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X.1 Introduction

We do not exist alone. Humans and most other animal species live in societies where the behaviour of
an individual influences and is influenced by other members of the society. Within societies, an
individual learns not only on its own, through classical conditioning and reinforcement, but to a large
extent through its conspecifics, by observation and imitation. Species from rats to birds to humans
have been observed to turn to their conspecifics for efficient learning of useful knowledge. One of the
most important mechanisms for the transmission of this knowledge is imitation.

At the heart of the ability to imitate lies a mechanism that matches perceived external behaviours with
equivalent internal behaviours of its own, recruiting information from the perceptual, motor and
memory systems. This mechanism has been shown to be present even in newborn infants, which have
been observed to imitate the facial gestures of their caretakers. In humans, malfunctions of this
mechanism, surfaced as an inability to imitate, have been used as detectors of pathological disorders
including autism and some forms of apraxia. This chapter presents a computational model of this
mechanism.

Why is this an interesting problem? From an engineering perspective, designing an architecture that
equips robots with the ability to imitate will allow the possibility for learning through demonstration.
A human demonstrator can show an example of the task and the robot can learn by imitating the
human. This will give people unfamiliar with robot programming the ability to teach robots to perform
tasks. From a scientific perspective, research on imitation spans several disciplines including
neurophysiology, psychology, psychophysics and pathology. The available data are often found at
completely different levels of description, from neural recordings to behavioural data from human
neuropathological examinations (for reviews, see (Carey, Perrett, Oram, 1997, Schaal, 1999)).
Computational modelling has the potential to integrate data from several disciplines in a common
platform. The need for very precise descriptions so that mechanisms can be implementable on
computational and robotic platforms illuminates gaps in theories, and allows research to focus on
filling these gaps. Even more importantly, computational modelling enables the development of
predictions, which can be an important tool for directing further experiments.

In brief, this chapter offers the following contributions:

It introduces a distinction between passive and active imitation, to distinguish between
approaches where the imitator goes through a ‘‘perceive - recognise – reproduce’’ cycle (passive
imitation) and the motor systems are involved only during the ``reproduce''phase, and the
approaches where the imitator'smotor systems are actively involved even during the perception
process (active imitation).
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• It develops a computational architecture inspired by Meltzoff'sActive Intermodal Matching
mechanism (Meltzoff & Moore, 1997), hypothesised to underlie infant imitation.  The architecture
(that belongs to the ‘‘passive’’ category) is capable of imitating and acquiring any demonstrated
movement that is within the capabilities of the imitator, but its ‘‘passive’’ characteristics do not
correlate well with some of the biological data available for adult imitation.

• To overcome the disadvantages of the passive architecture above, a novel, distributed imitation
architecture with ‘‘active’’ properties is developed. The novelty of this architecture lies in that the
same motor structures that are responsible for the generation of a movement are recruited in
order to perform movement perception. Imitation becomes an active, predictive process: instead
of going through a passive ‘‘perceive - recognise – reproduce’’ cycle, the imitator actively
generates possible behaviours in parallel, executes them on internal forward models (internal
simulators, or predictors) and selects among them based on the quality of the predictions they
offer with respect to the states of the on-going demonstration. However the disadvantage of this
route is that it is not capable of imitating demonstrated movements not already present in the
imitator's repertoire.

• In order to get the best of both worlds, the two architectures above are combined into the final
dual-route architecture: known movements are imitated through the active route; if the movement
is novel, evident from the fact that all internal behaviours have failed to predict adequately well,
control is passed to the passive route which is able to imitate and acquire the demonstrated
movement.

• Computational experiments are performed that demonstrate the ability of the architecture to
imitate, as well as acquire, a variety of movements including unknown, partially known, and fully
known sequences of movements. They also reveal the inability of the architecture to match
demonstrated movements with existing equivalent ones of its own, when they are demonstrated at
speeds unattainable by the imitator.

• Finally, the developed architecture is proposed as a model of primate movement imitation
mechanisms. A comparison is performed between the characteristics of the architecture and
biological data on human and monkey imitation mechanisms. It is shown that they correlate well,
thus offering possible explanations for the biological data. Perhaps more importantly, the
computational experiments offer testable predictions regarding the behaviour of the biological
mechanisms.  

X.2 On Passive Imitation

The potential of imitation to ease the robot programming process was recognised by robotics
researchers who realised that instead of going through lengthy and complex programming, robots
could learn how to perform various tasks by observing a human demonstrator. Research by
(Ikeuchi & Suehiro, 1992, Suehiro & Ikeuchi, 1992, Kuniyoshi, Inaba & Inoue, 1994, Hovland,
Sikka & McCarragher, 1996, Kaiser & Dillmann, 1996, Kang & Ikeuchi, 1997, Yeasin & Chaudhuri,
1997) has successfully used human demonstration to program robots to perform assembly tasks. The
techniques that have been utilised to achieve this differ, but the philosophy is essentially the same: the
imitation process proceeds serially through the three stages of perception (visual systems), recognition
(memory systems), reproduction (motor systems). There isn’t substantial interaction between the
three stages, and the motor systems are only involved at the final reproduction stage. 

Approaches by (Hayes & Demiris, 1994, Dautenhahn, 1995, Demiris & Hayes, 1996, Billard, 1999) in
the mobile robotics domain have attempted to follow a different approach by trying to devise imitation
mechanisms that will work directly without a recognition stage. This line of work is relatively new,
but it makes an important distinction: the imitator is not imitating because it is understanding what the
demonstrator is showing, but rather, it is understanding it because it is imitating. Imitation is used as a
mechanism for bootstrapping further learning and understanding.

The distinction between the two approaches is new in the field of robotics but not in psychology.
Researchers studying imitation in infants have made a similar distinction while formulating
hypotheses



regarding the mechanisms underlying early infant imitation. (Meltzoff & Moore, 1977) first reported
young infants, between 12 and 21 days old in the original report, being able to imitate both facial and
manual gestures, including tongue protrusion, mouth opening and lip protrusion. The experimenters
suggested that the infants are able to represent visual and proprioceptive information in a form
common to both modalities. These results were against the popular belief of the time, that infants are
only capable of imitation after 8-12 months from birth, and that imitation abilities are a result of the
infant's
cognitive development. Various hypotheses regarding the mechanisms underlying this phenomenon
were compared by (Meltzoff & Moore, 1989), including the ‘‘innate release mechanism (IRM)
model’’ which postulates that the demonstrator'sbehaviour simply triggers and releases equivalent
fixed-action-patterns (FAPs) by the infant. The IRM model relies on the existence of a set of FAPs,
but there isn'ta precise specification of what this set is (Meltzoff & Moore, 1989). IRM was judged to
be an unlikely candidate for two reasons: 

• The range of actions imitated was wide, which would mean that the infant would have to have a
large number of FAPs in its repertoire. 

• The fact that the infants attempt to and succeed in improving the quality of the imitated act
(Meltzoff, 1981). 

(Meltzoff & Moore, 1983, Meltzoff & Moore, 1989) put forward the ‘‘Active Intermodal Mapping’’
hypothesis which postulates that the infants use the demonstrator'sstates, perceived visually, as a
target against which to direct their own body states, perceived proprioceptively. This hypothesis is
particularly attractive in the case of facial or head movements for which the infant has no other way of
knowing the state of its own body other than proprioception. The existence of a mechanism that
matches stimuli between different modalities has also been advocated by (Maurer, 1993), but while
Meltzoff'sAIM mechanism appears to be activated as a choice made by the infant, Maurer argues that
the infant's intermodal matching of stimuli is a by-product of what was termed neonatal
‘‘synesthesia’’: the infant confuses input from the different senses. The infant, it is argued, does not
register the modality that the stimuli appeared in but rather it responds to changes in the stimulation's
intensity summed over all of the undifferentiated sensory modalities. Synesthesia is hypothesised to be
a normal stage of early infant development: it is argued that the primary sensory cortex is not very
specialised in infants, but with development it becomes so, the senses become more differentiated, and
‘‘true’’ intermodal matching develops. Whatever the exact mechanism is, the ability of the infant to
match stimuli between modalities is well documented, and has been demonstrated between other
modalities in addition to the visual/proprioceptive cases mentioned earlier, for example tactual/visual
intermodal matching (Meltzoff, 1981, 1993).

At this stage it is useful to draw parallels between this work and the assembly and mobile robot
imitation work mentioned earlier. There are a lot of commonalities between the passive imitation
model in assembly robots and the IRM model in infants. Both rely on the existence of a set of
predefined action patterns, which are triggered after the perception and classification of the visual
input. This set, at least in the robot work is fixed, and frequently tuned to the requirements of the task
in hand. 

The mobile robot imitation work (Hayes & Demiris, 1994, Dautenhahn, 1995) is closer to the AIM
hypothesis model, since the robots do not attempt to recognise the type of action performed by the
demonstrator, but imitate directly. However there is a difference between AIM and the approach
followed by the mobile robot researchers: the robot imitators do not attempt to match the
demonstrator'sstate with their own (as AIM suggests), but usually achieve it by trying to maintain a
quantity constant. For example, in (Hayes and Demiris, 1994) where a robot learns how to negotiate a
maze by imitating the movements of another robot, the imitator robot simply tries to maintain the
distance between itself and the demonstrator robot constant.

(Demiris and Hayes, 1996) presented a computational architecture that follows the AIM model more
closely, and demonstrated it in the context of imitation of head movements by a robotic head (Demiris



et al, 97). The details of this architecture have been presented elsewhere (Demiris and Hayes, 96,
Demiris et al 97), but the essential parts are shown in figure 1:

Figure 1: the passive imitation architecture

The visual stimuli from the visual perception modules are fed into the posture estimation module,
which at each iteration estimates and outputs the current postural state of the demonstrator (posture is
defined here as the set of angles between all connected body parts of the agent). This posture stream
is stored in memory after being filtered so only the ‘‘representative postures’’ (the postures that are
sufficient to define the movement sequence to be reproduced) are retained. The postures are then fed
into the movement matching module which outputs the motor commands needed to match these
postures with equivalent postures by the imitator, perceived proprioceptively. 

Experiments performed utilising this architecture on a robot head in the context of imitation of head
movements performed by a human demonstrator have shown (Demiris et al, 97) that the architecture is
capable of imitating any kind of demonstrated movement that the hardware of the imitator system can
afford.  It does so by having very low requirements on needed information: the postures of the
demonstrator, perceived visually, and those of the imitator, perceived proprioceptively. The choice of
posture as the unit of representation is not arbitrary. The postures of the demonstrator and imitator are
always well defined and computable. In addition, postures have a high biological significance: animals
frequently use them for communicative purposes (Bruce & Green, 1990, Groothuis, 1993), e.g. threat,
appeasement and mating postures, and human body language. Their biological significance might
even have led to the development of specialised feature detectors that respond selectively to postures.
Indeed, work by Perrett and his colleagues has shown the existence of cells in the superior temporal
sulcus (STS) area of the monkey'sbrain, that respond when a demonstrator assumes certain postures,
for example, cells that are responsive to specific head views (Perrett et al, 1990, 1991). Cells selective
to other body parts have also been reported (Tanaka93), see also (Carey, Perrett and Oram, 1997) for
an overview.

Similarly, as (Tillery, Soechting and Ebner, 1996) point out, physiological studies throughout the
somatosensory system have revealed discharges related to own static limb postures: unit activity is
usually monotonically related to changes in joint angle. The degree of accuracy of a proprioception-
based estimate of the static posture is not completely determined, and it has been shown that it
improves when visual information about the state of the body part is also available (Desmurget et al,
1995), or is even being partially substituted by it when proprioception is not available in deafferented
patients (Ghez and Sainburg, 1994). (Scott & Kalaska, 1995) demonstrated that cell activity in the
monkey motor cortex is highly sensitive to changes in arm posture even if the resulting hand trajectory
remains similar.



Finally, evidence that, at least some type of movements are controlled on the basis of a joint angular
error has been provided by (Desmurget & Prablanc, 1997) who have shown that three-dimensional
upper-limb movements are controlled via a mechanism that is comparing an estimate of the current
postural state with a target value.

By relying on information known to exist in the human brain and requiring only an intermodal
matching mechanism that is known to be within the capabilities of infants, the passive architecture
above manifests itself as an attractive model for the infant imitation abilities. Could it be a universal
model for movement imitation for later ages too? There are two issues that are against this. First, by
virtue of its design, there is no concept of known and novel movements: all demonstrations are
processed and imitated through the same mechanism. In addition, there is a clear separation between
perception and action: the motor system is involved only at the late stages of imitation. Both these
aspects have been challenged by recent biological data, and in particular human brain activation data,
that indicate that actions are processed differently if they are known to the imitator than if they are
novel, and that the motor system is already actively involved during the perception phase of the
imitation. In the next section, a different type of architecture will be introduced that tackles these
issues, and explains these biological data better. However, it would be premature to dismiss this
‘‘passive’’ architecture as invalid. Later on in this chapter, this architecture will be combined with the
‘‘active’’ architecture of the next section: it will be used as a learning component in what will be the
final dual-route active-passive imitation architecture.

X.3 Active Imitation

Having seen the advantages and disadvantages of the passive imitation approach, this section will
describe work towards the development of an architecture that tightly couples the perception
and the generation of an action. The concept of internal forward models will be introduced, and the
imitation architecture will subsequently be developed as a parallel set of
behaviours paired with forward models. Using a dynamics simulator of a thirteen degrees of freedom
robot it will be demonstrated how such an architecture can be used to generate an action as well as
perceiving it when generated by others. 

Definitions

The architecture that will be described makes extensive use of the concepts of behaviours and of
forward models. A forward model of a controlled object (a ‘‘plant’’ as it is known in the control
literature) is a function that, given the current state of the plant and a control command to be applied
on it, outputs the predicted next state. Also, for the purposes of this work, a behaviour is defined as a
function that, given the current state of the plant and the target goal(s), outputs the control commands
that are needed in order to achieve or maintain the goal(s). Target goals might be implicit or need to be
made explicit. For example, for a pick-object behaviour, the target object to be picked up must be
stated explicitly and fed to the behaviour, while for a head-nodding-yes behaviour, the target goal (i.e.
moving the head downwards) is already defined implicitly and the current state is enough to determine
the motor commands needed to execute this behaviour. A behaviour is similar to what is known in the
control literature as an ‘‘inverse model’’, however, contrary to behaviours, inverse models do not
usually utilise feedback about the current state, but output commands in a feed-forward manner. The
boundary between behaviour and inverse model however, is not a rigid one since, as (Wolpert &
Kawato, 1998) pointed out, ‘‘even control strategies, such as feedback control, which do not explicitly
invoke an inverse model can be thought of as implicitly constructing an inverse model’’.

Combinations of forward and inverse models have been used for various applications such as arm
trajectory formation (Wada & Kawato, 1993) and supervised learning (Jordan & Rumelhart, 1992)
among others. Internal forward and inverse models have also been hypothesised to exist in the



human brain (Wolpert, Miall & Kawato, 1998), where they are utilised for a variety of tasks including
sensorimotor integration (Wolpert, Ghahramani & Jordan, 1995), and motor control (Miall & Wolpert,
1996, Wolpert & Kawato, 1998).

The architecture

The fundamental structure of the architecture is a behaviour paired with a forward model (figure 2). In
order to execute a behaviour within this structure, the behaviour module receives information about
the current state (and, optionally, of the target goal(s)), and it outputs the motor commands that it
believes are necessary to achieve or maintain the implicit or explicit target goal(s). The forward model
provides an estimate of the next state( for time t+1) which is fed back to the behaviour, allowing it to
adjust any parameters of the behaviour (an example of this, as will be shown in the next section
(implementation), is adapting the gains of the PID controller used to implement a behaviour in order
to achieve different movement speeds).

Figure 2: the architecture’s basic building block, a behaviour paired with a forward model.

More importantly, the same structure can be used in order to match a visually perceived demonstrated
behaviour with the imitator's equivalent motor one. This is done by feeding the demonstrator's
current state as perceived by the imitator to the behaviour modules and having it generate the motor
commands that it would output if it was in that state and wanted to execute this particular behaviour.
The motor commands are inhibited from being sent to the motor system. The forward model outputs
an estimated next state which is a prediction of what the demonstrator'snext state will be. This
prediction is compared with the actual demonstrator's state at the next time step.
This comparison results in an error signal which can be used to increase or decrease the behaviour's
confidence value, which is an indicator of how confident the particular imitator's behaviour is that
it can match the demonstrated behaviour.



Figure 3 shows the complete architecture which consists of several of the structures that were
described above, operating in parallel. When the demonstrator executes a behaviour, the
perceived states are fed into the imitator'savailable behaviours which generate motor commands that
are sent to the forward models. The forward models generate predictions about the demonstrator'snext
state which are compared with the actual demonstrator'sstate at the next time step, and the error signal
resulting from this comparison affects the confidence values of the behaviours. At the end of the
demonstration (or earlier if required) the behaviour with the highest confidence value, i.e. the one that
is the closest match to the demonstrator is selected.

Implementation of the architecture

This section presents and analyses the results of implementing the architecture above on a dynamics
simulator of a thirteen degrees of freedom robot. The results show that the architecture is capable of
correctly selecting the appropriate behaviour even when the demonstrator and the imitator have
different dynamics. As behaviours, we implemented various movements involving moving both arms
from the rest position to various positions. To allow for easy comparison, compact description and
graph display of the results, we used an “alphabet’’, the postures of the international standard
semaphore code (ISSC) as the final positions that the arms reach (implementing here a total of 26
behaviours). For example, in figure 5 the eight windows are a snapshot of behaviours which currently
show movement towards letters E, N, L, K, I, E, T, and E respectively. The experiments involved
single movements (‘‘letters’’)  and sequences of movements (‘‘words’’).
A thirteen degrees of freedom simulated robot was constructed and its dynamics simulated using the
DynaMechs dynamical simulation library (McMillan, Orin & McGhee, 1995). ‘‘Bouncer’’ (figure 4)
has three degrees of freedom at the neck joint, three at each shoulder, one at each elbow, and one at
each wrist.

Figure 4: Bouncer, the thirteen degrees-of-freedom simulated robot

Bouncer operates under the effect of gravity, so if no forces are applied to a joint, the connected body
part moves toward the ground. Movement is also subject to friction at the joints. The full experimental
platform (figure 5) consists of two simulated robots, a demonstrator and an imitator, with similar body
structure. In some of the experiments that were conducted, the dynamics of the two robots were the
same, while in other they were different. The imitator is allowed to read the demonstrator'spostural
states (joint angles) in a crude simulation of visual capabilities. To account for the fact that in the case
of the imitator, real vision and proprioception never result in perfectly correct values of the visually
perceived demonstrator states and proprioceptively perceived imitator states, uniformly-distributed
random noise is added to both of them before they become available to the imitator.



Figure 5: the complete experimental platform includes a demonstrator and an imitator (top left and right), and
windows for displaying the behaviours that the imitator is currently considering.

Behaviours were implemented as sets of representative body postures, coupled with proportional-
integral-derivative (PID) controllers (Astrom & Hagglund, 1996), that drive the controlled body
part(s) through these key postures that constitute the behaviour. The PID controllers, one for each of
the thirteen controlled joints, output torque values which are calculated by summing three terms: the
proportional, integral, and derivative terms respectively, all of which are based on the error between
the current state and the target state. If we take e(t), the error at time t, to be the difference between
the target state and the plant'sstate at time t, then the formula is as follows (for more details see
(Demiris, 1999)): 
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where Kp, Ki, Kd are gains coefficients which were determined experimentally, and are allowed to
adapt (within limits) in order to cope with different movement speeds.

An important issue to note is that the PID controllers perform best within a specific range of gain
values; if they are not tuned within this range, they perform sub-optimally or might even lead to a
destabilization of the controlled plant. The gain parameters Kp, Ki and Kd of all behaviours start
having their optimal settings, but are allowed to adapt in order to reduce the prediction error between
the anticipated states produced from internally executed behaviours and perceived demonstrator states.
A simple adaptation mechanism was implemented for this: at each iteration, if the prediction for a
joint angle value proves to be different from the actual value, the corresponding gains for the PID
controller that controls that joint angle are increased or reduced (depending on whether the prediction
underestimated or overestimated the actual value) by a small constant amount. However, although the
gain parameters are allowed to fluctuate, (experimentally determined) upper and lower bounds are
imposed in order to prevent the controller from outputting very high torque values and destabilising
the plant. As it will be demonstrated later, this renders the perception of particular instances of some
behaviours impossible.

The DynaMechs simulation package (McMillan, Orin & McGhee, 1995) includes libraries for
simulating rigid body dynamics, and these were used in order to implement the forward models. The
procedure involves four steps:



 
• Applying the forces supplied by the behaviour, taking into account the current state (joint

positions and velocities) of the robot. 
• Calculating all the forces exerted (including joint friction and gravity) and the inertias that are

present in each joint. 
• Calculating the resulting accelerations recursively for each body part starting from the torso and

moving towards the wrist. 
• Calculating the new state (joint positions and velocities).

Although in the experiments reported here, the forward models are directly coded in, they can also be
learned by randomly generating motor commands, and using the resulting actual state as the target
output state for the forward model, in what is sometimes called ‘‘motor babbling’’ (Bullock,
Grossberg & Guenther, 1993, Jordan & Rumelhart, 1992) which is considered an important stage in
the development  of infants (Meltzoff & Moore, 1997, Meer, Weel & Lee, 1995).

Experimental results

The first set of experiments reported here consists of the demonstrator performing a behaviour that
was composed of a single action and the imitator observing it having a set of behaviours in its
repertoire. The number of behaviours is not important since the behaviours run in parallel and they are
independent of each other (only their confidences need to be compared, a simple computation
performed at the end of the demonstration). Experiments with six behaviours are shown for graph
clarity reasons.  

Figure 6 show an example confidence graph for an experiment where the demonstrator was executing
the behaviour [R], while the imitator had in its repertoire behaviours [A, B, C, D, E, R]: the imitator's
Figure 6: Confidences of imitator's internal behaviours [A, B, C, D, E, R] when  demonstrator executes behaviour
[R];

behaviours start initially by having the same confidence, zero, and end up having a confidence
correlated with their similarity to the demonstrated behaviour. Since the demonstrator is demonstrating
the movement towards reaching the letter [R], the imitator's[R] behaviour gets the highest confidence,
well above zero. All the other behaviours end up well below zero. Since all the behaviours in the first
iteration assume the posture of the demonstrator, initially, and for several iterations, they all receive
positive reinforcement, because they all look plausible at the onset of the movement. It is only after a
few iterations (i.e. after the demonstrated movement has advanced) that some of the behaviours look
less plausible (i.e. their predictions are very different from the actual demonstrated states), and their
confidence levels begin to reflect that.

Similar results were obtained with a variety of different demonstrator and imitator dynamics, and with
behaviours implementing sequences of movements (‘‘words’’). The full set of experimental results
can be found in (Demiris, 1999).

The architecture described in this section only considered the cases where the demonstrated action or
sequence of actions were already in the imitator'srepertoire. If the demonstrated action is not in the
imitator'sset of known actions, it will neither be recognised or imitated. In the next section we deal
with these cases, by blending the active imitation architecture of this section, with the passive one of
the previous section, with the final dual-route architecture able to imitate and learn novel behaviours. 



X.4 Combining Active and Passive Imitation Routes

In the experiments described in the previous section, the demonstrator does not perform any
movements that are not already in the imitator'srepertoire. One of the imitator'sbehaviours always
ends up having positive confidence and is selected as the one to be imitated. However, if the
demonstrator performs a behaviour that the imitator does not know (figure 8), all behaviours end up
with negative or zero confidence and none of them is judged as suitable for imitation. This can be used
as a trigger condition in order to attempt to learn the demonstrated behaviour. Note that in the work
reported here, learning is the process of acquiring a behaviour, either its trajectory specifications or the
motor commands needed to achieve it. Learning as used here does not imply generalisation or
adaptation to different circumstances or any other processes as used in the field of machine learning
(Shavlik & Dietterich, 1990).

The solution that is proposed in this section is to use the passive architecture of section 2 in order to
imitate any movements not already in the imitator'srepertoire. Figure 7 demonstrates this at the high
level.  

The representative postures that are extracted while the unknown behaviour is demonstrated are
stored, and together with a PID controller, form new behaviours which are added to the imitator's set.

Figure 7: the complete dual-route architecture featuring generative-predictive and learning components.



Figure 8 shows the confidences plot of the imitator'sbehaviours [A-F] while the demonstrator
executes `R'.All of the imitator'sbehaviours end up with a negative confidence value; concurrently
with the internal execution of candidate behaviours, the passive route was extracting the representative
postures of the demonstrated movement. Since none of the behaviours performed adequately during
the demonstration, the extracted representative postures, together with a PID controller, formed a new
behaviour ([learned-R]) which was added to the imitator's repertoire.

Figure 8: Confidences of imitator'sinternal behaviours [A, B, C, D, E, F] when demonstrator executes behaviour
[R];

The experiment is now repeated with the imitator equipped with the [learned-R] behaviour. Figure 9
shows the confidences plot of the imitator'sinternal behaviours while the demonstrator executes [R],
where [learned-R] does end up with positive confidence. This demonstrates the ability of the
architecture to learn new behaviours through the passive route and utilise them through the active one.

Figure 9: Confidences of imitator's internal behaviours [A, B, C, D, E, Learned-R] when  demonstrator executes
behaviour [R];



 
Experiments were also done with sequences of movements, covering the cases where all or some of
the demonstrated components of the sequence are known, and the learning of the sequence is required,
with equally favourable results (Demiris, 1999).

X.5 A model of primate imitation mechanisms

In the previous sections, two imitation architectures were presented, a passive and an active one, and a
combination of them was subsequently developed. In this section, the biological plausibility of the
combined dual-route architecture will be examined by proposing it as a model of primate action
imitation mechanisms. First, a set of criteria that a model must meet in order to be useful will be
presented, followed by an analysis of the model based on these criteria.

On criteria for useful models

Despite extensive use in the Artificial Intelligence, Cognitive Science and Artificial Life fields of the
word ``model'', there are surprisingly few attempts to develop a set of criteria with respect to
what a proper and useful model should be like (notable exceptions, frequently from scientists in other
fields, include (Lehman, 1977,  Rothenberg, 1989, Webb, 1993). By considering programs as the
computational embodiments of a theory of how the modelled system might work, a substantial amount
of theoretical work from the philosophy of science literature (Popper, 1972) on the possible criteria
concerning the adequacy and proper form of a theory can be useful here. Having as a primary target
the development of useful models, the following criteria were set for use in this work:

• A model should be clear on what it is a model of. This allows the incorporation of a number of
pieces of evidence regarding the structure and behaviour of the modelled system as test sets for
the plausibility of the model. A model should be accurate with respect to this evidence. The
degree of accuracy, and the range of evidence that it agrees with can be used as a measure of the
generality of the model.

• By virtue of being designed as an analog of the modelled system, a model should provide possible
explanations for the data available about the modelled system.



• A model should be able to generate testable predictions. This is considered important in order to
establish the scientific usefulness of the model, and demarcate it from useless exercises in
computer programming.

The architecture as a model of primate imitation mechanisms

The first criterion of the ones described earlier requires an explicit statement on what the architecture
is a model of. The aim of this section is to propose the dual-route architecture described in section 4 as
a model of primate imitation mechanisms, and describe evidence from imitation research in primates
that can be used as test sets for the plausibility of the model. Why specifically target primates? The
main reason for this is that, in contrast to ��lower��animals where the majority of research has
concentrated on whether a certain animal is capable of imitation or not, there is a sufficient amount of
data with respect to the underlying mechanisms of primate imitation to make a computational model
possible.

The validation data

This section presents neurophysiological, psychological and brain activation data pertaining to issues
important to the approach adopted in this work. Firstly, human brain activation data are presented,
followed by neurophysiological data on ��mirrorneurons��found in the premotor areas of the
monkey brain. The interplay between observing, imagining, performing and imitating a movement is
the unifying theme of the psychophysical data presented right after, and the presentation of the
validation data is concluded with the examination of data available on human imitation capabilities
following brain damage, focusing on resulting apraxia disorders.

Activation of brain structures in humans

In humans, several experiments have investigated the interplay between action generation and action
perception. (Fadiga et al, 1995) stimulated the motor cortex of human observers and recorded the
motor evoked potentials (MEPs) from hand muscles, utilising the assumption that if action observation
activates the premotor cortex (as it does in monkeys), this activation should induce an increase of the
motor evoked potentials elicited by the magnetic stimulation of the motor cortex. They found a
significant increase of the MEPs when subjects observed movements, and additionally the patterns of
muscle activation was very similar to the pattern of muscle contraction present during the execution of
the same action, i.e. the increase was present only in those muscles that are active when the human
subjects executed these actions.  

A different set of experiments with human subjects used Positron Emission Tomography (PET) brain
scanning as a way of mapping the brain regions whose activations are associated with the observation 
of hand actions (Decety et al, 1997), as well as mental rehearsal (Decety et al, 1994) (similar to what
was termed ��internal generation�� in the architecture of section 3).

In (Decety et al, 1994) normal subjects were asked to either passively observe movements of a virtual
hand grasping objects or to imagine their own hand grasping objects, presented through a virtual
reality
system. Their brain activity during these conditions was mapped. The results demonstrated that
cortical and sub-cortical motor structures were activated both during movement observation and
movement imagery. It was concluded that consciously representing an action involved a pattern of
cortical and subcortical activation that resembles the one observed during an intentionally executed
action. It is important to note that during the observation condition, subjects were instructed to watch
the movements of the virtual hand ��asif it were their own hand��(this is similar to the first step
taken by the behaviours in the active imitation route, i.e. internally assuming the observed state of the
demonstrator). The importance of the observer'sintentions during observation was further examined
in (Decety et al, 1997) where subjects observed actions with the aim of either recognising them or
imitating them later. The results showed that the pattern of activation was different between the two
conditions, suggesting that the motivations and intent of the observer during the demonstration



determine (or at least influence) which brain structures will be activated to process the incoming
stimuli. (Decety et al, 1997) also examined the effect that the meaning of the observed actions has on
the patterns of brain activation during observation. The results were striking: different brain structures
were activated when the actions demonstrated were meaningless to the observer than those activated
when the actions were known to the observer. This is very interesting since it indicates that knowing
or not the action demonstrated has an influence on the way this action will be processed in order to be
imitated.

Mirror neurons in monkeys.

Neurophysiological experiments with macaque monkeys have revealed an important class of neurons
in area F5 of the monkey'spremotor cortex, which were termed ��mirrorneurons��(Gallese et al,
1996, di Pellegrino et al, 1992). These neurons were found to become active both when the monkey
executes goal-oriented movements, and when it observes the demonstration of similar movements
executed by another monkey or a human demonstrator. A variety of mirror neurons were discovered:
grasping, tearing, manipulating, and placing objects neurons, among others. Some of the neurons
were active only during the demonstration while some others remained active for a while after the end
of the
demonstrated action. The majority of the mirror neurons are active selectively when the monkey is
observing a particular type of action (e.g. grasping), and some of them are highly selective not only to
the type of action, but also to the particular way that the action is executed (e.g. grasping with the
index finger and the thumb). The distance of the demonstrator from the monkey does not affect the
responses of the mirror neurons, and control experiments have ruled out the possibility that the
neurons are active simply as a response to particular visual configurations (for example, either of the
demonstrator'shand or of the monkey'sown hand) since most of them are also active when the
monkey executes the action in darkness. Non-biological stimuli (for example, observing a set of pliers
grasping the object) do not activate the neurons.

Observation, imagery, actual performance and imitation

Of relevance to the work presented in this chapter are also psychophysical experiments investigating
the differences between observing an action, imagining an action and executing that action. (Vogt,
1995) performed a series of studies where subjects learned to reproduce a sequence of cyclical arm
movements, either through repeatedly observing the sequence on a monitor, or through mentally or
physically rehearsing the sequence. The results were very interesting since they demonstrated that
observation or mental or physical rehearsal led to similar improvement in temporal consistency when
the subject was later asked to reproduce the observations. Some further experiments (Vogt, 1996) with
a short-term memory paradigm where subjects were allowed to observe the model movement only
once, showed that timing imitation did not benefit from any further intermediate imitation (imaginary
or physical) in the interval between the presentation of the model movement and the point were the
subjects were asked to reproduce it. Related results were obtained in ��mentalchronometry��
experiments by (Decety, 1996). Subjects were asked to perform a task either mentally or physically.
The movement times required to execute the task were very similar irrespective of the modality of
execution (mental or physical). In related sets of experiments (Decety et al, 1991, Wang & Morgan,
1992, Wuyam et al, 1995), subjects were asked to mentally perform tasks that would require different
physical effort and found that autonomic responses (cardiac and respiratory activity) during motor
imagery paralleled the autonomic responses to physically performing the task.

Brain & cognitive disorders and imitation abilities

Since imitation is a complex task involving the integration of information from multiple brain systems
including perception, memory and motor systems, it has been used as a reference task for
identifying and assessing various brain and cognitive disorders. In particular (and most relevant to this
chapter) it has been used to identify and assess the various forms of apraxia, a ��neurologicaldisorder
of learned purposive movement skills that is not explained by deficits of elemental motor or sensory
systems��(Rothi & Heilman, 1997). Apraxia usually results from brain damage (usually in the left



hemisphere) and its symptoms vary, giving rise to the various forms of apraxia, which are identified
through a series of tests, that involve performance of actions on verbal command, imitation
of meaningful and meaningless gestures, and gesture recognition and naming. A type of apraxia of
particular relevance here is visuo-imitative apraxia (Mehler, 1987). Patients suffering from this
apraxia are able to perform meaningful gestures when they are described verbally, or when they are
asked to imitate them after a demonstration, but are unable to imitate meaningless gestures
(Goldenberg & Hagmann, 1997, Merians et al, 1997). The nature of the demonstrated act, and in
particular whether the act is known or not to the imitator, appears to be very important and determines
whether or not the patient will be able to imitate it. This correlates well with the brain activation data
described earlier, which show that different brain areas are activated depending on the nature of the
demonstrated
act, and its meaning to the observer (Decety et al, 1997).

Two additional disorders are also of interest here: autism and imitation behaviour. Autism is a
syndrome which includes abnormalities of social and communicative development, partially
characterised by an inability to comprehend the viewpoints of other people (Baron-Cohen, Flusberg &
Cohen, 1993). People suffering from autism display severe deficits in imitation and pantomime tasks
(Smith & Bryson, 1994), which cannot be attributed to visual recognition memory, motor initiation
and basic motor coordination deficits (Rogers et al, 1996). Furthermore, autistic children show
deficiencies in empathy and joint attention tasks, as well as an inability to engage in pretend play
(Charman et al, 1997). On the other side of the spectrum are patients that suffer from frontal-lobe
damage, and display a pathological behaviour that has been termed ��imitationbehaviour��
(Lhermitte, Pillon & Serdaru, 1986). These patients imitate the demonstrator'sgesture although they
were not instructed to do so, and some times even when told not to do so (de Renzi, Cavalleri &
Facchini, 1996). An explicit, direct command from the doctor to the patient would stop the imitation
behaviour but a simple distraction to a different subject was sufficient to see imitation reappearing,
despite the patient remembering what (s)he had been told.

Explanations

Involvement of motor systems during perception

The human brain and mirror neuron activation data suggest that there is a motor system involvement
during observation of movement. The explanation offered for these data by this work (Demiris, 1999)
is that the motor system is activated in order to generate and internally simulate candidate behaviours,
and offer predictions regarding the incoming perceptual data from the demonstrator. On a more
specific note, the fact that some mirror neurons cease to be active when the demonstration is complete
while others continue to be active for a while after the end of the demonstration can be explained if
viewed within the composite nature of the organisation of the behaviours: more complex ones can be
composed from elementary ones. Upon completion, a behaviour X ceases to be active; however, a
behaviour X* which incorporates X as its initial step will continue to be active, since it is still capable
of offering further predictions about the demonstrator'sfuture states until X* completes its remaining
steps. This suggests that the mirror neurons that cease to be active when the demonstrated action
finishes represent that action specifically, while the other class of neurons which remain active
represent sequences of actions that incorporate the demonstrated action  as their first part.

The active route of the architecture understands an action by internally generating it. The observer
does imitate the demonstrated movement internally, even when it does not do so externally. This
feature of the architecture could explain why physically imitating a set of demonstrated movements
does not aid their later recall (Zimmer & Engelkamp, 1996), as well as why physical rehearsal of a
demonstrated behaviour does not lead to any significant differences in the levels of performance
improvement from mental rehearsal or mere observation (Vogt, 1995). Since observation, imagery and
imitation are done using mostly the same structures (behavioural modules and forward models) the
same laws should govern their operation, which explains the mental chronometry data by (Decety,
1996), which indicate that it takes roughly the same time to perform a task mentally or physically.



Influence of content of the demonstrated action

The human brain activation data described by (Decety et al, 1997) indicate that different brain
structures are activated during the observation of an action depending on whether the action is known
to the observer or not. This is explained by the dual-route nature of the architecture: if the
demonstrated act is known to the imitator, then the corresponding behaviour in the active imitation
route will be
activated. If the demonstrated act is not known to the imitator, then the passive route will be activated
in order to extract the representative postures and acquire the demonstrated behaviour. Currently, there
are no brain activation data to correlate with the behaviour of the architecture for the cases where the
demonstration consisted of sequences of actions, and particularly partially-known sequences. 

If the passive route is destroyed, the architecture will no longer be able to imitate any novel
behaviours, although, with the active route intact, behaviours that are already known will be
successfully imitated. This correlates favourably with the neuropathological data for patients suffering
with visuo-imitative
apraxia (Mehler, 1987).

Predictions

The computational studies of (Demiris, 1999) revealed limits to what the architecture can perceive, in
particular with respect to movement speeds. For example, in figure 10, the demonstrator is executing a
behaviour that the imitator does have in its repertoire ([cooler]); however this time the imitator is
400% heavier than the demonstrator, so it is not capable of executing the demonstrated behaviour at
the demonstrator'sspeed levels. As a result, all the behaviours end up with very low (below zero)
confidence values. 

Figure 10: Confidences of imitator'sinternal behaviours [Cool, Cook, Cookie, Cooker, Coot, Cooler] when
demonstrator executes behaviour [Cooler] at speeds unattainable by the imitator.

So, if the demonstration is performed at speeds that cannot be attained by the imitator, the
demonstrated actions will not be understood, even if they are in the imitator's repertoire. By
projecting this behaviour to that of the mirror neurons described earlier, the architecture offers a
testable prediction: a mirror neuron which is active during the demonstration of an action should
not be active (or possibly be less active) if the demonstration is done at speeds unattainable by the
monkey. A further prediction with respect to mirror neurons has already been hinted at earlier in the



explanation section. Mirror neurons that remain active for a period of time after the end of the
demonstration are encoding more complex sequences that incorporate the demonstration as their first
part. Further investigation through manipulation of the demonstration (adding further actions to it,
while retaining the first part) should reveal the exact sequence that the neuron is encoding. Two less
easily testable predictions regarding the mirror neurons are: (a) the existence of other goal directed
mirror neurons and (b) the trainability of new mirror neurons.  The first one predicts that there
exist mirror neurons for other goal-directed actions: since perception and generation of an action is so
tightly coupled, it can be expected that at least the most important actions in the monkey's repertoire
(body postures that convey messages, for example threat postures, facial expressions, among others)
should have mirror neurons associated with them. The second one predicts that, since the passive route
provides the active route with new behaviours after their demonstration, it should be possible to create
new mirror neurons by training the monkey to imitate a demonstrated action.

Discussion

The architecture, if viewed as a model, suggests that when humans and other primates observe a
movement with the intent to imitate, they ��putthemselves in the place of the demonstrator��,and do
what they would do if they were in the demonstrator'splace. Understanding a demonstrated movement
comes from internally generating alternatives and selecting among those, based on the quality of their
predictions. But why predict? Why not wait until the demonstration has finished and classify the
result? From an evolutionary perspective, the ability to predict and its adoption during observation
might have
prevailed since it allows the animal to act/respond to an action of a conspecific before that (potentially
non-beneficial to the observer) action has been completed.

The initial step taken by the observer, of putting herself in the position of the demonstrator, seems to
be important too. Autistic children who suffer from an inability to do so, as witnessed by their poor
performance in empathy, joint attention and pretend play tests, are unable to imitate. Normal children
observing a human experimenter demonstrating an act but failing at it (for example, trying to
pull apart a dumbbell, but failing due to finger slippage), do imitate the intended action of the human
successfully, but do not do so when they see a mechanical device trying to do the same act but failing
(Meltzoff, 1995). An explanation for this could be that the children did manage to imagine themselves
in the place of the demonstrator when the demonstrator was human but not when it was not of
biological nature. As already mentioned earlier, mirror neurons also do not respond when the action
(e.g. grasping) is done with pliers, and not by a human arm (Gallese et al, 1996). 

The dual route nature of the architecture is interesting too. It was already discussed in the explanations
section earlier, that damaging the passive route leads to behaviour similar to that of visuo-imitative
apraxic patients. What about the reverse condition? There is currently no evidence for the reverse
dissociation, i.e. having the active route destroyed while retaining the passive one intact. This
condition would be hard to detect, since known behaviours can still be imitated through the passive
route as being novel. However, it is important to note that, essentially, the active route maps the
observed movements to the imitator'sinternal ones, i.e. it serves as a recognition process. Any internal
representations associated with these behaviours (including symbolic ones, for example the name of
the behaviour, or emotional significance, intentions or any other attributes) can be retrieved through
this route (note that it has been suggested (Gallese & Goldman, 1998) that the role of the mirror
neurons is to facilitate the detection of the mental states of observed conspecifics by adopting their
perspective). There are cases reported related to a disruption to this process: (Rothi, Mack & Heilman,
1986) reported two patients who could imitate demonstrated pantomimes but could not recognise (or
discriminate among) them in what is termed as ��pantomime agnosia��.

In the experiments reported in this chapter, all behaviours that are present in the imitator'srepertoire
are activated in order to generate alternatives and offer predictions as to what comes next. For
efficiency reasons, it is conceivable that context can be used in order to select among all the available
actions the ones that are applicable or at least relevant to the current situation. Although it is still early
to speculate about the exact nature of this process, experiments with humans and monkeys have shown



that actions applicable to a certain context are retrieved even if no action is required on behalf of the
subject. (Rizzolati et al, 1988, Murata et al, 1997) have shown that there are neurons in the area F5
(same area with the mirror neurons) of the monkey'spremotor cortex that are active during grasping
movements, but are also active when the monkey views a graspable object. The interpretation
favoured by the experimenters was that the responses of the F5 neurons represented the description of
the presented object in motor terms, i.e. the visual features of the object are automatically translated
into a potential motor action (regardless of whether the monkey intended to move or not). In humans,
experiments with positron emission tomography have shown (Grafton et al, 1997) that observation of
tools activated the premotor areas in the absence of any overt motor demand (it is interesting to note
that the additional task of silent tool naming did not result in any additional activation of the premotor
cortex, but tool-use naming did). These data indicate that the brain might indeed be using context to
reduce the amount of behaviours that will be tried out. 

Currently, a single presentation is enough for the architecture to acquire a new behaviour. It is not
clear how this relates to primate behaviour but the architecture could be modified so that only
frequently-occurring behaviours get acquired, or possibly the most biologically-important to the
imitator. Then the passive route would essentially act as a short-term memory that would filter the
behaviours letting only some of them through to the long-term memory of the active route.

X.6 Epilogue

In this chapter, a computational architecture for equipping robots with the capability to imitate was
proposed, and subsequently proposed as a model of primate imitation mechanisms. The architecture
has an active and a passive route: within the active route, the imitator mentally places itself in the
place of the demonstrator and internally executes (�imagines�)candidate behaviours, eventually
selecting among them based on the accuracy of their predictions regarding the demonstrator�s
incoming states as they are being perceived as the demonstration unfolds. If there are no behaviours
that can predict sufficiently well, the passive imitation route learns the demonstrated behaviour, and
adds it in the imitator�s behavioural repertoire. 

Computational experiments were performed instantiating this architecture using a dynamics simulator
of a thirteen degrees of freedom robot, and showed the architecture to be able to imitate known
behaviours, as well as acquiring new ones and successfully utilising them later. The architecture was
also proposed as a model of primate imitation mechanisms and its characteristics, as explored by the
computational experiments, were correlated with data on biological imitation generating a number of
explanations and predictions. Completely understanding the underlying mechanisms of imitation is
still a distant goal, and utilising computational and robotic architectures as models of real neural
systems is a difficult and relatively new endeavour, but the biological data that are available indicate
that the behaviour displayed by this architecture is towards the right direction.
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