
Int. J. Appl. Math. Comput. Sci., 2014, Vol. 24, No. 3, 579–597
DOI: 10.2478/amcs-2014-0042

IMITATION LEARNING OF CAR DRIVING SKILLS WITH
DECISION TREES AND RANDOM FORESTS

PAWEŁ CICHOSZ, ŁUKASZ PAWEŁCZAK

Department of Electronics and Information Technology
Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland

e-mail: p.cichosz@elka.pw.edu.pl,l.pawelczak@stud.elka.pw.edu.pl

Machine learning is an appealing and useful approach to creating vehicle control algorithms, both for simulated and real
vehicles. One common learning scenario that is often possible to apply is learning by imitation, in which the behavior
of an exemplary driver provides training instances for a supervised learning algorithm. This article follows this approach
in the domain of simulated car racing, using the TORCS simulator. In contrast to most prior work on imitation learning,
a symbolic decision tree knowledge representation is adopted, which combines potentially high accuracy with human
readability, an advantage that can be important in many applications. Decision trees are demonstrated to be capable of
representing high quality control models, reaching the performance level of sophisticated pre-designed algorithms. This is
achieved by enhancing the basic imitation learning scenario to include active retraining, automatically triggered on control
failures. It is also demonstrated how better stability and generalization can be achieved by sacrificing human-readability
and using decision tree model ensembles. The methodology for learning control models contributed by this article can be
hopefully applied to solve real-world control tasks, as well as to develop video game bots.

Keywords: imitation learning, behavioral cloning, decision trees, model ensembles, random forest, control, autonomous
driving, car racing.

1. Introduction

Autonomous vehicle control is a challenging task
that has a huge scope of possible applications. It
ranges from the video game industry (e.g., developing
computer-operated opponents for human players), to car
security and assistance systems (e.g., advanced lane guard
and parking assistance systems), to exploration robots
used in dangerous environments (e.g., ocean exploration,
extra-terrestrial exploration). Many practically useful
solutions in these areas already exist, but they still leave a
considerable space for improvements that justifies further
research involving new techniques.

Machine learning is a particularly appealing
approach to creating vehicle control algorithms, both for
simulated and real vehicles. This is because it can be
used without precise and explicit domain knowledge and
is capable of adapting to environment changes. While
its potential utility has been demonstrated in a number
of case studies (Pomerleau, 1988; Togelius et al., 1996;
Baluja, 1996; Kröedel and Kuhnert, 2002; Forbes, 2002;
Munoz et al., 2009; Cardamone et al., 2009b; 2009a;
2010; Loiacono et al., 2010), there is no single learning

scenario and algorithm that proved universally successful
and several possibilities remain unexplored.

This article addresses the task of simulated racing
car control and adopts the imitation learning scenario
(Chambers and Michie, 1969; Urbancic and Bratko,
1994; Atkeson and Schaal, 1997; Bratko et al., 1998;
D’Este et al., 2003; Sammut et al., 1992), in which an
existing exemplary controller is used to generate training
instances, needed to inductively learn a classification
or regression model representing necessary control
skills. This is widely and easily applicable for all
control tasks that can be satisfactorily performed by
humans, while their complexity prevents formulating
hard-coded (pre-designed) control algorithms. Whereas
a self-learning paradigm, such as reinforcement learning
(Sutton and Barto, 1998; Kaelbling et al., 1996), could
appear more attractive and powerful, imitation learning
is arguably more straightforward to apply and should
be preferred whenever an appropriate source of training
instances is available. It is particularly likely to be
superior when seeking for a reliable and reusable control
modeling procedure that can be used across a variety of

p.cichosz@elka.pw.edu.pl, l.pawelczak@stud.elka.pw.edu.pl

580 P. Cichosz and Ł. Pawełczak

related tasks.
Unlike in most prior work on learning control

through imitation, and probably all prior work on learning
driving skills, a symbolic decision tree (Breiman et al.,
1984; Quinlan, 1986; 1993) representation of learned
models is used here. In contrast to more popular
subsymbolic methods, including neural networks (Hertz
et al., 1991), this makes the created models easy to
inspect, verify, and possibly tune by human experts, and
their control decisions can be explained in a meaningful
way. This is an important advantage for at least
some practical instantiations of the vehicle control task.
Decision trees can be also learned in reasonably short
time, even from large training sets. When sufficient
computational power is available and loss of model
comprehensibility is acceptable, decision tree ensembles
are known to usually achieve better prediction quality
because they are more stable (robust with respect to
training data perturbations) and less prone to overfitting
(Dietterich, 2000). Of those, random forests (Breiman,
2001) have proved particularly successful. They are also
employed in this work to verify how much improvement
over single tree models they can provide. One of primary
motivations for this work is to see how algorithms that
are usually employed for data mining applications (Witten
and Frank, 2005; Han and Kamber, 2006) perform in a
realistically complex control task.

One issue that is crucial for successful application
of inductive learning in general and decision trees in
particular is overfitting prevention. It becomes a particular
challenge for imitation learning, where it may be quite
easy but also quite useless to exactly mimic the behavior
of the examplary controller for a single particular task
instantiation (e.g., driving a single car on a single track),
without generalizing properly to other instantiations of
the same task (e.g., driving different cars on different
tracks). Standard overfitting prevention techniques, such
as decision tree pruning (Breiman et al., 1984; Quinlan,
1993; 1999; Esposito et al., 1997), reducing the level of
fit to the training data with the hope to better generalize to
new data, may be insufficient for successfully performing
control tasks. This is because even a good model with
respect to standard inductive learning quality criteria may
be unable to solve a control task. By occasionally
taking different actions than the exemplary controller, the
model-based controller is likely to considerably depart
from the state-action trajectories represented by training
instances. Finding itself in state space regions not covered
by the training set, it is likely to make wrong decisions
ultimately leading to failure. We address this challenge by
control model retraining, applied to incorporate additional
training instances generated in a special active learning
mode, automatically triggered on failure.

The utility of the approach proposed in this article
is experimentally demonstrated using The Open Racing

Car Simulator (TORCS)1, known for its good level of
physical realism, clear interface for connecting custom
driving algorithms, and a collection of high-quality
pre-programmed bot drivers. One of those, exhibiting
a high skill level, is used as the exemplary driver for
imitation learning. This makes the presented results
objective and reproducible, which would be hardly
possible with a human driver.

The article is organized as follows. Section 2
briefly summarizes the essential background information
on decision trees and random forests used to represent
control models as well as the TORCS simulator, with its
state and control action representation. It also reviews
some most closely related prior work. In Section 3
the proposed modeling procedure is described, including
training set generation, model creation, and the active
retraining technique. Section 4 presents the results of
experimental studies conducted to verify the utility of this
procedure and Section 5 summarizes the article, as well as
outlines possible future research directions.

2. Background

One of basic assumptions of this article is to build a
novel and useful solution upon well known and standard
building blocks, so that the same approach can be
easily reused on other related tasks. This is why we
use decision trees and decision tree model ensembles
that are much more than adequately described in the
literature as well as their R language (R Development
Core Team, 2010) implementations that are easily and
freely available. Also the TORCS simulation environment
is both easily available and well described to enable
reproducing the results or extending the techniques
presented here. This section can be therefore limited to
providing bare minimum information on the algorithms
and the simulation environment, necessary to follow the
foregoing discussion of the proposed approach.

2.1. Decision trees. A decision tree (Breiman et al.,
1984; Quinlan 1986; 1993) is a hierarchical structure
that represents a classification model, i.e., a mapping of
instances from a given domain to a finite set of classes.
Internal tree nodes represent splits applied to decompose
the domain into regions, and terminal nodes assign class
labels to regions believed to be sufficiently small or
sufficiently uniform. For convenience, we will reserve
the term node to internal nodes only and refer to terminal
nodes as leaves.

2.1.1. Model representation. Splits are specified
by some relational conditions, based on selected single
attributes, that may have two or more outcomes. Formally,

1http://www.torcs.org.

Imitation learning of car driving skills with decision trees and random forests 581

a split can be represented by a test function that maps
instances into split outcomes. A separate outgoing branch
is associated with each possible outcome of a node’s
split. If the split’s outcome can be unambiguously
determined for any possible instance, then it does partition
the domain into disjoint subsets, corresponding to the
outgoing branches. It is therefore easy to see that each
node or leaf of a decision tree corresponds to a region
(subset) of the domain.

Looking from a different perspective, any instance
can be “passed down” from the root node, along branches
corresponding to the outcomes of consecutive splits, to a
corresponding leaf. This shows that, under the assumption
of each split assigning one and only one outcome to
any instance, a decision tree represents a mapping of all
instances from the domain to the set of its leaves. Now if
we further assume that each leaf stores exactly one class
label, then a decision tree can be seen as a representation
of a classification model.

2.1.2. Growing. Decision tree growing (Quinlan,
1986) is a sequential process during which new nodes
or leaves are added step by step in a top-down fashion,
starting from a single root node. It involves the following
major operations:

• class distribution calculation based on the
corresponding subset of training instances,

• checking the stop criteria, which determine whether
a node or a leaf will be created,

• class label assignment for leaves (usually performed
for nodes as well),

• split selection for nodes (usually based on the
resulting class distribution impurity),

• split application, i.e., partitioning the current subset
of training instances into subsets corresponding to
split outcomes.

2.1.3. Pruning. Decision tree pruning (Quinlan, 1999;
Esposito et al., 1997) is an insurance policy against
overfitting motivated by Ockham’s razor (Mitchell, 1997).
It can be considered an inverse of growing that results
in cutting off some overgrown subtrees and replacing
them by leaves with the intention to improve the tree’s
generalization capabilities. In many cases pruning turns
out to be a good way of achieving good generalization
with decision trees.

2.1.4. Prediction. Using decision trees to predict
classes for arbitrary instances from the domain for which
it was created is straightforward and computationally
efficient. It reduces to consecutively applying splits until

each instance to be classified reaches a leaf, containing a
class label.

2.1.5. Implementation. The particular decision tree
implementation used for this work is the rpart package
(Therneau and Atkinson, 1997) for the R language (R
Development Core Team, 2010). It can be considered
a clone of the well-known CART algorithm (Breiman
et al., 1984). Its main features include

• using binary splits, based on equality or subset
membership conditions for discrete attributes and
inequality conditions for continuous attributes;

• stop criteria, including

– reaching less than a specified minimum
number of instances required for a split (the
minsplit parameter),

– no possibility to reduce the cross-validated
misclassification error by at least a specified
complexity parameter value, representing the
cost of adding a node to the tree or the
minimum error improvement required for a
split (the cp parameter);

• split evaluation based on the Gini index (Breiman
et al., 1984) or the entropy (Quinlan, 1986), which
are two most common impurity measures;

• cost-complexity pruning (Breiman et al., 1984)
based on identifying a complexity parameter value
that yields an acceptable balance between the size
and cross-validated misclassification error of the
tree;

• support for instance weights.

2.2. Random forest. When the human-readability of
models is not required, better predictive performance can
be obtained by combining a number of different decision
trees created for the same domain. This idea of ensemble
modeling (Dietterich, 2000) is in principle applicable
to arbitrary classification or regression models, but has
become particularly successful with decision trees due to
their instability. It makes it easy to obtain diverse decision
trees by using multiple perturbed copies of the original
training set.

A random forest (Breiman, 2001) is an ensemble
model represented by a set of unpruned decision trees,
grown based on multiple bootstrap samples drawn with
replacement from the training set, with randomized split
selection. It can be considered an enhanced form of
bagging (Breiman, 1996), which additionally stimulates
the diversity of individual models in the ensemble by
randomizing the decision tree growing algorithm used to
create them.

582 P. Cichosz and Ł. Pawełczak

2.2.1. Growing. Random forest growing consists in
growing multiple decision trees, each based on a bootstrap
sample from the training set (usually of the same size as
the original training set), by using a standard decision tree
growing algorithm. Each bootstrap sample can be easily
seen to contain about 63.2% instances from the original
training set (with multiple copies of some), and the
remaining 36.8% instances are referred to as Out-Of-Bag
(OOB) instances.

Since the expected improvement of the resulting
model ensemble over a single model is contingent
upon sufficient diversity of the individual models in
the ensemble (Breiman, 1996; Dietterich, 2000), the
following modifications are applied to stimulate the
diversity of decision trees that are supposed to constitute
a random forest:

• trees are grown with maximally restrictive stop
criteria (until reaching a uniform class, exhausting
the set of instances, or exhausting the set of possible
splits),

• whenever a split has to be selected for a tree node,
a small subset of available attributes is selected
randomly and only those attributes are considered for
candidate splits.

Individual trees built that way are likely to be overfitted,
but nevertheless no pruning is applied to them, so that each
of them remains maximally fitted to the training set. With
the random internal attribute selection this gives them
many opportunities to differ, though, and their individual
overfitting is effectively canceled out if they are used as
an ensemble.

2.2.2. Prediction. Random forest prediction is
achieved by simple unweighted voting of individual trees
from the model. With sufficiently many diversified
trees (typically hundreds), this simple voting mechanism
usually makes random forests extremely accurate and
resistant to overfitting. As a matter of fact, in many cases
they belong to the most accurate classification models that
can be achieved. Unfortunately, as model ensembles, they
lose much of human readability that is such an important
advantage of decision trees.

2.2.3. Implementation. The particular random forest
implementation used in this work is the randomForest
package (Liaw and Wiener, 2002) for the R language (R
Development Core Team, 2010), which is based on the
original Fortran code developed by Breiman and Cutler.

2.3. TORCS environment. TORCS is both a realistic
racing car simulator and an enjoyable racing video game.
The simulation engine takes into account several factors

that impact the behavior of the car on the track, such
as torque, tyre adhesion, drivetrain, or aerodynamics,
and makes it possible to control the car via the steering
wheel, acceleration and brake pedals, as well as the
clutch and gear shifter (if using manual transmission).
It provides 3D visualization and a number of tracks,
with more relatively easy to create, and a choice of
several car models. More importantly, it also includes
several pre-programmed bot drivers, and additional bots
can be created essentially by defining a custom C function
(Wymann, 2006). This makes it a convenient platform for
research on autonomous vehicle control that has recently
become quite popular (Munoz et al., 2009; Cardamone et
al., 2009b; 2009a; 2010; Loiacono et al., 2010).

2.3.1. State representation. A TORCS bot can
perceive the track and its car situation through a number
of attributes of two basic types:

track description: attributes describing the properties of
consecutive short track segments in front of the car,
including

• type (straight, left turn, or right turn),

• length,

• width,

• turn radius,

car status: attributes that represent the car status
maintained by the simulation engine, including

• the distance between the center of the car and
the middle of the track,

• the angle between the axis of the car and the
axis of the track,

• engine RPM,

• velocity (represented by its x- and
y-components, in the direction of the track and
perpendicular to the track).

It is a common practice in car control studies to
adopt a driver-perspective track description in the form of
rangefinder sensors, providing distances between the car
and track edges measured along a set of beams (Togelius
et al., 2006; Kohl et al., 2006; Cardamone et al., 2009b).
This rangefinder sensor state representation can be easily
calculated from the segment and car status information
originally provided by TORCS. Following Loiacano et al.
(2009), we use rangefinder sensors directed every 10◦ in
the [−90◦, 90◦] range, as illustrated in Fig. 1. We also use
all car status attributes as listed above, and a limited set of
additional segment-derived attributes consisting of

• the current and next segment type,

Imitation learning of car driving skills with decision trees and random forests 583

Fig. 1. Rangefinder sensors for the TORCS environment.

• the turn radius values for the the next 8 equal-length
10-meter track sections,

• the distance to the next segment of type different
from the current segment type.

2.3.2. Control actions. Control actions available for
a TORCS bot are specified by setting the following
parameters:

steering: continuous in the [−1, 1] range,

acceleration: continuous in the [0, 1] range,

brake: continuous in the [0, 1] range,

gear: discrete integer in the [−1, 7] range.

These represent the steering wheel, the acceleration and
brake pedals, and the gear shifter of the car, respectively.
For simplicity, they all will be referred to as ac-
tions thereafter. The car driving task in the TORCS
environment (just like the real car driving task) is therefore
a multidimensional control task, where the control model
is required to generate a vector of multiple control actions.
While TORCS makes it possible to also control the clutch,
this capability is not used in our experiments (the clutch is
operated automatically).

2.4. Related work. This article adds its contribution
to the on-going effort in the area of learning control
behavior, dated since at least the 1960s. A variety of
learning tasks and algorithms have been considered over
the last five decades. Of those, particularly relevant
to this article are all studies on learning by imitation
(Chambers and Michie, 1969; Urbancic and Bratko,
1994; Atkeson and Schaal, 1997; Bratko et al., 1998;
D’Este et al., 2003; Sammut et al., 1992), especially

those addressing the vehicle control task, either in the
TORCS environment (Munoz et al., 2009; Cardamone
et al. 2009b; 2009a; 2010) or another simulated or real
environment (Pomerleau, 1988; Togelius et al., 1996;
Baluja, 1996). Other approaches to this task that do not
follow the imitation learning scenario, including those
based on reinforcement learning (Krödel and Kuhnert,
2002; Forbes, 2002; Loiacono et al., 2010), even if adopt
substantially different assumptions about the available
training information and use different learning algorithms,
need to face the same crucial issues of state information
and control action representation. In these respects, this
work borrows substantially from many of those prior
solutions.

Interestingly, relatively few previous imitation
learning demonstrations used symbolic knowledge
representation and learning algorithms. Subsymbolic
techniques, such as neural networks (Hertz et al., 1991),
have received much more attention in this context
(Pomerleau, 1988; Togelius et al., 1996; Baluja, 1996;
Cardamone et al., 2009a; 2010; Anderson et al., 2000).
While there are some noteworthy exceptions to this
general trend (Urbancic and Bratko, 1994; Bratko
et al., 1998; Sammut et al., 1992; Sammut, 1996; D’Este
et al., 2003), none of them addresses the vehicle control
task.

This article follows the less popular symbolic
imitation learning path using decision trees (Breiman et
al., 1984; Quinlan, 1986; 1993), the most widely used
symbolic learning algorithm family capable of producing
models that are both accurate and human-readable, and
decision tree ensembles (Dietterich, 2000; Breiman,
1996; 2001) that sacrifice the comprehensibility for
greater stability and overfitting resistance. It successfully
addresses all major challenges encountered when
attempting their application to cloning car driving skills,
which differs from popular data mining applications
(Witten and Frank, 2005; Han and Kamber, 2006) in
several important ways.

The relations of this research to prior work using
both the learning by imitation approach and the TORCS
environment are particularly close and deserve more
detailed comments. While this work has much in common
with them, in has some unique qualities that hopefully
make it interesting and useful:

• employing a symbolic decision tree model
representation for best comprehensibility and
random forest for improved stability and
generalization,

• applying a retraining technique to compensate for
insufficient representativeness of training instances
and adapt to different state trajectories,

• using several diverse test tracks of various

584 P. Cichosz and Ł. Pawełczak

complexity levels, unseen during model training, for
performance evaluation,

• using relatively low-level unprocessed state and
action representation almost directly corresponding
to the task’s natural state and action space, without
any smart intermediate processing layer typically
incorporated to make learning easier.

The latter deliberately departs from the path that is
suggested by previous findings (Cardamone et al., 2009b),
indicating that high-level state representation may lead to
better learning results. It is intended to keep our approach
generic and easily reusable, with the option to incorporate
refinements in the future work if it turns out promising.

Successful demonstrations of autonomous real car
driving, including the DARPA Grand Challenge (Buehler
et al., 2007; 2009) and Google’s self-driving cars (Thrun,
2010; Guizzo, 2011), show that learning driving skills
is just one of numerous algorithmic approaches that
may be regarded as building blocks of future driverless
vehicles. The issue of modeling and control addressed
by imitation learning may appear to be essential, but
several other issues may be similarly or more challenging.
These include, in particular, sensor design and calibration,
localization, object recognition, and trajectory planning
(Levinson et al., 2011). What may turn out to be crucial
for practical real-world applications is the perception of
terrain conditions and road smoothness using sensors as
well as visual features extracted from camera images
(Stavens, 2011). These issues are entirely beyond the
scope of this article.

3. Control models

This section presents the details of the modeling
procedure used to achieve control models represented
by decision trees and decision tree ensembles. While
developed by trial-and-error to some extent, based
on experimenting with the TORCS environment,
it is presented here in a systematic and mostly
task-independent way, with some specific issues directly
related to TORCS postponed to the next section.

3.1. Model design. Our approach to learning control
models is based on the following principles:

1. A control task with multidimensional control actions
is decomposed into multiple control tasks with one-
dimensional actions, solved in parallel by separate
control models operating without interactions. For
the TORCS environment, one will therefore have
separate control models for the steering, acceleration,
brake, and gear parameters, which jointly represent
the complete control model for a simulated car.

2. A control task with one-dimensional continuous
actions is simplified to a control task with one-
dimensional discrete actions using one of the follow-
ing two approaches:

plain discretization: continuous control actions are
directly discretized into a number of intervals,
with single representatives of each interval used
as discrete control actions,

differential discretization: continuous control
action changes (i.e., action differences for two
consecutive time steps) are discretized, with
single representatives of each interval used as
discrete control actions.

In the experiments reported in this article the
steering, acceleration, and brake continuous actions
will be discretized using the plain discretization
approach, with the investigation of possible
advantages of differential discretization postponed
to future work.

3. A control task with one-dimensional discrete ac-
tions is considered a classification task, with class
labels corresponding to its possible discrete ac-
tions. For the TORCS environment, discrete actions
corresponding to the steering, acceleration, brake,
and gear parameters will be treated as class labels, to
which state vectors are to be mapped by classification
models.

4. All classification models dedicated to individual one-
dimensional control tasks are trained from the same
set of training instances, with different class labels
(appropriate for particular tasks). For the TORCS
environment, a single set of training instances,
based on the behavior exhibited by the exemplary
driver, is used to train multiple separate classification
models for the steering, acceleration, brake, and
gear parameters, with just class labels assigned
differently.

5. When applying classification model predictions to
the control task, class labels for discretized actions
are converted back to the original continuous rep-
resentation using discretization interval representa-
tives. For the TORCS environment, the steering,
acceleration, and brake actions will be obtained
as the representatives of the discretization intervals
corresponding to the predicted class labels.

These principles, along with the one about
using decision trees and random forests for model
representation (as already stated several times before)
constitute the foundations of this article’s approach
to learning control models. They can be hardly
considered surprising or unobvious, being mostly rather

Imitation learning of car driving skills with decision trees and random forests 585

straightforward and common in prior work on imitation
learning. Two of them deserve more justification, as
apparently oversimplified: multidimensional action
decomposition and continuous action discretization. It
is not unlikely that they both indeed limit the quality of
control policies that can be represented and acquired.
They are both currently useful, though, since they
make it possible to apply any standard general-purpose
classification algorithms to create control models.

Dealing with the original multidimensional action
space would require some way of detecting, representing,
and incorporating dependencies between different action
parameters to the modeling process. Some of them may
be quite simple and suggested by background knowledge
(e.g., for the acceleration and brake actions) and some
other much more complex and unobvious. Dealing
with the original continuous actions without discretization
would require using regression, rather than classification
algorithms. Both these enhancements are certainly worth
addressing by future work, but sticking with the simplified
approach makes it possible to focus on investigating the
capabilities of classification algorithms and refining the
learning scenario before looking for the best possible
quality.

The way from such basic principles to a truly
useful solution that delivers satisfactorily working control
models may be long and quite tricky, though, requiring
in particular appropriate modeling techniques to be
employed. The remainder of this section gives an account
of the latter.

3.2. Training sets. Training sets generated from the
exemplary control behavior to be imitated consist of
input state vectors accompanied by several class labels,
corresponding to each classification task to which the
original control task is decomposed. State vectors
contain task-specific attribute values that are left in their
original form. Each state vector is accompanied by
the corresponding control action vector, with actions
discretized as described above.

3.3. Retraining. One issue with imitation learning
that appears not to have received sufficient attention
in previous studies is the possible harmful effect of
the excellence of the exemplary behavior. Paradoxical
as it may seem, if the exemplary behavior is perfect
or near-perfect, it is likely not to provide sufficiently
good training instances, given the inherent imperfection
of inductive learning. Small error levels that might
be perfectly acceptable for ordinary classification or
regression tasks may prevent the models from performing
the corresponding control task entirely, if they diverge
from the state-action trajectories represented by training
instances. Clearly, even very sparingly performed wrong

actions may ultimately lead to control failures, if the
control system is unable to recover from unexpected and
undesirable situations encountered. Training instances
generated from perfect exemplary behavior are unlikely
to demonstrate such recovery procedures, though, as they
are normally not necessary during perfect or near-perfect
operation. Even if incorrect actions are taken in
non-critical, safe states, their cumulative effect may
expose the system to states in which it is unable to behave
correctly. This is the challenge addressed by retraining.

3.3.1. Failure avoidance. The primary objective
of retraining is to learn how to avoid control failures
by successfully recovering from potentially dangerous
situations. The idea is to monitor the performance of
the obtained control model and detect control failures,
which then automatically trigger an active learning mode,
in which additional training instances are generated. They
demonstrate the actions that would be performed by
the exemplary controller in a number of recent states,
specified as the retraining window, which preceded the
failure. These additional training instances can be then
used to improve the learned control models.

Ideally, retraining should be handled with an
incremental learning algorithm (Mitchell, 1997; Cichosz,
2007), which is able to modify an existing model based on
new data, such as the incremental decision tree induction
algorithm (Utgoff, 1989). Since the decision tree
implementation used for this work is not incremental and
the storage and computation cost is not an issue anyway,
currently we simply build new models from training sets
containing both the original training instances and the
newly generated ones. In a sense, this may be viewed as
an opposite of the iterative refiltering procedure proposed
by John (1996), augmenting decision tree pruning by
removing noisy instances from the training set and tree
re-growing.

It may be reasonable to put different weights to the
original and newly generated training instances (if using a
modeling algorithm capable of handling instance weights)
or resample the training set appropriately (otherwise) to
balance the sensitivity of the retrained model to the old
and new training data. For the rpart implementation of
decision trees used in this work, instance weights can be
specified via the weights parameter.

Some care is needed when choosing the number
of states preceding the failure used for generating new
training instances. Too little may be insufficient to
demonstrate how the exemplary driver avoids the failure
in a dangerous situation, particularly if it requires an early
reaction. Too many, on the other hand, may permit the
exemplary driver to avoid entering the dangerous situation
at all (just like when generating the original training set),
making retraining ineffective.

586 P. Cichosz and Ł. Pawełczak

3.3.2. Overfitting prevention. Retraining can be also
regarded as an insurance policy against overfitting,
supplementing or replacing standard overfitting
prevention techniques. It is triggered whenever the
control model faces a situation it cannot correctly react
to. As discussed above, this may be the cumulative effect
of occasionally taken incorrect actions. An overfitted
model is more than likely to fail in state space regions not
represented in the training set. If retraining prevents such
failures, it effectively prevents overfitting.

It is worth stressing that this approach may be
expected to work even if the particular modeling
algorithm and parameter setup tend to overfit. This is
the case, in particular, with maximally grown unpruned
decision trees. While the initial models created on
the original training set are indeed more than likely to
be overfitted, subsequent retraining cycles reduce the
overfitting by incorporating new instances, corresponding
to states for which the previous models were unable
to perform as expected. This may ultimately lead to
models that are no longer overfitted to the original
training set. They may still be overfitted to the extended
training set (with retraining instances added), but this
is not necessarily harmful since the latter much better
represents the diversity of situations the control model
may encounter during its application. While such models
may be still unable to drive on tracks different from the
one used for training, they can be expected to perform
robustly with respect to their own mistakes.

Fighting overfitting by adding more training
instances is in striking contrast with the above-mentioned
iterative refiltering procedure (John, 1996) which
attempts to achieve the same objective by removing
training instances considered harmful. Paradoxical as
it may seem, these two opposing techniques both make
sense depending on what makes the modeling algorithm
more likely to overfit: data noise, as in many data mining
applications, or insufficient data representativeness, as in
our case.

4. Experiments

The modeling procedure described above was applied
to create bot drivers for the TORCS environment and
experimentally evaluate their performance. This section
describes the experimental procedure and presents the
obtained results.

4.1. Experimental design. The goal of the
experiments is to provide an initial unbiased assessment
of the capabilities of the imitation learning technique
proposed in this article rather than to optimize the driving
performance by any means. They are therefore purposely
designed to be simple and easily reproducible, with no
unnecessary tweaks.

Fig. 2. Training track (CG Speedway number 1, left) and test
track (CG Speedway 2, right).

4.1.1. Tracks. Experiments reported in this article use
both existing and custom TORCS tracks for creating and
evaluating control models. They are presented below.

Simple tracks. Our initial experiments use two standard
TORCS tracks, referred to as simple tracks thereafter:

training track: CG Speedway number 1—used to
generate training instances,

test track: CG Track 2—used to evaluate the driving
performance.

The two tracks are illustrated in Fig. 2. The overall
complexity of these tracks is similar, although the latter
has some sharper bends. Models created based on training
sets from the training track are evaluated both on the
training track, to see how well they manage to imitate
the exemplary behavior, and on the test track, to see
whether the acquired skill can be transferred to a modified
environment.

Complex tracks. Further experiments use more
challenging tracks, referred to as complex tracks
thereafter:

training track: a custom track of relatively large length
and complexity, designed to adequately represent
typical bend patterns occurring in standard TORCS
tracks—used to generate training instances,

test tracks: all standard TORCS road tracks—used to
evaluate the driving performance.

The training track is presented in Fig. 3 and the test
tracks in Fig. 4. It is worth stressing that, unlike in
some other studies, we keep the training and test tracks
strictly separate. This makes it possible to observe the
performance of the learned control models on several
different previously unseen tracks.

4.1.2. Training data. Training instances for imitation
learning are generated using the Inferno bot distributed
with TORCS as the exemplary driver. It can be considered
one of TORCS masters, with fast and aggressive driving
style that is really hard to beat. The training sets for each

Imitation learning of car driving skills with decision trees and random forests 587

Fig. 3. Custom complex training track.

Table 1. Continuous action discretization intervals and their
representative values.

action interval representative

steering [−1,−0.25] −0.25
(−0.25,−0.125] −0.125
(−0.125,−0.05] −0.05
(−0.05, 0.05) 0.0
[0.05, 0.125) 0.05
[0.125, 0.25) 0.125
[0.25, 1] 0.25

acceleration [0, 0.25) 0.0
[0.25, 0.5) 0.25
[0.5, 1] 0.5

brake [0, 0.25) 0.0
[0.25, 0.5) 0.25
[0.5, 1] 0.5

model consist of state–action pairs encountered during the
first two laps when driving the training track from a steady
start. Whereas using a bot rather than human drivers
departs from the traditional form of behavioral cloning, it
makes the experimental evaluation process more objective
and reproducible.

Continuous state attributes are used directly as
provided by the TORCS environment or calculated,
without any transformations. The discrete gear action is
left unmodified. Continuous actions are discretized using
the plain discretization approach, with the discretization
intervals and their representatives given in Table 1. These
are manually chosen based on preliminary experiments to
provide sufficient but not excessive resolution.

Such a moderate discretization resolution is
definitely sufficient for good driving performance,
given the fact that cars in TORCS (and many other
racing games) can be controlled successfully by human
players using binary actions communicated through a
computer keyboard. Notice that the less extreme interval
boundaries are chosen as interval representatives rather
than the middle values (except for near-0 steering). This
introduces a kind of conservative bias to control action
selection. In particular, the range of steering values used
by the control model is restricted to 25% and the range of
acceleration and brake power to 50% of the corresponding

Fig. 4. Set of TORCS road tracks (left to right, top to bottom:
Aalborg, Alpine-1, Alpine-2, Brondehach, Corkscrew,
E-track-1, E-track-2, E-track-3, E-track-4, E-track-6,
Eroad, Forza, G-track-1, G-track-2, G-track-3, Ruud-
skogen, Spring, Street-1, Wheel-1, Wheel-2).

maximum values permitted by the simulator. While this
may prevent the control model from exhibiting a very
aggressive driving style, it is perfectly acceptable for the
initial studies reported here.

4.1.3. Model application. Decision tree models
produced by rpart and converted to C code (series
of if-else statements) are used to implement a TORCS
bot. This straightforward conversion is performed by a
custom utility developed to enable performing multiple
experiments automatically. For random forest models
their individual components are extracted, similarly
converted to C code, and combined by simple voting.

If the models are not of sufficiently good quality, the
following control failure situations may occur:

• leaving the track (detected if the normalized distance
between the center of the car and the middle of the
track exceeds 1.1),

• heading the wrong direction.

Of course, the control models cannot be expected to
recover from such failures autonomously, since they are
not trained to do so. To make it possible even for poor
models to continue driving, a recovery process is activated

588 P. Cichosz and Ł. Pawełczak

to put them back in the middle of the track, facing the
right direction. This is achieved by temporarily passing
control to the exemplary driver, for the number of steps
sufficient for recovery. Of the potentially possible failure
situations listed above, only the first actually occurred in
our experiments.

4.1.4. Retraining. Retraining is performed by
applying the control model on a track for two laps (in
the case of the experiments reported here, it is the same
training track used to generate the initial training set)
and generating new training instances whenever a control
failure situation arises. When this happens, a set of
additional training instances is generated, containing the
last 100 states before the failure and the corresponding
exemplary driver’s actions. This number of preceding
states has been found to be sufficient to demonstrate how
the exemplary driver avoids the failure. If the control
model is found to be unable to continue driving (i.e., it
encounters two more failures within a 10 m distance), the
run is terminated.

In preliminary experiments the decision tree control
models sometimes exhibited the overly conservative
behavior of slowing down too much on straights. While
this is not, strictly speaking, a failure, it effectively
prevents the control model from completing a lap in
reasonable time. Postponing the issue of stimulating a
more aggressive driving style for future work, this has
been also solved using retraining. Whenever the decision
tree bot running at 10 m/sec or slower on a straight
starts to brake, retraining instance generation from the
previous 100 steps is triggered, as on failure. Moreover,
the exemplary driver takes control over the car for the
next 100 steps to get it back to a normal speed. If the
slowing down situation repeats two more times, the run is
terminated.

After each retraining run, the combined dataset,
consisting of the initial training set and all the retraining
instances generated so far, is used to create a new
control model. This completes a single retraining cycle.
The retraining process consists of multiple cycles and
is terminated when no new retraining instances are
generated.

4.1.5. Performance measures. The following model
performance measures are reported:

distratio: the distance traversed within the evaluation
period, normalized by dividing by the corresponding
distance traversed by the exemplary driver,

failcount: the number of control failures within the
evaluation period.

4.1.6. Experimental studies. The experiments
reported in this article are organized into the following two
studies:

single tree models, simple tracks: using single fully
grown decision trees as control models for simple
tracks,

single tree models, complex tracks: using single fully
grown decision trees as control models for complex
tracks,

random forest models, complex tracks: using random
forest ensembles as control models.

Results of experiments using pruned decision trees
are not reported and were generally disappointing due to
extreme instability. Cost-complexity pruning (Breiman
et al., 1984) available in rpart was found to yield
unstable results due to the internal cross-validation
used to estimate the misclassification error for different
complexity parameter ranges, with considerably different
pruned trees obtained on multiple runs. Only some of
them improved the performance over the maximally fitted
unpruned trees.

Using ensembles of pruned trees, with each tree
obtained by cost-complexity pruning the same fully grown
tree independently a number of times, can be considered
a stabilization technique for cost-complexity pruning.
Unfortunately, the increased stability leads to some loss of
human-readability if control actions are determined by the
voting of multiple trees. When the comprehensibility of
control models is not required, much better performance
can be achieved by random forest models.

For single-tree studies the only learning algorithm
parameters that are not kept at fixed default values are

minsplit: the minimum number of instances required
for a split,

cp: the minimum error reduction required for a split.

They are set to 2 and 0.0, respectively, which produces
fully grown, maximally fitted trees. The weight
parameter was used to specify different weights to
the original training instances and the new retraining
instances in a number of preliminary runs, but it gave no
improvement over uniform weights.

For the random forests study there are two
parameters that were adjusted:

ntree: the number of trees,

mtry: the number of attributes randomly picked at each
node for split selection.

They are set to 300 and 12, respectively—values roughly
optimized in preliminary runs.

Imitation learning of car driving skills with decision trees and random forests 589

2 4 6 8 10 12 14

0.
2

0.
4

0.
6

0.
8

cycle

di
st

ra
tio

train
test

Fig. 5. Normalized distance traversed for Study 1.

The evaluation period is set to 5000 simulation steps
for Study 1 and to 15000 simulation steps for Study 2.
This is fully adequate for the evaluation purpose, as it is
sufficient for the Inferno bot to make nearly two full laps
from a steady start for the training tracks.

4.2. Results. The obtained results for each of the
experimental studies are presented and discussed below.

4.2.1. Study 1: Single tree models, simple tracks.
This is the most basic, but the essential experimental
study for the article. Its objective is to evaluate the
utility of the modeling procedure proposed in this article
and the capabilities of decision trees used for control
model representation using two relatively simple tracks
for training and testing. Although the test track has
a similar level of complexity and overall shape as the
training track, it is noteworthy that we use imitation
learning to acquire control skills on one task instantiation
and then apply them on another task instantiation.

The values of the two performance measures for the
initial control model and the models obtained after each
retraining cycle are plotted (versus the cycle number, with
cycle 1 corresponding to the initial training) in Figs. 5
and 6. Figure 7 shows the number of all training instances
used to create the initial model (cycle 1) and subsequent
retrained models.

The observations may be summarized as follows:

• the initial control model performs poorly on both the
training and test track:

– it makes about a 6 times shorter training track
distance and a 10 times shorter test track
distance than the exemplary driver during the
evaluation period,

– it falls out of track 5 times;

• it takes 11 retraining cycles and about 3200 newly
generated training instances (added to the initial

2 4 6 8 10 12 14

0
2

4
6

8

cycle

fa
ilc

ou
nt

train
test

Fig. 6. Number of control failures for Study 1.

2 4 6 8 10 12 14

50
00

60
00

70
00

80
00

cycle

tr

ai
ni

ng
 in

st
an

ce
s

Fig. 7. Number of training instances used for Study 1.

training set of about 5000 instances) to produce a
model that exhibits near-perfect performance on the
training track and reasonably good performance on
the test track:

– it makes nearly 95% of the distance traversed
by the exemplary driver on the training track
and nearly 90% on the test track,

– it never falls out of track;

• the improvement in subsequent retraining cycles is
not perfectly monotonic (with some cycles yielding
performance degradation).

It is particularly striking that the initial control model
is unable to successfully imitate the exemplary driver’s
behavior even on the training track and retraining is
essential for delivering satisfactory results. This cannot be
attributed to the overfitting of maximally grown decision
trees, since none of our preliminary experiments with
pruned decision trees delivered successful results for
unretrained models. It is therefore indeed the departure
from the state-action trajectories demonstrated by the
exemplary driver and represented in the original training
set that prevents the control model from exhibiting

590 P. Cichosz and Ł. Pawełczak

Fig. 8. Top three levels of the steering decision tree for Study 1.

good performance. Retraining meets the expectation of
overcoming this problem.

The size of decision trees obtained in this study
reaches several hundred nodes. This should not be
surprising given the maximum-fit setup of stop criteria
and lack of pruning. Such a large tree size makes
the comprehensibility of control models questionable.
Indeed, large decision trees can be hardly fully analyzed
and understood by a human expert. Nevertheless, their
interpretable structure is an important advantage over
subsymbolic model representations. Even if the size of
the complete tree prevents in-depth inspection, selected
smaller subtrees corresponding to particular conditions
can be extracted and analyzed. If necessary (e.g., due to a
failure situation), control actions taken by the model can
be explained by providing a set of conditions that caused
the particular action choice. Moreover, a small number
of top tree levels may be used to get an approximate
understanding of the represented control policy. As an
illustration, Fig. 8 presents the top three levels of the
decision tree model for the steering action obtained in this
study.

4.2.2. Study 2: Single tree models, complex tracks.
This study explores the possibility of learning control
models applicable to a variety of task instantiations, i.e.,
capable of driving on several different tracks. It applies
the same modeling algorithm and experimental procedure
to the custom complex training track and the set of test
tracks consisting of all standard TORCS road tracks. The
results are presented in Figs. 9 (the normalized distance),
10 (the number of failures), and 11 (the number of training
instances). The test track performance measures are

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cycle

di
st

ra
tio

train
test

Fig. 9. Normalized distance traversed for Study 2.

0 5 10 15 20 25 30 35

0
2

4
6

8

cycle

fa
ilc

ou
nt

train
test

Fig. 10. Number of control failures steps for Study 2.

averaged over all test tracks used.
The observations may be summarized as follows:

• it takes 34 retraining cycles and nearly 11000
additionally generated retraining instances (in
addition to the initial training set of 14500 instances)
to reach good performance on the complex training
track:

– more than 93% of the distance traversed by the
exemplary driver,

– no out-of-track failures;

• the discrepancy between the training and test track
performance is much greater than observed in
Study 1:

– the control model achieves 68% of the
exemplary driver’s distance on the average,

– it falls out of track 1.25 times on the average;

• the retraining process is non-monotonic, with some
cycles degrading rather than improving performance.

Given the considerably increased complexity of the
training track in comparison to Study 1, the retraining

Imitation learning of car driving skills with decision trees and random forests 591

0 5 10 15 20 25 30 35

16
00

0
20

00
0

24
00

0

cycle

tr

ai
ni

ng
 in

st
an

ce
s

Fig. 11. Number of training instances used for Study 2.

Table 2. Individual test track performance for Study 2.
track distratio faicount

Aalborg 0.442 7
Alpine-1 0.823 0
Alpine-2 0.917 0
Brondehach 0.742 0
Corkscrew 0.703 2
E-track-1 0.595 1
E-track-2 0.678 2
E-track-3 0.638 0
E-track-4 0.798 0
E-track-6 0.697 0
Eroad 0.647 0
Forza 0.569 3
G-track-1 0.731 1
G-track-2 0.739 0
G-track-3 0.462 3
Ruudskogen 0.534 3
Spring 0.564 2
Street-1 0.827 0
Wheel-1 0.666 0
Wheel-2 0.786 1

process can be still considered successful, as it yields only
slightly worse training track performance than before.
Not surprisingly, it takes more than a double number of
retraining cycles to complete. Unfortunately, the observed
test track performance reveals the limitations of unpruned
single tree models. It looks that the test tracks are
sufficiently different from the training track and from one
another to make it a challenge to successfully drive on
all of them. Even small differences in the bend radius
and length, the length of straights between bends and the
particular sequence of bends and straights may require
substantially different control actions.

Table 2 shows the performance of the finally
obtained control models on individual test tracks and
Fig. 12 presents the histograms of the normalized distance
traversed and the number of failures (measured after the

distratio

F
re

qu
en

cy

0.0 0.4 0.8

0
2

4
6

8

failcount

F
re

qu
en

cy

0 2 4 6

0
4

8

Fig. 12. Histograms of test track performance for Study 2.

final retraining cycle) over all test tracks. This makes it
possible to examine the obtained test track performance
in more detail and make the following observations:

• the normalized distance traversed exceeds 0.8 on
three test tracks and exceeds 0.7 on additional six
tracks,

• the normalized distance traversed falls below 0.6 for
six tracks,

• for exactly a half of the test track pool the control
model encounters no out-of-track failures and it
encounters a single failure only on additional three
tracks,

• on all but a single test track (Aalborg) the number of
failures does not exceed 3.

While the test track distance ratio of less than 0.7
may be considered disappointing, the number of failures
is actually quite small. Being able to drive without
falling out-of-track on ten previously unseen test tracks
is a noteworthy achievement. Interestingly, even for
no-failure test tracks the distance ratio often falls below
0.8. This shows the learned model’s inability to match the
exemplary driver’s speed.

4.2.3. Study 3: Random forest models, com-
plex tracks. This study repeats Study 2 using the
random forest modeling algorithm. Due to its inherent
randomness the results are not deterministic and hence are
averaged over 10 independent runs, differing only in the
initial seed of the random number generator. Standard
deviation bars are presented additionally to the mean
lines on the plots displayed in Figs. 13 (the normalized
distance), 14 (the number of failures), and 15 (the number
of training instances).

The following observations can be made:

• near-perfect training track performance is achieved
without an excessive number of retraining cycles and
instances:

592 P. Cichosz and Ł. Pawełczak

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cycle

di
st

ra
tio

train
test

Fig. 13. Normalized distance traversed for Study 3.

5 10 15 20

0
2

4
6

8

cycle

fa
ilc

ou
nt

train
test

Fig. 14. Number of control failures for Study 3.

– nearly 95% of the distance traversed by the
exemplary driver,

– while it takes 17 retraining cycles to complete
all runs, most of them last no more than 12–13
cycles,

– the number of retraining instances used is
only about 3500, considerably less than in the
previous study;

• there is still discrepancy between the test track and
training track performance:

– the average test track normalized distance of
about 0.75,

– about 1.5 out-of-track failures cannot be
avoided on average;

• individual experimental runs differ, but the final
training track distance ration is extremely repeatable
with a small standard deviation of about 0.015, and
the final test track distance ratio exhibits moderate
variability with a standard deviation of less than 0.05;

• the retraining process is smoother and much more
monotonic than observed in the previous studies,

5 10 15 20

14
50

0
16

00
0

17
50

0

cycle

tr

ai
ni

ng
 in

st
an

ce
s

Fig. 15. Number of training instances used for Study 3.

Table 3. Individual test track performance for Study 3.
track distratio faicount

Aalborg 0.508 7.2
Alpine-1 0.903 0.0
Alpine-2 0.978 0.0
Brondehach 0.641 1.1
Corkscrew 0.871 0.9
E-track-1 0.696 1.9
E-track-2 0.679 2.1
E-track-3 0.746 1.2
E-track-4 0.767 0.8
E-track-6 0.663 1.8
Eroad 0.715 0.6
Forza 0.744 1.6
G-track-1 0.855 0.5
G-track-2 0.823 0.3
G-track-3 0.803 2.0
Ruudskogen 0.711 1.9
Spring 0.668 2.1
Street-1 0.747 1.5
Wheel-1 0.750 1.5
Wheel-2 0.720 2.0

with respect both to the training and test track
performance.

While the average test track distance ratio still
leaves much to be desired, it is clearly superior to that
observed in the previous study. However, the number
of encountered out-of-track failures is greater, which is
definitely disappointing.

Individual test track performance is presented in
Table 3, and the histograms in Fig. 16 illustrate the
performance distribution over all test tracks. For each
track the normalized distance and the number of failures
are still averaged over multiple experiment runs. The
following observations can be made:

• the normalized distance traversed reaches or exceeds
0.9 on two tracks, exceeds 0.8 on additional four

Imitation learning of car driving skills with decision trees and random forests 593

distratio

F
re

qu
en

cy

0.0 0.4 0.8

0
2

4
6

8

failcount

F
re

qu
en

cy

0 2 4 6
0

4
8

Fig. 16. Histograms of test track performance for Study 3.

tracks, and exceeds 0.7 on further eight tracks,

• the normalized distance traversed falls below 0.6 for
a single track only (Aalborg),

• there are four test tracks on which the learned control
model makes 0 or nearly 0 failures on the average
and five tracks with the average number of failures
about 1,

• on all but a single test track (Aalborg) the number of
failures does not exceed 3.

The major observed advantage of random forest
models over single tree models is the greatly reduced
number of retraining instances used as well as the
improved stability and monotonicity of the learning
process. Unfortunately, this does not translate into
considerably improved test track performance. While the
normalized distance traversed is greater than for single
trees, out-of-track failures are more frequent.

4.3. Discussion. It is noteworthy that the Inferno bot
used as the exemplary driver in our experiments belongs to
the most refined TORCS bots with an aggressive driving
style and supreme driving performance. Approaching
the same performance level by control models learned
by imitation is therefore a significant achievement.
In several preliminary experiments we found it much
easier to imitate simpler TORCS bots, exhibiting more
conservative driving style and worse performance. For
such bots it was possible to create imitation models
driving simple tracks without retraining, but their
performance is far below the level reported here.

The control model’s inability to outperform the
exemplary driver may appear disappointing, but is
actually to be expected given the learning scenario.
In particular, if some track segments can be traversed
considerably faster than demonstrated by the exemplary
driver (which is actually highly unlikely given the quality
of the Inferno bot), this possibly remains unnoticed by
the control model trained based solely on the examples
of its performance. No exploration mechanisms exist in

our current approach that would make it possible to detect
such improvement possibilities. The state representation
used by the control model, including a subset of state
attributes available in TORCS, and the discretized control
actions, preventing it from making some fine-tuned
direction or speed corrections, may also limit its potential
performance. Still, delivering performance comparable
to that of the exemplary behavior on a variety of
task instantiations (different tracks it this case) can be
considered a success of imitation learning that should
be by no means confused with simple memorization of
observations and actions.

The non-monotonic changes of performance in
consecutive retraining cycles, with improvements
sometimes alternating with degradations, may be caused
by the inherent instability of decision tree growing. Even
relatively minor dataset variations (such as adding a small
number of additional training instances) are likely to
yield substantially different models, which may avoid
the failures encountered for the previous models, but
lead to different (and possibly more frequent) failures.
Instability is likely to be the major problem with applying
decision tree models to control tasks. As mentioned
before, it is excessive instability that prevented successful
application of decision tree pruning. It also makes the
whole modeling procedure overly sensitive to some
minor experimental settings, such as the size of the
initial training set or the number of retraining instances
generated on control failures.

The random forest algorithm generally stood up
to expectations with better generalization and greater
stability. It made the retraining process smooth, with
a monotonic performance improvement, finally yielding
near-perfect training track performance despite the high
complexity of the training track. This was possible
using several times less retraining instances than for
single tree models. The test track performance was also
improved, according to the normalized distance measure,
but out-of-track failures occurred more frequently. It
looks that random forest models maintain higher driving
speed and therefore encounter more difficult situations,
some of which ultimately led to falling out of track.
To understand how this is possible, recall that retraining
is triggered not only on out-of-track situations, but
also on excessive slow-downs. Single tree models and
random forest models appear to have reached different
levels of tradeoff between avoiding falling out of track
and excessive speed loss. Controlling this tradeoff
explicitly and dynamically during model application may
be necessary to successfully combine high driving speed
where possible with slowing down for security where
necessary.

The higher than expected out-of-track failure
frequency observed for random forests may be also
explained by the smaller number of retraining cycles and,

594 P. Cichosz and Ł. Pawełczak

more importantly, the much smaller number of retraining
instances used than for single tree models. This shows
that they were much more successful on the training
track, encountering failures and triggering retraining
instance generation sparingly. This exceedingly good
training performance prevented random forest models
from being demonstrated with more failure avoidance
examples and may have had negative impact on their
test track performance. One potential remedy could
be deliberately disturbing control actions in the training
phase, to engender more failures and more frequently
trigger retraining instance generation. This would make
the retraining process more exploratory.

The performance observed when using multiple test
tracks, even with random forest models, may at first
appear disappointing. Despite using a relatively complex
training track that seems to represent most bend patterns
occurring in the test tracks, the learned control model
fails to successfully drive on a substantial number of
them. Performance failures on previously unseen tracks
may be hardly avoidable, though, without using some
considerably enriched state representation or a built-in
track hardness exploration mechanism. It is also not
unlikely that a more refined training track, providing a
better representation of the complexity of tracks which the
control model is expected to handle, would yield better
performance. Another self-suggesting method of getting
a control model capable of driving on a variety of tracks
would be to use a greater number of diverse tracks in the
training or retraining process.

5. Conclusion

What has been successfully attempted by this work and
is its unique novel contribution is the application of
decision trees and random forests to the representation
of control models learned by imitation. Being much
more common in data mining applications, decision trees
are usually not considered for control tasks, although
they have some quite important advantages over more
common subsymbolic methods, such as neural networks.
They are fast to learn and apply, and they are human
readable. The former makes it possible to learn from
large training sets, create multiple models, and retrain
if necessary. The latter makes it possible for a human
expert to inspect and verify the models, explain their
decisions, and even combine them with some pre-existing
domain knowledge for even better performance. Random
forests sacrifice these advantages, but offer better overall
predictive power, and in particular greater stability and
overfitting resistance. Therefore the demonstration of the
suitability of decision trees and random forests for control
applications, using the realistically complex simulated
car control task, can be argued to be a noteworthy
contribution.

Our computational experiments include both a basic
two-track setup, with a single training track and a single
test track of similar complexity, and a multiple-track
setup, with a single more complex training track and
multiple diverse test tracks. In both cases we evaluate
the performance of the learned control models not only on
tracks on which the training data was generated, but also
on previously unseen tracks. This is why the experimental
results reveal both the strengths and limitations of the
proposed approach.

On less demanding tracks the created decision tree
control models achieve nearly the same performance
levels as the exemplary driver, while using a
relatively small subset of available input attributes
and human-readable tree structures. These results provide
a strong encouragement to consider a similar procedure
for developing control algorithms for real-world tasks, as
well as video game bots. With increased track complexity
and diversity, it becomes clearly more difficult to properly
generalize and transfer the driving skill acquired on one
task to other tasks. This results in poor performance
on several previously unseen tracks even if trained on
an adequately complex training track. Our attempts to
reduce overfitting with cost-complexity pruning failed
due to the increased instability, resulting from its internal
cross-validation used to estimate the expected error of
pruned trees.

We have demonstrated that random forest models
overcome the limitations of single decision tree models
to a substantial extent. They achieve better generalization
capabilities and improve stability as well as reduce the
requirements for the amount of training data, although
they encounter out-of-track failures somewhat more
frequently. The latter may be a consequence of
their much better training performance, which results
in much less retraining instances being generated and
used, and could be possibly alleviated by introducing
some exploration to the retraining process. Another
disadvantage associated with random forest models is the
loss of human-readability that constitutes an important
part of the motivation behind using decision trees for
imitation learning in the first place. Getting more
stability without sacrificing comprehensibility is probably
the major challenge in using symbolic learning algorithms
for control tasks. It may be worthwhile to investigate the
utility of existing approaches to getting comprehensible
models out of model ensembles (Park and Kargupta,
2002; Van Assche and Blockeel, 2007; Triviño Rodriguez
et al., 2008).

The presented results demonstrated the capabilities
not only of the employed classification algorithms, but
also, and more importantly, of the modeling procedure
contributed by this article, including the retraining
technique, automatically triggered on control failures. It
was found to be absolutely essential for the performance

Imitation learning of car driving skills with decision trees and random forests 595

level possible to obtain. While it remains to be
verified by future work, we believe the procedure is
reusable and likely to yield good control models across a
variety of tasks where imitation learning can be applied,
including other instances of vehicle control, involving
both simulated and real vehicles.

The actual quality of the learned driving skill in the
TORCS environment is reasonably good, but definitely
leaves some considerable space for improvement. What is
missing in the current approach, in particular, is the ability
to explore the hardness of the track and the capabilities
of the car, making it possible to adapt the control
policy accordingly. With a larger range of permitted
control actions (e.g., a greater choice of turn radiuses and
acceleration levels) and possibly differential rather than
plain action discretization, this might enable the control
model learned by imitation to perform more aggressively
and eventually outperform the exemplary driver.

One possible algorithmic framework that can be used
to study the idea of track exploration and control policy
adjustment that is particularly appealing is provided
by reinforcement learning (Sutton and Barto, 1998;
Kaelbling et al., 1996). Combining imitation learning
to obtain a reasonably good initial control policy
and reinforcement learning to refine it or adapt to
new conditions is probably the most promising, but
also most challenging future work direction. When
pursuing this path, it may be necessary to employ
reinforcement learning speedup techniques (e.g., Cichosz,
1995; Zajdel, 2013). Other prospective future research
topics include eliminating some simplifications adopted
for our modeling procedure to get us started. It
may be worthwhile to reconsider directly handling
multidimensional control actions rather than decomposing
them into independent one-dimensional actions, and using
the original numerical action representation on input and
output rather than discretization interval representatives.
It would be particularly interesting to investigate some
possible refinements of the retraining procedure, e.g.,
triggering retraining instance generation not only on
failures, but also on other situations believed to provide
useful information (e.g., divergence from a pre-calculated
target trajectory).

The TORCS simulator used for the presented
experiments, while considered quite realistic physically,
is not representative for many potential vehicle control
applications due to its idealized racing track environment,
which has little in common with, e.g., city traffic or
off-road terrain exploration. Addressing the challenges
related to such tasks is definitely another important avenue
for further research. On the other hand, since TORCS
is also an enjoyable video game, this article can be
viewed as a proposal of a possibly promising approach to
creating game bots, serving as interesting and demanding
opponents for human players.

References
Anderson, C.W., Draper, B.A. and Peterson, D.A. (2000).

Behavioral cloning of student pilots with modular neural
networks, Proceedings of the 17th International Confer-
ence on Machine Learning (ML-2000), Stanford, CA, USA,
pp. 25–32.

Atkeson, C.G. and Schaal, S. (1997). Robot learning from
demonstration, Proceedings of the 14th International Con-
ference on Machine Learning (ML-97), Nashville, TN,
USA, pp. 12–20.

Baluja, S. (1996). Evolution of an artificial neural network based
autonomous land vehicle controller, IEEE Transactions on
Systems, Man and Cybernetics 26(3): 450–463.

Bratko, I., Urbancic, T. and Sammut, C. (1998). Behavioural
cloning of control skill, in R.S. Michalski, I. Bratko and
M. Kubat (Eds.), Machine Learning and Data Mining,
John Wiley & Sons, Chichester.

Breiman, L. (1996). Bagging predictors, Machine Learning
24(2): 123–240.

Breiman, L. (2001). Random forests, Machine Learning
45(1): 5–32.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.
(1984). Classification and Regression Trees, Chapman and
Hall, New York, NY.

Buehler, M., Iagnemma, K. and Singh, S. (Eds.) (2007). The
2005 DARPA Grand Challenge: The Great Robot Race,
Springer, Berlin.

Buehler, M., Iagnemma, K. and Singh, S. (Eds.) (2009). The
DARPA Urban Challenge: Autonomous Vehicles in City
Traffic, Springer, Berlin.

Cardamone, L., Loiacono, D. and Lanzi, P. (2009a). On-line
neuroevolution applied to The Open Racing Car Simulator,
Proceedings of the 2009 IEEE Congress on Evolution-
ary Computation (CEC-09), Trondheim, Norway, pp.
2622–2629.

Cardamone, L., Loiacono, D. and Lanzi, P. (2010). Learning
to drive in The Open Racing Car Simulator using online
neuroevolution, IEEE Transactions on Computational In-
telligence and AI in Games 2(3): 176–190.

Cardamone, L., Loiacono, D. and Lanzi, P.L. (2009b). Learning
drivers for TORCS through imitation using supervised
methods, Proceedings of the 2009 IEEE Symposium on
Computational Intelligence and Games (CIG-09), Milano,
Italy, pp. 148–155.

Chambers, R.A. and Michie, D. (1969). Man-machine
co-operation on a learning task, in R. Parslow, R. Prowse
and R. Elliott-Green (Eds.), Computer Graphics: Tech-
niques and Applications, Plenum, London, pp. 179–186.

Cichosz, P. (1995). Truncating temporal differences: On
the efficient implementation of TD(λ) for reinforcement
learning, Journal of Artificial Intelligence Research
2: 287–318.

Cichosz, P. (2007). Learning Systems, 2nd Edn., WNT, Warsaw,
(in Polish).

596 P. Cichosz and Ł. Pawełczak

D’Este, C., O’Sullivan, M. and Hannah, N. (2003). Behavioural
cloning and robot control, Proceedings of the International
Conference on Robotics and Applications, Salzburg, Aus-
tria, pp. 179–182.

Dietterich, T.G. (2000). Ensemble methods in machine learning,
Proceedings of the 1st International Workshop on Multiple
Classifier Systems, Cagliari, Italy, pp. 1–15.

Esposito, F., Malerba, D. and Semeraro, G. (1997). A
comparative analysis of methods for pruning decision
trees, IEEE Transactions on Pattern Analysis and Machine
Intelligence 19(5): 476–491.

Forbes, J.R.N. (2002). Reinforcement Learning for Autonomous
Vehicles, Ph.D. thesis, University of California at Berkeley,
Berkeley, CA.

Guizzo, E. (2011). How Google’s self-driving car works, IEEE
Spectrum, http://spectrum.ieee.org.

Han, J. and Kamber, M. (2006). Data Mining: Concepts and
Techniques, 2nd Edn., Morgan Kaufmann, San Francisco,
CA.

Hertz, J., Krogh, A. and Palmer, R.G. (1991). Introduction to the
Theory of Neural Computation, Addison-Wesley, Boston,
MA.

John, G.H. (1996). Robust linear discriminant trees, in D. Fisher
and H. Lenz (Eds.), Learning from Data: Artificial In-
telligence and Statistics V, Springer, New York, NY, pp.
375–385.

Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996).
Reinforcement learning: A survey, Journal of Artificial In-
telligence Research 4: 237–285.

Kohl, N., Stanley, K., Miikkulainen, R., Samples, M. and
Sherony, R. (2006). Evolving a real-world vehicle warning
system, Proceedings of the 8th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO-06), Seat-
tle, WA, USA, pp. 1681–1688.

Krödel, M. and Kuhnert, K.-D. (2002). Reinforcement learning
to drive a car by pattern matching, Proceedings of the
24th DAGM Symposium on Pattern Recognition, Zurich,
Switzerland, pp. 322–329.

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D.,
Kammel, S., Kolter, J., Langer, D., Pink, O., Pratt,
V., Sokolsky, M., Stanek, G., Stavens, D., Teichman,
A., Werling, M. and Thrun, S. (2011). Towards fully
autonomous driving: Systems and algorithms, Proceed-
ings of the IEEE Intelligent Vehicles Symposium (IV-11),
Baden-Baden, Germany, pp. 163–168.

Liaw, A. and Wiener, M. (2002). Classification and regression
by randomForest, R News 2/3: 18–22.

Loiacano, D., Cardamone, L. and Lanzi, P.L. (2009). Simulated
car racing championship 2009: Competition software
manual, Technical report, Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Milano.

Loiacono, D., Prete, A., Lanzi, P. L. and Cardamone, L.
(2010). Learning to overtake in TORCS using simple
reinforcement learning, Proceedings of the 2010 IEEE
Congress on Evolutionary Computation (CEC-2010),
Barcelona, Spain, pp. 1–8.

Mitchell, T. (1997). Machine Learning, McGraw Hill, New
York, NY.

Munoz, J., Gutierrez, G. and Sanchis, A. (2009). Controller
for TORCS created by imitation, Proceedings of the
2009 IEEE Symposium on Computational Intelligence and
Games (CIG-09), Milano, Italy, pp. 271–278.

Park, B.-H. and Kargupta, H. (2002). Constructing simpler
decision trees from ensemble models using Fourier
analysis, Proceedings of the 7th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Dis-
covery, Madison, WI, USA, pp. 18–23.

Pomerleau, D. (1988). ALVINN: An autonomous land vehicle
in a neural network, Advances in Neural Information
Processing Systems 1 (NIPS-88), Denver, CO, USA, pp.
305–313.

Quinlan, J.R. (1986). Induction of decision trees, Machine
Learning 1(1): 81–106.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Mateo, CA.

Quinlan, J.R. (1999). Simplifying decision trees, International
Journal of Human-Computer Studies 51(2): 497–491.

R Development Core Team (2010). R: A Language and En-
vironment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, www.R-project.org.

Sammut, C. (1996). Automatic construction of reactive control
systems using symbolic machine learning, Knowledge En-
gineering Review 11(1): 27–42.

Sammut, C., Hurst, S., Kedzier, D. and Michie, D. (1992).
Learning to fly, Proceedings of the 9th International Con-
ference on Machine Learning (ML-92), Aberdeen, UK, pp.
385–393.

Stavens, D.M. (2011). Learning to Drive: Perception for
Autonomous Cars, Ph.D. thesis, Stanford University,
Stanford, CA.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning:
An Introduction, MIT Press, Cambridge, MA.

Therneau, T.M. and Atkinson, E.J. (1997). An introduction to
recursive partitioning using the RPART routines, Technical
report, Mayo Clinic, Rochester, MN.

Thrun, S. (2010). What we’re driving at, Google Official Blog,
http://googleblog.blogspot.com/2010/10/
what-were-driving-at.html.

Togelius, J., De Nardi, R. and Lucas, S.M. (2006). Making
racing fun through player modeling and track evolution,
Proceedings of the SAB-06 Workshop on Adaptive Ap-
proaches for Optimizing Player Satisfaction in Computer
and Physical Games, Rome, Italy, pp. 61–70.

Triviño Rodriguez, J.L., Ruiz-Sepúlveda, A. and
Morales-Bueno, R. (2008). How an ensemble method
can compute a comprehensible model, Proceedings of
the 10th International Conference Data Warehousing
and Knowledge Discovery (DaWaK-08), Turin, Italy, pp.
368–378.

http://spectrum.ieee.org
www.R-project.org
http://googleblog.blogspot.com/2010/10/
what-were-driving-at.html.

Imitation learning of car driving skills with decision trees and random forests 597

Urbancic, T. and Bratko, I. (1994). Reconstructing human skill
with machine learning, Proceedings of the 11th European
Conference on Artificial Intelligence (ECAI-94), Amster-
dam, The Netherlands, pp. 498–502.

Utgoff, P. E. (1989). Incremental induction of decision trees,
Machine Learning 4(2): 161–186.

Van Assche, A. and Blockeel, H. (2007). Seeing the forest
through the trees: Learning a comprehensible model from
an ensemble, Proceedings of the 18th European Confer-
ence on Machine Learning (ECML-07), Warsaw, Poland,
pp. 418–429.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Ma-
chine Learning Tools and Techniques, 2nd Edn., Morgan
Kaufmann, San Francisco, CA.

Wymann, B. (2006). TORCS manual installation and robot
tutorial, http://www.berniw.org/aboutme/
publications/torcs.pdf.

Zajdel, R. (2013). Epoch-incremental reinforcement learning
algorithms, International Journal of Applied Mathe-
matics and Computer Science 23(3): 623–635, DOI:
10.2478/amcs-2013-0047.

Paweł Cichosz received his M.Sc. and Ph.D. degrees in computer sci-
ence from the Warsaw University of Technology in 1994 and 1998, re-
spectively. He is an assistant professor at the Institute of Electronic Sys-
tems of the same university. His areas of research interests include ma-
chine learning, data mining, and artificial intelligence.

Łukasz Pawełczak received his B.Eng. and M.Sc. degrees in electronics
and computer engineering from the Warsaw University of Technology in
2011 and 2013, respectively. He is interested in applications of machine
learning algorithms. His participation in this research was part of his
diploma programmes.

Received: 31 January 2013
Revised: 16 October 2013
Re-revised: 21 January 2014

http://www.berniw.org/aboutme/
publications/torcs.pdf.

