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Imitation Learning with Non-Parametric Regression

Maarten Vaandrager, Robert Babuška, Lucian Buşoniu and Gabriel A.D. Lopes

Abstract—Humans are very fast learners. Yet, we rarely learn
a task completely from scratch. Instead, we usually start with
a rough approximation of the desired behavior and take the
learning from there. In this paper, we use imitation to quickly
generate a rough solution to a robotic task from demonstrations,
supplied as a collection of state-space trajectories. Appropriate
control actions needed to steer the system along the trajectories
are then automatically learned in the form of a (nonlinear) state-
feedback control law. The learning scheme has two components: a
dynamic reference model and an adaptive inverse process model,
both based on a data-driven, non-parametric method called local
linear regression. The reference model infers the desired behavior
from the demonstration trajectories, while the inverse process
model provides the control actions to achieve this behavior and
is improved online using learning. Experimental results with a
pendulum swing-up problem and a robotic arm demonstrate
the practical usefulness of this approach. The resulting learned
dynamics are not limited to single trajectories, but capture
instead the overall dynamics of the motion, making the proposed
approach a promising step towards versatile learning machines
such as future household robots, or robots for autonomous
missions.

I. INTRODUCTION

Most robots deployed to date are preprogrammed with con-

trollers designed on the basis of accurate models and detailed

task descriptions (e.g., industrial robots). This approach works

well in the case that a predefined set of tasks have to be

accomplished by the robot in a structured environment. Robots

designed to operate in unstructured environments or under

varying conditions typically rely on remote control by humans

(e.g., space exploration robots). Surprisingly little progress has

been achieved in the practical use of learning techniques. One

of the reasons may be the fact that most learning control

approaches attempt to learn entire control laws from scratch,

assuming fairly general settings, such as in reinforcement

learning [1]. Such algorithms typically require careful tuning

of several parameters and need a long time to converge.

In this paper we take a different approach. Our premise is

that a large class of robotic tasks can be demonstrated, either

by a human, e.g., household tasks for future domestic robots,

or by other ‘teacher’ robots that are more skilled than the

learner — consider a group of robots reinforcing one another’s

skills in a soccer game. Thus we aim for robots that learn by

imitating a teacher [2].

The importance of learning by imitation has been recog-

nized in biology for quite some time now. Researchers such as
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Ramachandran [3] actually argue that imitation learning may

have acted as the driving force behind the evolutionary leap of

humans. Such strong statements together with the large body

of work found in biology clearly motivate the use of imitation

learning for programming robots.

In this paper we employ a technique termed model-based

imitation (MBI), whose original idea stems from the work of

Schaal [4], [5], [2]. However, while that work used reinforce-

ment learning to find a policy that makes the system follow a

demonstrated trajectory, in our work MBI yields a reference

model. Given that model, the process is then controlled by

an adaptive inverse model learned on-line from data. Local

linear regression (LLR) [6] is used as a function approximation

technique for both the reference and inverse models. Alter-

native ways to approximate the reference behavior include

e.g. hidden Markov models and Gaussian mixture models

[7], [8]; the behavior can also be represented using so-called

motor primitives [9]. To follow the learned behavior, these

works largely rely on classical control with an a priori model,

whereas in our work the control uses the adaptive inverse

model, learned at the same time as the reference model.

The learned dynamics obtained by coupling the reference

and inverse models are not limited to single trajectories, but

capture instead the overall dynamics of the motion. This makes

our method fundamentally different from traditional trajectory

tracking. For instance, if a robot following a prescribed

trajectory collides with an unexpected obstacle, the trajectory-

tracking control system, which has no notion of the obstacle,

will attempt to push the robot through. Our controller, in

contrast, will allow the robot to interrupt the motion and

subsequently follow an alternative path from the collision state.

This has been demonstrated in one of our experiments with

a robotic arm. Another feature of our method should also be

pointed out: once an inverse model has been learned while

performing some demonstrated behavior, this inverse model is

reusable for new behaviors, which are changed by replacing

just the reference model.

In order to effectively use LLR in online learning for real

systems, some nontrivial modifications to the basic algorithm

are developed: a memory management mechanism that re-

moves samples unneeded for an accurate representation of the

function of interest, and a way to deal with noisy data.

After first introducing LLR in Section II, the online learning

modifications to it are presented in Section III. Then, Section

IV describes in more detail the control structure and overall

algorithm for imitation learning. In Section V we illustrate

imitation learning in two different real systems: an inverted

pendulum and a robotic arm. Finally, Section VI concludes

the paper.



II. LOCAL LINEAR REGRESSION

The goal of regression is to approximate an unknown

function from input-output samples. Typically, given n input-

output pairs of the form (xi, yi), an approximation f̂ must be

found that minimizes the loss:

1

n

n
∑

i=1

‖yi − f̂(xi)‖
2
2

where ‖ · ‖2 denotes the Euclidean norm. In this paper we

focus on a specific kind of sample-based representation of

f̂ denoted local linear regression1. This method is memory-

based, also called “lazy” in the literature [10], [11] (in the

sense that all computation is postponed until the function f̂

must be evaluated), case-based, instance-based or experience-

based.

LLR stores the input-output samples in a memory M =
{(xi, yi) | i = 1, . . . , n}. When an approximation f̂ must

be computed at some query point xq, the k samples in the

memory closest to this point are found, in terms of some metric

‖ · ‖ on the input space. Then, a hyper-plane is fitted through

the samples, and the predicted output f̂(xq) is the value taken

by this hyperplane at xq. Thus, the method approximates

nonlinear functions by piecewise affine functions.

Formally, the set of nearest-neighbor indices Nk(xq) is

defined by requiring it to satisfy the properties:

|Nk(xq)| = k

‖xq − xi‖ ≤ ‖xq − xj‖ ∀i ∈ Nk(xq),∀j 6∈ Nk(xq)

(and, of course, to contain no duplicate indices). Relabel for

convenience the memory samples so that the nearest neighbors

are actually 1, . . . , k, and define also x̄ = [xT , 1]T , where the

extra 1 will account for an affine term in the approximation.

Then, two matrices X and Y are formed by putting together

the inputs and outputs of the nearest neighbors:

X =
[

x̄1 · · · x̄k

]

, Y =
[

y1 · · · yk

]

The local hyperplane is described by a vector β that satisfies

βT X = Y , which is typically an overdetermined system of

equations because k is larger than the dimension of x. This

system is solved, preferably with a numerically robust method

such as Gaussian elimination, and with the resulting value of

β we are ready to compute the function approximation for

xq: f̂(xq,Nk(xq)) = βT x̄q. The nearest neighbors have been

made explicit as an argument of f̂ as this will help later in

the paper.

LLR is summarized below (Algorithm 1) as a procedure

that will be called as a component of the overall algorithm.

A crucial choice in the algorithm is the distance metric

for the input space. In our studies a weighted L1 (Man-

hattan) norm offered a good compromise between accuracy

and computational cost: ‖x‖ =
∑

d wd|xd|, where d indexes

the dimensions of x and the weights wd are used to scale

1Note that the name local linear regression is typically used loosely in the
literature to refer to local affine regression, which is the proper name for the
method utilized in this paper.

Algorithm 1 LLR

Input: memory M, parameter k, query point xq

1: find k nearest neighbors Nk(xq)
2: construct X , Y , and solve linear system βT X = Y

3: compute output ŷq ← βT x̄q

Output: ŷq

the inputs, bringing them into similar ranges. Therefore, this

metric is used throughout our experiments.

The main drawback of LLR is the computational load of

finding the k-nearest neighbors during the evaluation of f̂ . This

can pose a real problem, since the number of samples required

to accurately represent a function can at worst grow exponen-

tially with the dimension of the input space. However, we have

found that given today’s available computational power, this

method can be used efficiently in relatively high dimensional

spaces, such as the robot manipulator arm example presented

in Section V-B.

III. ONLINE LEARNING IN LLR

Online learning is necessary to adapt the inverse model

in MBI. In its most basic form, learning in LLR would be

performed by simply adding new samples to the database.

However, storing all observations throughout the system’s

operational life would require an indefinitely large memory.

Moreover, the model function being approximated can be time-

varying, making old observations obsolete. This motivates

removing judiciously chosen samples to keep the database

relevant and within a reasonable size. Furthermore, in real

systems observations are corrupted by noise, and its effects

must be controlled. In this section we introduce heuristics to

deal with both of these issues.

A. Memory management

In LLR, only the nonlinear parts of the function need to be

densely populated with samples, while the method naturally

interpolates the linear parts with only a few samples (on the

order of k). Thus we propose to adapt the database (memory)

in order to span the nonlinear parts with more samples,

providing a variable sample distribution and a variable size

of the local neighborhood. This approach is similar to the so-

called condensed nearest neighbor classification [12], which

tries to find and retain only those samples that lie on the

decision boundaries between classification categories [13].

This results in a piecewise constant approximation of the

function with values between the decision boundaries being

interpolated as constant. Here we adapt this idea to the context

of regression.

Specifically, after a maximum size of the memory is

reached, every new sample replaces an older sample that

best fitted the local linear models for past query points.

To implement this, we attach to every sample (xi, yi) an

additional scalar value ǫi representing relevance, defined as

the running average of the distance between the outputs yi

and the local models f̂(xi,Nk(xq)). So the memory M is



now composed of samples having the form (xi, yi, ǫi). Every

time a sample i is used in estimating a model for the input xq

(i.e. when i ∈ Nk(xq)), its relevance value is incrementally

updated with the new difference from the local model:

ǫi ← γǫi + (1− γ)‖yi − f̂(xi,Nk(xq))‖
2
2

where γ is a parameter in (0, 1]. Note that the running average

ǫi is only updated at those instants when the sample is used

in regression. When ǫi has a low value, it means that the

function is (almost) linear in the sample’s neighborhood, so the

samples are dense enough in that neighborhood. Conversely,

when ǫi has a large value the neighborhood is nonlinear.

Thus, replacing samples with the lowest relevance ǫi removes

samples at linear parts and preserves samples in nonlinear

parts, finally resulting in an approximation of the function with

a variable sample distribution but a uniform approximation

error.

The process of replacing samples on the basis of relevance

is referred to as memory management in the sequel. Memory

management allows us to continually insert new information

and discard redundant information.

B. Noisy observations

Noise is intrinsic to any real system, and a strategy to

deal with it should be devised. A distinction between noisy

observations and informational observations should be made,

however this is a very difficult or even impossible task in

general [14]. Here, we adopt a pragmatic solution based on

the observation that the local least squares solution is the

best average of the first order relation present in the nearest

neighbors. Thus, by adjusting the outputs of these neighbors

to fit the model one can effectively reduce noise. Formally, for

every query point xq, we set:

yi ← f̂(xi,Nk(xq)), ∀i ∈ Nk(xq)

Note the neighbors of xq are used and not those of xi.

C. Learning LLR algorithm and illustration

Algorithm 2 programmatically describes the online learning

component of LLR, with memory management and sample

adjustment.

Algorithm 2 LLR Learn

Input: M, k, γ, nmax, new sample (xq, yq)
1: find Nk(xq), construct X , Y , and solve βT X = Y

2: initialize sample relevance: ǫ← ‖yq − f̂(xq,Nk(xq))‖
2
2

3: add new sample: M←M∪ (xq, yq, ǫ)
4: for all i ∈ Nk(xq) do

5: update relevance:

ǫi ← γǫi + (1− γ)‖yi − f̂(xi,Nk(xq))‖22
6: adjust output to local model: yi ← f̂(xi,Nk(xq))
7: end for

8: if |M| > nmax, remove least relevant sample:

M←M\ {(xj , yj , ǫj)}, j = arg mini(ǫi)
Output: M

x

x

x

x

y

y

y

y

a) Deterministic: basic LLR

b) Deterministic: memory management

c) Noisy: memory management

d) Noisy: memory management & sample adjustment

Fig. 1. Illustration of local linear regression for deterministic and noisy
samples. Dashed lines represent the real function f , solid lines represent the

approximated function f̂ by LLR, and circles represent the samples.

Figure 1 illustrates the effect of memory management and,

separately, sample adjustment. Specifically, Figure 1(a) and

(b) shows results with deterministic observations, respectively

with and without memory management (sample adjustment

is not used). Memory management has a positive effect on

the overall approximation of the nonlinear function, as the

LLR fits the true function nearly perfectly after observing

and deleting 1000 samples. Figure 1(c) and (d) shows results

with noisy observations, with and without sample adjustment

(memory management is used). Sample adjustment improves

prediction accuracy, but since one keeps integrating noisy

samples in a memory of a limited size, a perfect approximation

can never be reached.

IV. IMITATION LEARNING

Imitation learning controls the system with an adaptive,

nonlinear state feedback obtained as the composition of two

elements: the reference model and the inverse model, as



shown in Figure 2 (in this figure, t denotes the discrete

time step). The reference model infers the desired behavior

from demonstrations, while the inverse model is used as a

controller to follow the reference trajectories. Denoting the

reference model by R : S → S where S is the state space,

it produces for any state s a desired next state ŝ′ = R(s).
For robotic systems, the state typically contains positions and

velocities. The inverse model, denoted by P̂−1 : S × S → U ,

maps a desired transition (s, ŝ′) into a control input that will

(approximately) realize this transition, û = P̂−1(s, ŝ′).

R(s)
ŝt+1

P̂−1(s, ŝ)
ut

P (s, u)

st

z
−1

Fig. 2. Model-based imitation scheme.

The reference model R is approximated by applying LLR on

demonstrated state trajectories, collected together in a database

of input-output samples of the form (x = st, y = st+1).
The inverse process model P̂−1 is learned with the online

variant of LLR, from observations of the process state and

control action, stored as input-output samples of the form

(x = [sT
t , sT

t+1]
T , y = ut). The entire procedure is summa-

rized as Algorithm 3, where subscripts R and P are used to

differentiate entities associated with the reference and process

model, respectively.

Algorithm 3 Imitation learning

Input: MR, kR, kP , γP

1: MP ← ∅ (or existing model, if available)

2: for each step t = 0, 1, 2, . . . do

3: measure state st

4: ŝt+1 = LLR(MR, kR, st)
5: ût = LLR(MP , kP , [sT

t , ŝT
t+1]

T )
6: apply ût to system

7: if t ≥ 1, learn from previous transition

8: MP ← LLR Learn(MP , kP , γP , [sT
t−1, s

T
t ]T , ût−1)

9: end for

Note the learning step 8 at time t is performed before

measuring the next state st+1, so it has to work with the

previous transition. This is because waiting to measure st+1

and then performing learning would introduce too large delays

in the real-time control (i.e. before applying the corresponding

action ût+1).

V. EXAMPLES

A. Pendulum Swing-up

As a first experiment, we used the inverted pendulum swing-

up problem to study the performance of imitation learning. The

inverted pendulum is realized by placing an off-center weight

on a vertical disk driven by a DC motor, as shown in Figure

3. The goal is to bring the weight from any initial state to the

upper unstable equilibrium and stabilize it there. However, the

control voltage is constrained such that it is insufficient to push

the pendulum up in a single rotation from every initial state.

The pendulum needs to be swung back and forth (destabilized)

to gather energy, prior to being pushed up and stabilized.

The states s are the angle α ∈ [−π, π) rad, with α = 0
pointing up, and the angular velocity α̇. The control input u

is a voltage is constrained to [−3, 3] V. The goal is to stabilize

the pendulum in the unstable equilibrium x = 0 (pointing up).

The controller is implemented in Matlab, using the sampling

period Ts = 0.03 s. Note that a model of this system is:

α̈ =
1

J

(

mgl sin(α)− bα̇−
K2

R
α̇ +

K

R
u
)

with J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2,

l = 0.042 m, b = 3·10−6 kg/s, K = 0.0536 Nm/A, R = 9.5 Ω,

but the learning controller does not use this information. The

only prior knowledge about the system entering the control

algorithm is the structure of the state and control variables.

In our experiments, we first demonstrated how the controller

should swing the pendulum up and then applied imitation

learning to train the inverse-model controller. Ten swing-ups

(5 clockwise and 5 counterclockwise) were demonstrated by

turning the disk by hand, as illustrated in Figure 3. No control

input was generated, so the only information recorded are the

state variables. The corresponding phase-plane trajectories are

shown in Figure 4.

1 2 3

4 5 6

Fig. 3. Demonstration of pendulum swing up by hand.

By applying LLR to the demonstrated trajectories, we

obtain the reference model which in every state calculates the

desired next state. Each sample in the reference model R is

defined by ([αt, α̇t]
T , [αt+1, α̇t+1]

T ). The number k of nearest

neighbors was 10 and the size of the entire memory was

660 samples. The inverse process model P̂−1 stores samples

([αt, α̇t, αt+1, α̇t+1]
T , ut). For this approximator, the number

of neighbors was k = 15, the memory size was 1000 samples,



−3 −2 −1 0 1 2 3

−20

−15

−10

−5

0

5

10

15

20

angle [rad]

a
n
g
u
la

r 
v
e
lo

c
it
y
 [
ra

d
/s

]

Fig. 4. Demonstrated reference model R for the inverted pendulum.

and the parameter γ = 0.9 was used in memory management.

The resulting control policy is successful in imitating the

demonstrated behavior and thus swinging up the pendulum,

as illustrated in Figure 5. Figure 6 shows that the process

state follows the desired state and that the actuation is quite

smooth.2

1 2 3

4 5 6

Fig. 5. Imitation of the demonstrated behavior.

B. Robotic Manipulator

In this example we use a more complicated system

– a robotic manipulator Ed-Ro, which is a lightweight,

low-cost robot developed mainly for educational purposes.

It has five revolute joints and a two-fingered gripper, all

actuated by DC motors. The manipulator is controlled from

Matlab via an RS232 or USB serial port interface. In this

experiment we learn the control of three joints: the base

(α), the shoulder (δ) and the elbow (φ), see Figure 7.

Therefore, the reference model R has samples of the form

([αt, α̇t, δt, δ̇t, φt, φ̇t]
T , [αt+1, α̇t+1, δt+1, δ̇t+1, φt+1, φ̇t+1]

T )
and the inverse model P̂−1 of the form ([αt, α̇t, δt, δ̇t, φt, φ̇t,

αt+1, α̇t+1, δt+1, δ̇t+1, φt+1, φ̇t+1]
T , [uα,t, uδ,t, uφ,t]

T ).
As an example of the desired behavior we considered a path

to be followed by the end-effector in a 3D space. The behavior

2Videos for these experiments are available at busoniu.net/projects.php, see
project “Using prior knowledge to accelerate reinforcement learning”.
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b) actuation signal

c) state evolution

Fig. 6. Evolution of the desired state ŝ, resulting actuation u and the state
evolution s by model-based imitation.

φ

δ

α

Fig. 7. EdRo — educational robotic manipulator. Three joints were used in
the imitation, the base joint α, the shoulder joint δ, and the elbow joint φ.

was demonstrated by manually moving the end-effector along

the path (approximately three times during about 10 seconds).

Several snapshots of the demonstration are shown in Figure 8.

The state trajectories were recorded with a sample period of

Ts = 0.05, yielding about 200 samples, the memory size of the

reference model. During imitation, k = 15 nearest neighbors

are used for the reference model and k = 40 for the inverse

plant model, which has a memory size of 1000 samples. The

value of parameter γ is 0.95. Figure 9 illustrates snapshots of

the behavior controlled by imitation, while Figure 10 shows

sample trajectories for demonstration (a) and imitation after

learning the inverse model (b). The two sets of trajectories are

qualitatively equivalent.

busoniu.net/projects.php


1 2 3

4 5 6

Fig. 8. The desired behavior is demonstrated by moving the robotic
manipulator by hand.

1 2 3

4 5 6

Fig. 9. Imitation of the demonstrated behavior.

Since the MBI scheme presented in this paper imitates the

reference dynamics of the demonstration and not the exact

trajectories, we found that when presenting a circular motion

to the end effector, the robot would move in an arbitrary size

circular pattern. However, by preventing the LLR algorithm to

extrapolate from its data set, the motion of the robot always

stays within the domain of the demonstrations, and remains

safe.3

VI. CONCLUSIONS

In this paper we have proposed and demonstrated a simple,

but very effective method for robot learning by imitation.

By taking advantage of nonparametric function approximation

methods such as local linear regression, we showed that

it is possible to both imitate a demonstrated motion and

approximate the plant model simultaneously in real-time.

We are now investigating the idea of employing model-

based imitation in reinforcement learning in order to speed

up the convergence of the learning controller.
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