−1,l−1, Sk−1,l)
di,j = |vmi − vnj |

( 5 ) Cluster and label the segments.

The detected segments are clustered with nearest neigh-

bor algorithm. So the segments in which the target points

passes the similar locus have the same labels. The sym-

metrical motions are also detectable because we use the

symmetrical coordinate system for right and left side of

the body. Using these preliminary analysis procedures,

whole motion sequence is segmented and clustered into

the segments in which a target point draws same trajec-

tory. We call these segments as the ’minimum motion

segments’. Figure 4 shows the preliminal analysis result

of the Japanese folk dance ’Soran-Bushi’. The minimum

motion segments represent very simple motions such as

”Swing down the left arm”, ”Steps forward the right leg”.
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Figure 3: The preliminary motion analysis algorithm.

In additions, much long motion units exist for dance mo-

tions. To find these ones, following steps are applied for

extracting the frequently appearing sequence of the min-

imum motion segments.

( 6 ) Find the frequently appearing minimum motion seg-

ment sequences.

From the labeled segment sequence within the same por-

tions, frequently appearing sequences are detected by us-

ing the apriori algorithm [9]. These results are registered

as ’higher level motion segments’. This processing is per-

formed to the segment sequence of all possible length in

a part. Consequently, we can acquire multi-length and

multi-hierarchical motion segments.

( 7 ) Find the motion primitives among the different target

points.

In order to find the motion primitive of the whole body

portion, the correlations between different target points

are evaluated. For any level motion primitives, coinci-

dence probabilities between the primitives of different

target points are calculated. If this value is higher than

the threshold, they have a relation and be defined as

co− occurrence(XA ∩YB) = f(XA∩YB)2

fX (XA)fY (YB) > thresh

where f(p) : the frequence of the label p.

( 8 ) Equalization.

Finally, the motion segment sequences that are labeled

to the same motion are equalized for its 3D trajectories.

In this process, the DP matching result is used to find

the temporal matching points. The equalized results are

preserved as the final primitive motion of this motion se-

quence.

Figure 5 shows the final analysis result of the ”Soran

(1)Set up the support leg 

and Translation

(2)Translate the waist

body center and neck points

(3)Rotate the Coord. Systems

Rotation Interpolation

Interpolation

(4)Interpolate the arms and legs

Figure 6: The motion generation algorithm.

Figure 7: Generated Movements of the two motion prim-

itives in which two different folk dances ”Soran Bushi”

and ”Harukoma”.

Bushi”. We can notice following feathers:

(a) The whole dance motion consists of the iterative mo-

tion primitives and unique motion segments.

(b) Iterative motion primitives are connected by a unique

primitive motion.

(c) The longer unique primitive motion sequences exist

in a part of whole dance motion.

According to these results, we understand the structure of

this dance. This consists of some variations of iterative

motion primitives and unique motion sequences.

4 Generate new motions from motion primi-

tives

As described in the last section, dance motions consist of

the iterative motion primitives and unique motions that

connect the iterative motions. We also noticed that this

structure exists not only in this example but almost in

most of Japanese folk dances. According to this fact, new

dance motion can be generated by concatenating the mo-

tion primitives. For this issue, the study for the human

motion planning is a great help. Horgan and Flash pro-

posed the idea of the minimum jerk model for planning

the arm movements. In this theory, human arm passes to

satisfy the equations:Cj = 1
2

∫ tf

0
{(d3x

dt3
)2 + (d3y

dt3
)2}dt.
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Figure 5: The analysis result of the ”Soran Bushi”. Colored portions indicates that they has high relations.

Where tf is the interval time of the motion primitive.

Similar theories are also proposed by Uno and Kawato

[8], they proposes the minimum torque change model.

These theories indicate that we can generate new motions

from the border conditions (the posture parameters at the

start and the end). Our motion generation algorithm is

shown in Fig.6. We employed the minimum joint angle

jerk model because its simple and useful enough to apply

to our purpose.

4.1 The motion generation algorithm

Assume that two motion primitives are selected to be con-

catenated. The transition of these motions is generated

with following steps (Fig. 6).

( 1 ) Set up a support leg during the transition. The latter

primitive is translated so that this leg comes to a same

position.

( 2 ) Calculate the positions of the unsupported foot,

waist, body and neck during transitions. We employed

2nd order polynomials to keep the continuity of the posi-

tion and velocity.

v(t) = a(t− T
2 )2 + b

where v(0) = v0, v(T ) = v1
x(t) = x(0) +

∫

v(t)dt

( 3 ) Linear interpolation is applied for the waist and neck

coordinate system with following steps.

(a) Assume that the coordinate systems of the start and

end time as 0R1, 0R2. Then the rotation matrix between

these coordinates is calculated 1R2 = 0R1
−1 0R2.

(b) Convert 1R2 into the quaternion description Q12 =
{x, y, z, w}
(c) Interpolating rotation matrix is calculated asQ12(t) =
{x, y, z, w(t)}, where w(t) = w ∗ t/T .

(d) Convert Q12(t) into the rotation matrix R12(t).
(e) Interpolated coordinate system is acquired as
0R(t) =0 R1R12(t)

( 4 ) For the movements of the arms and the feet, the min-

imum joint angle jerk model is employed for interpola-

tion. We assume each portion has 4-DOF(2-DOF on a

shoulder,thigh, 2-DOF on a elbow,knee), the joint angle

parameter vectors during transition as

θ(t) = (θ1(t), θ2(t), θ3(t), θ4(t)). To generate the tran-

sition motions is to determine these functions. We de-

fine each ones as the 5 order polynomials (θn(t) =
ant

5 + bnt
4 + cnt

3 + dnt
2 + dnt+ en and set the border

conditions θ4(0)) and θ1(T ). Finally, each parameters

are determined to minimize the joint angles’ jerk during

transitions :
∫ t=T

t=0

∑

n
θn(τ)
dτ3

3
dτ → min.

The duration T is determined by the equalization of the

former and latter segments’ time. Figure 7 shows the in-

terpolation of the motion primitives from Japanese Fork

Dances ’Soran Bushi’ and ’Harukoma’.
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5 Presenting dance motions by a humanoid

robot

In this section, we show a method to import the dance

motions into a humanoid robot.

A similar study has been done by Pollard et.al [10].

They used robot arms that has the same DOF of humans’

ones. In our study, we employed 28-DOF whole body hu-

manoid robot HRP-1S [12] and try to imitate whole body

motions. As the first trial, we have assumed that the feet

are fixed and imitate upper body motions. Althogh only

imitating hands movements, we noticed the whole body

balancing control is necessary to keep standing this robot.

For this issue, we propose a new method which enables

robot to imitate human dance motions as similar as pos-

sible while keeping its body standing, through the dance

motion structure analysis we presented the last sections.

For these trials, we used OpenHRP simulator [11] and

HRP-1S virtual model. These ones enable to test whether

our data works on the real humanoid robot.

5.1 Acquiring joint angles; limiting them and their

velocities

The joint angles of dance motions can be solved by using

original motion capture data, simple inverse kinematics

algorithm and humanoid robots connection models. But

these angle values cannot be imported directly because of

these restrictions : the singularity and the limits of joint

angle/joint angle velocity.

Pollard et.at proposed a method to solve these problems.

On their methods, joint angle values are deformed so that

they become within the limits, by applying this filter like

the PD control model:

θ̇i = θi − θi−1, (1)

θ̈F,i+1 = 2
√

Ks(θ̇i − θ̇F,i +Ks(θi − θF,i), (2)

θ̇F,i+1 = max(θ̇L,min(θ̇U , θ̇F,i + θ̈F,i+1)) (3)

θF,i+1 = θF,i + θ̇F,i+1 (4)

θ̇i = θi − θi+1 (5)

θ̈B,i−1 = 2
√

Ks(θ̇i − θ̇B,i +Ks(θi − θB,i) (6)

θ̇B,i−1 = max(θ̇L,min(θ̇U , θ̇B,i + θ̈B,i−1)) (7)

θB,i−1 = θB,i + θ̇B,i−1 (8)

θV = 0.5(θF,i + θB,i) (9)

where θi is the original joint angle, θ̇L and θ̇U are the

lower and upper velocity limits. Equations(1)∼(4) are

solved from the start frame to the end, and equations

(5)∼(8) are solved backward. The final joint angle θV,i

is the average of the forward and backward passes (9).

Using this method, the joint angle velocities are kept

within the given limits. The problem of singularity is also

resolved at the same time because a part of the sequence

near the singular point can be regarded as the area where

the velocity is very fast. As a result, a gimbal locked part

is decomposed to properly interpolated angles.

5.2 Keeping balance

Although we are assuming that the robot’s feet are fixed

while dancing, the balancing problem still exists. When

the robot swings its arm in a wide arc, (Fig.8-a), it cannot

keep balance and falls down (Fig.8-c). To keep the robot

standing during the whole dance sequence, its ZMP (Zero

Moment Point), which indicates a balanced force point

existed between the robot and ground, must be within a

support area enclosed by its soles [13]. The movements

of the arms are main factors to move ZMP outside the

support area because the portions are far from feet contact

points (’the fulcrum’ of the body). As a result, the robot

must fall down like Fig.8-c.

In order to keep ZMP within the support area, the motion

must be modified to compensate for the ZMP trajectory.

On the Pollard’s filter, the stiffness parameter Ks con-

trols the motion dynamics. WhenKs is reduced, the joint

angle accelerations are limited and the whole motion be-

comes loose and compact. Then the ZMP position is kept

so that the robot can remain standing. But too small Ks
results in a much different motion from the original ones

(Fig.8-b). So finding most suitable and optimal Ks is

very important for good motion imitation while keeping

balance.

The first idea of our method is maximum Ks during the

whole motion sequence as follows:

( 1 ) Detect frames where ZMP is outside the support area.

( 2 ) Reduce Ks value on the primitive segments which

includes ZMP deviation.

( 3 ) Iterate the above process until ZMP is inside over the

whole motion sequence.

In this process, Ks values are optimized and we achieve

a proper motion between similarity and balancing.

We have simulated the motions generated by this method

and they have realized balance keeping. Then we have

experimented with the real robot (Fig.8-d). It has com-

pleted the whole motion standing by itself.

5.3 Clarify the dance motions’ poses

The problem of the last algorithm is making the mo-

tion ’ambiguous’. This is because such kinds of filter

loses the ’Stop Motions’ of the dance motions. As de-

scribed in section 3, the local minimum frames of the tar-

get points’ velocity represent the borders of primitive mo-

tions, and the dancer takes some particular and important

body poses on these frames.

Based on this idea, we have proposed a method for clar-
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Figure 8: Motion sequences: (a) is the original motion. (b)

is the motion generated with small Ks. (c) is same as (a), this

falls down on dynamics simulation. (d) is the real humanoid

(HRP-1S). Our method enables it to keep standing.

ify the dance motions. The following steps are applied to

each joint sequence:

( 1 ) When the joint angle velocity is not nearby zero at

the primitive boundary, force the velocity and the accel-

eration to be zero.

( 2 ) In a joint angle graph, find the nearest extreme points

both backward and forward from the boundary point. If

the distance between them is shorter than a threshold, a

value of the boundary point is replaced with the extreme

point, and the next extreme point is taken.

( 3 ) Boundary point is smoothly connected with the ex-

treme points by a proper polynomial equation with con-

straints that the velocity and the acceleration are zero at

the end points. This connection override former values.

Figure 9 shows the results. We have confirmed this

method is useful for imitating much human-like dance

motions.

6 Conclusion

In this paper, we propose the dance motion imitation

method for humanoid robots through visual observation.

The human motion is acquired by the motion capture sys-

tems that consists of 8 cameras and 8 PCs. Using motion

analysis method, we can recognize the structure of the

human dance motion and the motion primitives. We also

develop the motion concatenation method and show that

the original motion is recovered by concatenating the mo-

Figure 9: Example of primitive distinguished graph; In the

new graph, a gradient is flattened and the velocity is zero at the

segment boundary.

tion primitives. For importing human motions into the

robot, two problems are there : the limit of the angles and

their velocities and the balancing. For later problem, we

present a new method that controls the hand’s movement

by using ZMP trajectories and motion analysis results.

Final simulation results proved our method can keep both

the robot’s balancing and the shape of original motion.
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