
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 11 December 2013

doi: 10.3389/fimmu.2013.00438

Immature, semi-mature, and fully mature dendritic cells:
toward a DC-cancer cells interface that augments
anticancer immunity

Aleksandra M. Dudek†, Shaun Martin†, Abhishek D. Garg* and Patrizia Agostinis*

Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Edited by:
Kristian Michael Hargadon,
Hampden-Sydney College, USA

Reviewed by:
Nadege Bercovici, Centre national de
la recherche scientifique, France
Carlos Alfaro, Clínica Universidad de
Navarra, Spain

*Correspondence:
Abhishek D. Garg and Patrizia
Agostinis, Laboratory of Cell Death
Research and Therapy, Department of
Cellular and Molecular Medicine, KU
Leuven, Campus Gasthuisberg
O&N1, Herestraat 49, Box 802,
Leuven B-3000, Belgium
e-mail: abhishek.garg@
med.kuleuven.be;
patricia.agostinis@med.kuleuven.be
†Aleksandra M. Dudek and Shaun
Martin have contributed equally to
this work.

Dendritic cells (DCs) are the sentinel antigen-presenting cells of the immune system; such
that their productive interface with the dying cancer cells is crucial for proper communica-
tion of the “non-self” status of cancer cells to the adaptive immune system. Efficiency and
the ultimate success of such a communication hinges upon the maturation status of the
DCs, attained following their interaction with cancer cells. Immature DCs facilitate toler-
ance toward cancer cells (observed for many apoptotic inducers) while fully mature DCs can
strongly promote anticancer immunity if they secrete the correct combinations of cytokines
[observed when DCs interact with cancer cells undergoing immunogenic cell death (ICD)].
However, an intermediate population of DC maturation, called semi-mature DCs exists,
which can potentiate either tolerogenicity or pro-tumorigenic responses (as happens in
the case of certain chemotherapeutics and agents exerting ambivalent immune reactions).
Specific combinations of DC phenotypic markers, DC-derived cytokines/chemokines, dying
cancer cell-derived danger signals, and other less characterized entities (e.g., exosomes)
can define the nature and evolution of the DC maturation state. In the present review, we
discuss these different maturation states of DCs, how they might be attained and which
anticancer agents or cell death modalities (e.g., tolerogenic cell death vs. ICD) may regulate
these states.

Keywords: immunogenic cell death, phenotypic DC maturation, cytokine, antigen, cell death, cancer, immunosur-
veillance, chemotherapy

INTRODUCTION
It is conceptually established that the immune system can be dis-
tributed across two basic components, i.e., the innate immune
system and the adaptive immune system (1, 2). The primary aim
of innate immune cells is to provide a rapid non-specific response
to any pathogen or foreign aggressors (possessing foreign anti-
gens), wound, inflammatory insult, or newly initiated diseased
cell (owning possible “non-self” antigens) (1, 2). On the other
hand, the primary aim of adaptive immune cells is to provide a
latent but highly specific response against foreign or “non-self”
antigens and to generate an “immune memory” against these anti-
gens to counter similar insults in the future more quickly (either

Abbreviations: APC(s), antigen-presenting cell(s); CD, cluster of differentiation;
DAMPs, damage-associated molecular patterns; DC(s), dendritic cell(s); DEX(s),
dendritic cell-derived exosomes; ER, endoplasmic reticulum; GM-CSF, granulo-
cyte macrophage colony stimulating factor; Hyp-PDT, hypericin-based photody-
namic therapy; ICD, immunogenic cell death; iDC(s), immature dendritic cell(s);
IFN, interferon; IKDCs, IFN-producing dendritic cells; IL, interleukin; imDEXs,
immature dendritic cells derived exosome(s); LFA-1, leukocyte function-associated
antigen-1; mDEXs, mature dendritic cells derived exosome(s); MDSC, myeloid
derived suppressor cells; NK, natural killer cells; NKDCs, natural killer den-
dritic cells; NLRs, NOD-like receptors; PAMPs, pathogen-associated molecular pat-
tern(s); PRRs, pattern recognition receptors; TAA(s), tumor-associated antigen(s);
TDE(s), tumor derived exosome(s); TGF, transforming growth factor; TIDCs,
tumor-infiltrating dendritic cells; TLRs, toll-like receptors; TNF, tumor necrosis
factor.

cell interaction dependent or independent; the latter applying to
antibody production) (3, 4). Together these two branches of the
immune system are supposed to initiate acute inflammation ulti-
mately culminating in its resolution and wound healing once they
have taken care of the aggressor, insult, or diseased cell (5, 6). It
is noteworthy that in terms of evolution, the conception of the
innate immune system pre-dates that of the adaptive immune sys-
tem (1). Most notable innate immune cells include macrophages,
natural killer (NK) cells, dendritic cells (DCs), various myeloid
lineage subsets, neutrophils, basophils, and eosinophils (1, 6);
while the most notable adaptive immune cells include T and B
lymphocytes (3, 5).

The initial reaction orchestrated by innate immune cells con-
sists of capturing, as well as clearing up or destroying the source
of injury, infection, or diseased cells, followed by wound healing
and if required (in case of well discernable antigens) “priming” of
the adaptive immune cells against antigens derived from the “non-
self” diseased cells or pathogens (1, 2). This adaptive immune cell
priming helps to initiate more specific responses, directed against
the acquired antigens and leading to the eradication of the antigen
source (3, 6). This in principle is also the basic theory behind anti-
cancer immunity or anticancer immunosurveillance (7), where
innate immune cells recognize the “non-self” tumor-associated
antigens (TAAs) and prime adaptive immune cells (mainly T cells)
against them. This leads to both: direct and indirect cancer killing,
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anticancer effector functions, production of anti-TAA antibodies
and subsequent immunity capable of rejecting tumor cells pos-
sessing the corresponding TAAs (3, 8). In this complex interplay,
one may appreciate that the step of “priming” adaptive immune
cells by innate immune cells against TAAs represents a crucial
milestone that is completely dependent on the antigen-presenting
and antigen-sensing capabilities of innate immune cells (2). While
most innate immune cells (professional presenters) and certain
cells of epithelial lineage (non-professional presenters) are capa-
ble of presenting antigens to the adaptive immune cells (6) be it to
varying degrees; yet the sentinel antigen-presenting cells (APCs)
of the immune system are the DCs (2, 3, 9). DCs are the guardian
APCs because they are both efficient at antigen-presenting and
adaptive immune cell activation and also good at judging whether
an entity possesses “self” or “non-self” antigens (2, 10, 11). The
ability of DCs to present“non-self”TAAs properly to prime as well
as to activate adaptive immune cells is an absolute pre-requisite for
activation of potent anticancer immunity (2, 4).

In the present review we briefly discuss the basic biology of
DC activation states that can make a difference between pro-
tumorigenic inflammation and anti-tumorigenic immunity. We
will then discuss in more detail the ability of anticancer ther-
apeutics to influence and modulate these activation states and
the crucial impact of exosomal communication on DC-associated
functions.

DENDRITIC CELLS AND THEIR ACTIVATION STATES: A BIRD’S
EYE-VIEW
The molecular cell biology of DCs has evolved in a sophisti-
cated manner to facilitate its APC functions (12). DCs in general
possess a diverse repertoire of surface receptors (and intracel-
lular receptors) that help them in environmental sensing and
to carry out “at will” rapid innate immunity-related functions
(2, 12). Such receptors include various scavenging or phagocytic
receptors like CD91, integrins, CD36 (aiding in phagocytosis and
clearance of target entities), surface pattern recognition recep-
tors (PRRs) like toll-like receptors (TLRs), and intracellular PRRs
like NOD-like receptors (NLRs) (10, 13, 14). DC-based PRRs
help in detection (and subsequent DC stimulation) of danger
signals like pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs) (4, 5, 8).

Dendritic cells are also special in terms of their antigen pro-
cessing machinery. Classically (for non-professional APCs and
normal cells, as applicable), antigens derived from intracellu-
lar sources are presented by the major histocompatibility com-
plex (MHC) class I presentation system while extracellular anti-
gens (captured via phagocytosis or pinocytosis) are preferentially
processed for MHC class II presentation (15). In specialized APCs
like DCs however, the extracellular antigens can also gain access
to the MHC class I presentation system (mediated by following
events: phagophore→ endosome→ antigen escape from endo-
some→ antigen processing by cytosolic proteasome for MHC I
presentation) while intracellular antigen fragments can also be
found on the MHC class II molecules (mediated by autophagy) –
a phenomenon termed as “cross-presentation” (15). This unique
ability to cross-present antigens to adaptive immune cells is
also behind DCs’ significant role as APCs. Depending on the

environment they encounter (e.g., normal “self” antigen rich envi-
ronment or abnormal “non-self” antigen rich environment); DCs
can exhibit various states and accordingly perform different func-
tions (2, 12). Based on a highly stark difference between antigenic
environments, i.e., host “self” antigens vs. foreign or pathogen-
associated “non-self” antigens, DCs can exist in two main states,
i.e., steady state immature dendritic cells (iDCs) and fully mature
DCs (9, 12). The distinction between immature and mature DCs
is partly based on changes occurring on two crucial levels, i.e.,
phenotypic level and functional level (2, 14, 16). Phenotypic mat-
uration is attained when DCs up-regulate surface maturation
ligands such as CD80, CD83, and CD86 along with the MHC class
II molecule (9). DCs stimulated on the functional level exhibit
the ability to secrete cytokines where the balance between inflam-
matory or immunostimulatory cytokines (e.g., IL-12, IL-6, IL-1β)
and immunosuppressive cytokines (e.g., IL-10, TGF-β) is decided
by the “environmental context” (2, 9, 17).

In normal, healthy conditions, DCs exist in an immature
or steady state such that in this scenario their main aim is to
maintain immune tolerance by impeding adaptive immune cells
from attacking host cells that possess “self” antigens (4, 10, 12).
However, if DCs encounter “non-self” entities in the periphery,
they opsonize them, process their antigens for cross-presentation,
migrate to the lymph nodes, and prime naïve T cells for these
antigen (9). DCs provide the T cells with the information about
whether an antigen is present and whether it poses a threat – a
foundational mechanism for the subsequent T cell effector func-
tion (18). A single DC can contact as many as ∼5000 T cells
per hour (19). Steady state iDCs exhibit continuous endocytic
activity (20) and hence continuously present “self” antigens to T
cells. However in this case the T cells are not polarized toward
an effector state but are rather polarized to facilitate tolerance or
immunosuppression (12, 21). Such immunotolerance is actively
induced and maintained through a mixture of immune check-
point pathways and complete lack of stimulatory signals provided
by the DCs (22). Immune checkpoint pathways are a plethora of
inhibitory cascades that are crucial for maintaining self-tolerance
and modulation of duration/amplitude of immune response, e.g.,
DC-based presentation of ligands like cytotoxic T-lymphocyte-
associated antigen 4 (CTLA4) and programed cell death pro-
tein 1 (PD1) to T cells causing T cell anergy or differentiation
of immunosuppressive T cells (22). Such immunosuppressive T
cells (e.g., regulatory T cells, Tregs) further help in spreading tol-
erance toward “self-antigens” (6, 9). On the other hand, when
DCs encounter pathogens or entities possessing PAMPs (detected
in part through PRRs) they switch to a mature state exhibiting
strong phenotypic and functional stimulation. At this stage, the
DCs leave the function of phagocytic scavenging and assume the
more sophisticated APC-function (12). Subsequently, DCs care-
fully co-ordinate their proteolytic processes in the cytosol (e.g.,
proteasomes), endosomes-lysosomes (e.g., lysosomal hydrolases),
and the endoplasmic reticulum (ER) to degrade “non-self” entity-
derived proteins in order to yield suitable antigenic peptides that
are subsequently loaded on MHC class I and II molecules for
presentation to T and B cells (9, 12). The simultaneous presence
of phenotypic maturation ligands, suitable cytokines, other func-
tional immunostimulatory factors, and appropriate antigen-MHC
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complexes helps activate an effector profile in interacting T cells
thereby polarizing them for antigen-specific elimination of the
“non-self” entity (9). Here, antigen-MHC complexes are the main
stimulatory signals (signal 1, detected by the T cells through a
complex of T-cell receptors/TCRs-CD3) followed by phenotypic
maturation ligands. These ligands help in providing proper co-
stimulation by binding corresponding receptors on T cells (signal
2, detected by T cell receptors like CD28, CD40L) in the presence of
cytokines or factors eliciting immunostimulation and the effector
T cell phenotype (signal 3, detected by respective cytokine cognate
receptors) (9). The presence of these three signals is absolutely
essential for effective T cell stimulation by APCs (like DCs) and
their polarization toward anti-pathogenic effector function (6,
9). It is noteworthy though, that apart from these three signals,
DCs might modulate T cell function via other immunomodula-
tory signals (e.g., exosomes, discussed later); however because they
still lack a well-characterized functional status, they cannot yet be
ascribed as bona fide T cell modulatory signals. Last but not least,
it is important to consider that maturation of DCs is primarily
crucial for the activation and differentiation of naïve T cells (10).
Pre-existing cytotoxic T cells and memory T cell populations are
not very strongly dependent on fully mature DCs for their effector
functions (2, 3, 12).

TUMOR-INFILTRATING DCs: AN OVERVIEW
The Dichotomy of DC maturation states is mainly applicable to
an environment where a very obvious distinction exists between
“self” and “non-self” antigens. The continuum of DC activation
states is much more complex when it comes to cancer as most
cancerous tissues or tumors are very similar in terms of antigenic
make-up to that of normal cells (5, 12). This is attributable to
the fact that most antigens are either shared with nearby normal
tissues (e.g., differentiation antigens) or with spatiotemporally dis-
tinct yet normal tissue [e.g., oncofetal antigens or cancer-testis
antigens (7)]. This leads to a strong conflict regarding what repre-
sents “self” or “non-self” – which is further revived by the struggle
between the tolerance-encouraging tendency of DCs and their
propensity to prime T cells for tumor rejection (4, 9, 12). This
situation is further exacerbated by the capacity of cancer cells
to interfere with normal DC function (23) via immunosuppres-
sive cytokines or other signals like those conveyed by exosomes
(discussed later).

In a well-established tumor, cancer cells actively suppress steady
state DCs (also called tumor-infiltrating DCs or tumor-infiltrating
dendritic cell, TIDCs) and keep them in the favorable immature
state (Figure 1) (23–25). Such immature TIDCs tend to exhibit
dysfunction in antigen-presenting capabilities, suppressed endo-
cytic activity, abnormal motility, and various other immature
characteristics – a point that has been demonstrated in a num-
ber of studies analyzing various solid tumors and tumor-draining
lymph nodes (26). Such induction of immature state in TIDCs by
the tumor is not surprising considering that mature DC’s density
in tumors inversely correlates with tumor pathologic grade/stage
and positively correlates with improved prognosis (26). Moreover,
tumors may also actively induce apoptosis in TIDCs through cer-
tain gangliosides (e.g., GM3, GD3), glycoproteins (e.g., MUC2
mucins), and neuropeptides (25, 26).

The tumor-induced iDCs state is mainly characterized by:
(1) the total absence or presence of negligible amounts of
well-processed cancer antigens (compromised signal 1 genera-
tion), (2) absence or trivial amounts of phenotypic maturation
ligands or co-stimulatory molecules (ablation of signal 2), and (3)
either complete absence or minor presence of functional stimu-
lus/immunostimulatory cytokines like IL-12 (ablated signal 3) (7,
10, 12, 23). Such iDCs can also be encouraged by the presence
of non-immunogenic cancer cell death [e.g., tolerogenic apopto-
sis (11)] (5, 21, 27, 28). The presence of signal 1, i.e., processed
cancer antigens is very crucial for potent elicitation of anti-tumor
immunity since signals 2/3 have less meaning in absence of signal
1 (18). Thus not surprisingly, one of the immunoevasive strategies
employed by cancer cells is the down-regulation or loss of anti-
gens (7, 21). DCs prime the T cells for cancer antigens in the lymph
nodes in three phases (18, 29); Phase I lasts for ∼8 h and consists
of transient interactions between T cells and antigen-presenting
DCs (29). T cells integrate antigenic stimulus from several such
Phase I encounters until the cumulative signal triggers the onset
of Phase II. During Phase II (which lasts ∼12 h), T cells form a
long-lasting stable contact with a single DC (29). It is noteworthy
that this Phase I–II transition depends strongly on the concentra-
tion of antigenic peptide-MHC complex per DC (18, 30); higher
the concentration, the faster the tendency of T cells to exit Phase I
and reach Phase II (18). Thus, lower cancer cell-associated antigen
levels make it harder for the T cells to exit Phase I – a scenario
that leads to unstable DC–T cell interactions and compromised
T cell immunity. Phase II is also the stage where T cells are fur-
ther activated via DC-based signals 2 and 3 (29). Thereafter, the T
cells enter Phase III during which they proliferate vigorously and
return to short interactions with the DCs (29). It should be note
however, that the above “three phase theory” of DC–T cell interac-
tions is mainly based on in vitro/ex vivo studies using either model
antigens or high concentrations of TAA-based immunodominant
peptides. Such studies need to be extended to settings of DC–T
cell interactions within a tumor-bearing host, in near future.

Apart from antigen down-regulation, cancer cells also directly
induce an immature TIDC state through secretion of immuno-
suppressive factors like IL-10, VEGF, TGF-β, and PGE2 (7, 25, 27);
thereby further compromising stable DC–T cell interactions. The
strategies and mechanisms employed by cancer cells for inducing
DC-based tolerogenicity have been discussed in details in certain
recent reviews (5–7,21). Curiously it has been demonstrated recur-
rently that in an ex vivo set-up, certain iDCs may exhibit the ability
to directly lyse transformed cells or tumor cells in vitro (31). Such
iDCs have been termed as natural killer dendritic cells (NKDCs) or
more recently interferon-producing killer DCs (IKDCs) (Figure 1)
(31) and have been found to exert anticancer cytotoxic activity
in vitro in both rodent and human set-ups (31–33). While, IKDCs
may simply reflect the prevalent ex vivo DC heterogeneity yet their
characterization raises the need to better study DC features in
tumor-bearing hosts.

DC ACTIVATION STATES IN TUMOR IMMUNOSURVEILLANCE
AND ANTI-TUMOR IMMUNITY
As per the theory of cancer immunoediting, during tumor devel-
opment the equilibrium between growing tumor and immune
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FIGURE 1 | Schematic representation of different states of DCs
interacting with different types of cancer cells. Live cancer cells and
cancer cells undergoing non-immunogenic cell death keep the steady state
DCs in an immature state devoid of strong up-regulation of phenotypic
maturation ligands (CD80, CD86, CD83, MHC-II) and functional maturation (no
or negligible amounts of immunostimulatory cytokines). In certain ex vivo
conditions, immature DCs can behave like natural killer DCs (NKDCs) or
interferon-producing killer DCs (IKDCs), which can exert in vitro anticancer
cytotoxicity. On the other hand, freeze/thawing of cancer cells, certain
immunogenic live cancer cells, and certain therapy-induced non-immunogenic
cell death routines can induce a “limbo” state in DCs called semi-mature DCs
which are not fully mature and can be either devoid of phenotypic maturation
ligands or functional maturation depending on the context. Both immature

DCs and semi-mature DCs cause T cell anergy and facilitate tolerogenicity
thereby compromising anticancer immunity. These DCs may also actively
facilitate pro-tumorigenic signaling. However, some therapeutic paradigms
can induce immunogenic cell death (ICD) or at least a certain level of
augmented immunogenicity in cancer cells which causes the interacting DCs
to fully mature. These fully mature DCs can potently elicit anticancer
immunity. Fully mature DCs devoid of immunosuppressive cytokines like IL-10
can be termed as immunogenic DCs capable of forming the most productive
interface with T cells to prime them for anticancer effector function. On the
other hand, fully mature DCs secreting IL-23 (inflammatory DCs) may polarize
the T cells toward a state where they have a “helper” behavior accompanied
by IL-17 production (Th17). The role of Th17 cells in cancer immunity and
progression is enigmatic and controversial.

system shifts: at the beginning the immune system is capa-
ble of recognizing and exterminating cancer cells (“elimination”
phase). Later, cancer “immunoediting” and release of cancer-
derived immunosuppressive factors, results in the establishment
of an equilibrium between cancer cells that are still susceptible
to immunoeradication and immunoevasive ones that are resis-
tant to anticancer immunity (“equilibrium” phase). Finally, as the
immune evasion process progresses, the tumor escapes immune
cell control (“escape” phase) (34). It has been long proposed
that anticancer therapies should kill the cancer cells in a man-
ner that helps activate the DCs to prime the adaptive immune
system for anticancer activity (28, 35), however the experimental

as well as clinical translation of this idea have unfortunately not
been straightforward. This may result from the fact that most
anticancer therapies tend to induce either non-immunogenic or
very low-immunogenic cancer cell death (11) and thereby dis-
allowing sufficient DC stimulation (5, 21, 27, 35) and keeps
the DCs in an immature state (Figure 1). For instance, cer-
tain therapeutic modalities (e.g., chemotherapeutics like cisplatin)
or certain anti-tumor vaccine-preparation methodologies (i.e.,
freeze/thawing, discussed later in Anticancer Therapy Differently
Shapes the DC-Dying Cancer Cells Interface), may actually cause
a sub-optimal activation of DCs (24, 28, 36, 37) thereby giving rise
to a somewhat“limbo”state which can be termed as“semi-mature”
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Table 1 | Inducers of cancer cell death that stimulates full maturation of DCs.

Anticancer

therapy

In vitro

Phagocytosis

Phenotypic

maturation of DCs

Release of

cytokines by DCs

Stimulation of

T cells

In vivo mice

experiments

Clinical data

Hypericin-PDT Garg et al. (37) Garg et al. (37) IL-1β (37); IL-6 (50);

NO (37); IL-12p70

(Dudek et al.,

unpublished data)

Proliferation (50)

IFNγ release (50)

In vitro-treated cancer

cells induce antitumor

immunity in mice

vaccination experiment

(37)

UVB Kotera et al.

(52)

IL-12 (52) Pulsed-DC induce

antitumor immunity in

mice vaccination

experiment (52)

Cyclophospha

mide (MAFO

for in vitro

experiments)

Kotera et al. (52),

Schiavoni et al. (53)

IL-1β, IL-6, IL-12 (52,

53)

Increased infiltration of

phenotypically mature DCs

(53, 55–57); increased DCs

trafficking to the lymph

node (53)

γ Irradiation Prasad et al.

(58), Kim et al.

(59)

Prasad et al. (58),

Kim et al. (59)

IL-6 (59) IFNγ release (62) After tumor irradiation:

(1) increase in

tumor-infiltrating mature

DCs (60, 61); (2)

increase in IFNγ

production by spleen

cells (63)

Doxorubicin Obeid et al.

(132)

Ghiringhelli et al.

(134)

IL-1β (134) Proliferation and

IFNγ release (133)

Oxaliplatin Ghiringhelli et al.

(134)

IL-12p70 (134) Proliferation and

IFNγ release (134)

Bortezomib Cirone et al. (135) IFNγ release (135) Pulsed-DC induce

antitumor in mice

vaccination experiment

(136)

CMQ and

colchicines

Wen et al. (137) Proliferation (137)

Oncolytic

viruses

Moehler et al. (73),

Donnelly et al.

(138)

Release of IFNγ

(138), release of

TNF and IL-6 (73)

DCs (Figure 1) (10). It is noteworthy though that in certain
instances, semi-mature DCs generated ex vivo and injected back
into the host (in this case rhesus macaque) might become mature
spontaneously during migration before reaching the lymph nodes
(38). However, whether this situation applies to therapeutic DC
vaccines is an enigmatic question since the above mentioned study
was not done within the context of anticancer DC vaccines. In
various anticancer therapy settings (see Table 1 and Anticancer
Therapy Differently Shapes the DC-Dying Cancer Cells Interface),
DCs interacting with dead/dying cancer cells (treated with non-
immunogenic or low-immunogenic anticancer agents) may attain
a semi-mature state, i.e., while they may present low/medium

levels of cancer antigens yet they either lack co-stimulatory sig-
nals (e.g., CD86) or suitable immunostimulatory cytokines (e.g.,
IL-12) (6, 10, 28, 37). Thus, semi-mature DCs, unlike iDCs, exhibit
the ability to sustain at least two (i.e., signal 1 and either one
of the other two signals) of the three signals required for suc-
cessful/optimal T cell activation (23) but unfortunately not all
three at once and thereby they exhibit an unstable interface with
T cells that leads to active ablation of anticancer immunity (10)
and clonal T cell anergy (20, 23, 24). Semi-mature DCs might
exhibit inconsistency in either up-regulation of phenotypic matu-
ration ligands or in secretion of cytokines (Figure 1). Semi-mature
DCs with disparity in phenotypic maturation are able to secrete
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one or more of the few assorted cytokines like IL-10, IL-6, IL-1β,
and tumor necrosis factor (TNF), but do so to a highly variable
degree (in terms of amount and simultaneous presence of these
cytokines together) (23, 28, 37). It is also noteworthy that cer-
tain well-established tumors composed of immunogenic cancer
cells (e.g., melanoma) may also encourage formation of de novo
semi-mature TIDCs rather than immature TIDCs due to the par-
ticular tumor microenvironment they can create (39). Together
iDCs and semi-mature DCs tend to encourage T cell anergy or
T cell exhaustion (9, 10), tolerogenicity toward the cancer cell (9,
31), and even active pro-tumorigenic activity (e.g., semi-mature
DC-derived IL-6 may act as a growth factor for tumors expressing
IL-6R-gp130 cognate receptors and/or IL-10 can act as a general
immunosuppressor) (17, 40, 41).

Recently however, it was described that certain therapeutic
modalities [e.g., mitoxantrone/doxorubicin, hypericin-based pho-
todynamic therapy (Hyp-PDT), and radiotherapy] cause cancer
cells to undergo immunogenic cell death (ICD) (28, 35, 40, 42).
ICD tends to be highly immunostimulatory because it emits a spa-
tiotemporally defined combination of potent DAMPs that act as
danger signals important for DCs stimulation (35). DCs detect
such danger signals through a combination of receptors includ-
ing TLRs, CD91, and purinergic receptors (21, 35). ICD may
also ablate the canonical strategies harnessed by cancer cells to
encourage the formation of immature or semi-mature DC states
(21, 27). Beyond ICD, some anticancer therapeutics (e.g., antim-
itotic chemotherapeutics like docetaxel) may induce a general
augmentation of immunogenicity that is not as strong as ICD
but is still effective in a context-dependent fashion (43). Can-
cer cells undergoing ICD, or exhibiting therapy-induced (minor
to medium increase of) immunogenicity, encourage the forma-
tion of fully mature DCs (Figure 1) (10, 27, 28, 35, 37, 43). In
general, fully mature DCs exhibit all three conventional T cell
stimulatory signals, thereby enabling elicitation of potent anti-
cancer immunity (12, 13, 31). However, based on the pattern of
only a few cytokines fully mature DCs might be subdivided, i.e.,
immunogenic DCs and inflammatory DCs (Figure 1) (35, 44).
The fully mature immunogenic DCs are supposed to exhibit the
least or total absence of immunosuppressive cytokines like IL-10
(17, 21, 40). Most known ICD inducers result in the formation
of general fully mature DCs, with a context-dependent absence
or reduced abundance of immunosuppressive cytokines (e.g., IL-
10) (28, 37, 45). On the other hand, the presence of high IL-23
cytokine expression might be a marker of inflammatory DCs (44).
Indeed, IL-23 may encourage T cells to exhibit the Th17 polariza-
tion (T helper cells/Th cells producing IL-17 cytokine) (44). It is
noteworthy that the role of inflammatory DC-Th17 arc in can-
cer progression is still enigmatic with evidence supporting both
anti-tumorigenic and pro-tumorigenic roles for this interaction,
depending on the context (44, 46, 47). Thus for anticancer immu-
nity, the functional role of fully mature inflammatory DCs needs
to be treated with caution until further research ascertains their
exact behavior.

It is noteworthy though, that the distinctions between different
DC maturation or activation states made on the basis of pheno-
typic maturation markers or cytokine patterns are primarily based
on ex vivo or in vitro experiments. This is because simultaneous

analysis of various surface-associated and soluble DC activation
markers is relatively easy ex vivo or in vitro. However, in vivo
or in situ, such a simultaneous detection is nearly impossible.
In vivo or in situ, mostly only the phenotypic maturation sta-
tus of tumor-infiltrating DCs is detected via immunofluorescence
staining (e.g., CD11b+CD11c+CD86highMHC-IIhigh DCs). While
an analysis of cytokines associated with the tumor is possible via
RT-PCR, proteomics-approaches, or antibody arrays, yet there is
no way of characterizing which cytokines are secreted exclusively
by the TIDCs. In future, lineage-tracing of the DCs in tumors or
high enumeration staining/detection strategies for TIDCs might
make it possible to simultaneously detect the phenotypic and func-
tional markers of DCs in vivo or in situ however until that point,
the above mentioned distinctions can be treated as operational
definitions. Furthermore, it would be necessary to further char-
acterize the additional states of semi-mature or fully mature DCs
relevant for cancer treatment, not only in vitro/ex vivo but also
in vivo/in situ.

ANTICANCER THERAPY DIFFERENTLY SHAPES THE
DC-DYING CANCER CELLS INTERFACE
Anticancer therapies are capable of modulating DC states, either
directly or via dying cancer cells. We believe that efficient anti-
cancer treatment should be able to re-establish the recognition
of cancer cells by the immune system, as well as “revive” the
dominance of the immune system in this cross-talk. Therefore,
the maturation status of DCs, as the predominant APCs, after
anticancer therapy or after co-incubation with in vitro-treated
dying cancer cells is an attractive marker of stimulation of an
immune response, specifically relying on effector CD4+/CD8+ T
cells (characterized by increased T cell proliferation/infiltration
and secretion of IFNγ) (48).

Interestingly, cancer cells treated with most anticancer thera-
pies either induce full DC maturation (a very small fraction of
therapies) or do not stimulate the DCs at all (i.e., immature or
tolerogenic DC formation, induced by a large fraction of ther-
apies). There are however, a limited number of therapies that
can also induce the formation of semi-mature DCs. In the next
section, the formation of fully mature and semi-mature DCs will
be discussed within the context of anticancer therapies.

FULLY MATURE DCs
Only few therapies have been reported to have the capability to
induce cancer cell death that stimulates complete DC matura-
tion. By complete maturation of DCs we understand induction of
both, phenotypic markers and production of immune-stimulating
cytokines. Instead, to the best of our knowledge, in most in vitro
studies, the analysis of cytokine expression profile is either incom-
plete, or the most important cytokines, e.g., IL-12p70, IL-10, are
not included. Only such fully mature DCs are able to stimu-
late T cells, hereby increasing their proliferation and secretion
of IFNγ, which are often considered to be surrogate indicators
of a productive immune stimulation. Thereby, in the absence of
information on the full pattern of cytokines released by DCs’, an
increase in T cell stimulation can be considered a strong indicator
of a full maturation state of the aforementioned DCs. Moreover,
full maturation of DCs can be assumed with high probability if
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anticancer immunity in syngenic mice vaccination models (e.g.,
B16 cells in C57Bl/6 mice, MCA205 cells in C57Bl/6 mice, CT26
cells in BALB/c mice, 67NR cells in BALB/c mice) is achieved when
dying cancer cells, following chemotherapy in vitro, are adminis-
tered (either in a prophylactic or curative set-up). An anticancer
treatment that can induce productive maturation of dying can-
cer cell-loaded DCs, at least in vitro, is Hyp-PDT (37, 49–51).
Already for some time it is known that Hyp-PDT-treated can-
cer cells induce both phenotypic and functional maturation of
DCs (37, 50) and that in mice vaccination experiments, the dying
cancer cells stimulate anticancer immunity preventing growth of
transplantable tumors (37). Recently this data was re-confirmed
and extended further (50). DCs interacting with Hyp-PDT-treated
cancer cells exhibit a fully mature immunogenic phenotype func-
tionally characterized by significant secretion of immunostimula-
tory factors like IL-1β, IL-6, nitric oxide, and the absence of the
immunosuppressive cytokine, IL-10 (50). Moreover, Hyp-PDT-
treated cancer cells elicit secretion of IL-12p70 by loaded DCs
(Dudek et al., unpublished data).

Other treatments for which the detailed immune-effects have
been described include UVB irradiation, cyclophosphamide, and
γ-irradiation. There is evidence that UVB-induced dying cancer
cells are phagocytosed by DCs, leading to an increase in IL-12 pro-
duction (52). Furthermore, DCs pulsed with UVB-treated B16F10
cells, induce anti-tumor immunity in mice and prevent growth of
transplantable tumors (52). As cyclophosphamide requires hepatic
activation, for in vitro investigations its analog, MAFO, is used.
Exposure of DCs to mafosfamide (MAFO)-treated cancer cells
causes phenotypic maturation of DCs and their functional stimu-
lation, characterized by the release of various cytokines (IL-1β, IL-
6, IL-12) (53, 54). Moreover, the treatment with cyclophosphamide
of tumor-bearing mice results in increased tumor bed infiltration
by phenotypically mature DCs (53, 55–57), as well as increased
trafficking of DCs from the tumor bed to the draining lymph nodes
(53). Furthermore, cyclophosphamide, when given to patients at
metronomic doses, combines direct effects on immune cells, like:
limitation of Treg cells population and expansion of DCs in periph-
eral blood (56, 57) with potent stimulation of a DC response. Also
γ-irradiated murine melanoma cells are efficiently phagocytosed
by DCs, resulting in their phenotypic maturation (58, 59). Despite
the fact that neither IL-12p70 nor TNF are secreted by loaded
DCs, these cells release another pro-inflammatory cytokine, IL-
6 (59). These observations prove the triggering of a functional,
however not optimal (lack of IL-12p70), maturation of loaded
DCs. The positive immunostimulatory effects of γ-irradiation
were shown by increased tumor-infiltrating active DCs following
local high-dose radiotherapy (60, 61). Furthermore, when human
monocyte-derived DCs and irradiated melanoma cells were co-
incubated with T cells, T cell-derived IFNγ secretion increased
(62), an observation that was also substantiated in vivo when irra-
diation of established B16F10 tumors resulted in an increase of
IFNγ-producing spleen cells (63).

However, as mentioned, complete analysis of the effects of
drug-treated cancer cells on DC maturation is limited to only
few therapies. Other treatments are simply hypothesized or spec-
ulated to induce fully mature DC phenotype, but these are
claims supported by only indirect data. Table 1, recapitulates

the available information about DCs-stimulating capacities of
anticancer treatments.

Besides these conventional/experimental anticancer treat-
ments, it is also emerging that targeted therapies can induce
cancer cell death, capable of affecting DC maturation status. One
such therapy is Vemurafenib (PLX4032), the inhibitor of mutated
BRAFV600E kinase, which is predominantly used in patients with
melanoma. Incubation of cancer cells (that harbor BRAFV600E

mutation) with iDCs followed by poly(I:C) stimulation of the lat-
ter, down-regulated the release of TNF and IL-12 (IL-12 being
crucial for effective functional maturation of DCs) (64). However,
when cancer cells were pre-treated with Vemurafenib, the release
of TNF and IL-12 from poly(I:C) matured DCs was re-established
to a level obtained in the control (matured DCs without cancer
cells) (64). Moreover Vemurafenib is known to increase TAA levels,
such as MART1 and gp100 (65).

In conclusion, in future it is necessary to find and test more
ICD inducers in order to better understand the diversity that fully
mature DCs may exhibit in terms of activation characteristics.
Also, it would be necessary to (re-)analyze certain existing ther-
apies for their potential to cause DC maturation irrespective of
whether they induced ICD.

SEMI-MATURE DCs
In the literature, evidence indicates that some anticancer treat-
ments may cause “moderate” stimulation of an immune response.
Under such circumstances the immune system activating sig-
nals are not strong enough or not persistent enough to establish
a stable anticancer immunity. For DCs, this means that these
APCs lack either the required phenotypic maturation markers and
thereby are not capable to efficiently interact with T cells, or the
required signature cytokine pattern released from loaded DCs and
ultimately resulting in “immunocompromising” actions. Tolero-
genicity induced by semi-mature DCs is connected with release
of immunosuppressive cytokines like IL-10, TGF-β (66), plasma
membrane expression of programed cell death ligands, like PD-L1
or PD-L2 (67), and with stimulation of Tregs expansion (67).

Phenotypically mature DCs
A good example of a treatment that induces phenotypic matu-
ration of DCs, independent of the immunostimulating profile of
cytokines is bevacizumab. This epidermal growth factor recep-
tor (EGFR)-blocking antibody, which blocks angiogenesis, only
induced phenotypic maturation of DCs upon their co-incubation
with treated cancer cells (68). Nevertheless it should be highlighted
that, on the one hand, addition of bevacizumab to co-cultures
resulted in increased IL-6, but decreased IL-12 release (68). More-
over, it was shown that bevacizumab-treatment of patients with
metastatic colorectal cancer increased total lymphocyte number
(69) and had the potential to increase extravasation of T cells into
the tumor bed, previously observed for the therapeutic paradigm
of anti-EGFR antibody combined with adoptively transferred T
cells in mice models (70).

Furthermore, cetuxinib, another EGFR-blocking antibody that
prevents signaling from growth factors, shows similar results.
Despite the fact that colon cancer cells treated in vitro with cetux-
inib were phagocytosed by iDC (71) and induced the up-regulation
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of maturation markers (72), there is no investigation, till now, of
the cytokines required for characterization of maturation status of
these DCs. Thus this treatment should not be incorporated into the
group of therapies that induce “full mature DCs” – as of now. Nev-
ertheless, cetuxinib treatment has other features that demonstrate
its positive effect on the immune system: its capacity to stimulate
NK cell mediated antibody-dependent cellular cytotoxicity and
complement-dependent cytotoxicity, are well documented (72).

Finally sunitinib (an inhibitor of receptor tyrosine kinase)-
treated melanoma cells enhanced the maturation status of DCs
(measured by the percentage of CD86+ cells). However no inves-
tigation of DC-secreted cytokines has been performed. In spite
of this, one can be relatively positive about its immunoinhibitory
effects, as cytotoxic T lymphocytes (CTLs) incubated with these
loaded DCs did not increase their secretion of IL-6 (73).

Thus, while in some cases, certain therapeutic treated cancer
cells induce formation of semi-mature DCs, yet for others the indi-
cations in this direction are either mixed or poorly studied. More
analysis is required on the cytokine levels to ascertain whether
such therapeutics are able to cause formation of semi-mature DCs
or not. Last but not least, it is also necessary to analyze further
the direct effects of anticancer treatments on DCs maturation (in
set-ups where these therapies are not intended to directly affect
the DCs) – an aspect that has received the least attention in studies
addressing DC-based immunity.

DC-BASED CANCER IMMUNOTHERAPY
Most of the clinically used anticancer therapies if systemically
administered strongly affect not only cancer cells but as well
the cells from tumor microenvironment, systemic hematopoi-
etic cells, and rapidly dividing bone marrow cells. Despite the
fact that recently platinum-based drugs, at clinically applicable
concentrations, have been shown to enhance cytokine-induced
DC maturation in vitro (74), vast majority of the effects on
the non-cancer cells are of negative nature (i.e., prevention of
differentiation of new immune cells from progenitor bone mar-
row cells and lymphopenia or leukopenia). These actions reduce
the number of immune cells capable of sensing the danger and
immune-stimulating signals released by dying cancer cells thereby
compromising anticancer immunity. To evade this effect, a DC-
based immunotherapy approach can be employed in a couple of
ways: (1) by directly targeting/stimulating the DCs in vivo so as
to accentuate their anticancer phenotype or (2) by stimulating the
DCs ex vivo and infusing them back into the host for carrying out
anticancer effector function.

Starting from 1998 there were few trials testing the in vivo DCs’
stimulation with synthetic peptides (75–77). Most of them how-
ever failed as they were unable to effectively stimulate CD4+ cel-
lular responses (75, 78, 79) and stimulation of Th2 type cytokines
(80, 81). Learning from the abovementioned studies, Walter et al.
showed that patients pre-treated with single-dose cyclophos-
phamide as well as vaccinated with TAAs peptides and granulocyte
macrophage colony stimulating factor (GM-CSF), showed clini-
cal responses in Phase I and II trials (82). To further improve the
peptide/protein anticancer vaccines the idea of combining TLR
agonist administration with the vaccines emerged. The idea was
taken up by GlaxoSmithKline that invented AS15 adjuvant that

combines TLR4 and TLR9 agonists (83). Patients with MAGE-A3+

melanoma administered with MAGE-A3 peptide in combination
with AS15 in Phase II trial (NCT00086866 and NCT00290355)
showed clinical activity (84). The study is being followed up by a
Phase III trial.

An alternative, to direct in vivo DCs’ stimulation is, isolation
of DCs’ precursors from the patient (through leukapheresis) and
maturation/stimulation of these precursors ex vivo followed by
allogeneic injection of these fully mature DCs back into the patient.
Nowadays there are various ways applied to generate cancer cells-
specific DCs: the stimulation can be done with specific TAAs
(full length or short peptides), tumor lysates (freeze-thawed or
acid eluted), electroporation/transfection of DCs with total cancer
cell-mRNA,creating DC-cancer cell fusions,or with tumor derived
exosomes (TDEs) (as discussed below). Alternatively DCs can
also be genetically manipulated to express specific TAAs. More-
over as the stimulation is performed ex vivo there is a possibility
to additionally co-stimulate with cytokine “cocktails” to assure
their strong maturation. For example in 2010 a Provenge treat-
ment strategy on similar lines got approved by FDA for therapy of
patients with castration-resistant prostate cancer (85). The treat-
ment consists of ex vivo stimulation of DCs with PA2024 that is
a fusion protein of prostatic acid phosphatizes (TAA present in
95% of this type of tumor) and GM-CSF. The Phase III clinical
trial revealed increased overall survival of patients treated with
Provenge in comparison to placebo (86, 87).

Currently, there are many Phase I, II, and III clinical trials that
test the effect of different anticancer DC vaccination strategies
on various cancer types. The running/finalized clinical trials were
recently thoroughly summarized by Galluzzi et al. thus we refer
readers interested in this topic to “Trial Watch” publication (88).

EXOSOMES; AS LONG DISTANCE MESSENGERS,
MODULATORS, OR SUPPRESSORS OF DC-ASSOCIATED
ANTICANCER IMMUNITY?
Phenotypic maturation and functional stimulation are well-
established markers of DC maturation as well as the ability of
DCs to “prime” anticancer immune responses (9). Modulation
of these two relevant DC-associated biological parameters by
cancer cells (on the levels of TAAs, DAMPs, or danger signals
and cytokines/chemokines) is considered to make the differ-
ence between immature, semi-mature, and mature DCs (2, 7,
35, 40), as discussed above. However, depending on the anti-
cancer therapy under consideration, DC markers and cancer cell-
based modulators sometime fail to completely account for the
observed failure of or reduction in anticancer immunity (89).
Thereby these may point toward other DC or cancer cell-based
autocrine or paracrine modulators of immunity which are capable
of transmitting signals (21).

One vehicle type capable of long distant transport of cellu-
lar material are the endosome-derived nano-vesicles, known as
exosomes (90). These vesicles are derived by inward budding of
the multi-vesicular body membrane and have been implicated in
cell-cell communication (91). Historically, exosomes were classi-
fied as a simple mechanism for the removal of unwanted cellular
material (92, 93), yet more recently they have been implicated in
the transmission of signals between cells, both locally and over
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long distances, effecting cells of different lineages, demonstrating
the capacity to influence cellular signaling, and outcomes of stress
responses (94–96). Where the physiological outcome depends on
both the type of cell the exosome originates from and the type
of stress the cell is exposed to, known to alter protein and lipid
signatures in a context-dependent manner.

Certain cancer cells are known to exaggerate their generation
of exosomes, demonstrating constitutive release, delivering tumor
derived signals throughout the local tumor microenvironment
and beyond within various body fluids (97, 98). These signals
have been implicated in the transmission of pro-tumorigenic,
angiogenic, and metastatic signals, as well as factors capable of
stimulating/inhibiting immune responses (97, 99, 100). Here we
will focus on the dynamic relationships that exist between the
signals released or received between cancer cells and DCs and high-
light key components that may sway the outcome in the context
on anticancer immunity.

THE EFFECT OF CANCER-DERIVED EXOSOMES ON DENDRITIC CELLS
Antigen acquisition by DCs is an essential step in the induction
of antigen-mediated immune responses. These antigens can be
sequestered by DCs in the form of infectious agents, dying infected
cells or in the case of tumors, by the engulfment of dying cells
or exosomes that are secreted by living/stressed or dying cells.
As the protein signature of an exosome is dependent on the cell
of origin as well as their viability, TDEs are abundant in TAAs
(Her2/Neu, MART1, TRP1/2, gp100) (101), antigen-presenting
molecules (MHC class I, heat-shock proteins) (102), as well as
varying tetraspanins (such as CD81) (103–105). These privileged
carriers of antigens and immunostimulatory molecules exposed
on exosomes have been shown to activate DCs (101). Research
identified that exosomes could induce phenotypic and functional
maturation of DCs, demonstrating enhanced cell surface expres-
sion of MHC-II, CD80, CD86, and CD40 as well as increased IL-
12p70 production (106). For example, melanoma exosomes were
shown to deliver MART1 tumor antigens to monocyte-derived
DCs, allowing for successful cross-presentation (101). Moreover,
in vivo assessment of TDEs capacity for immunomodulation
demonstrated their potential to prevent autologous tumor devel-
opment, in a CD4/CD8-dependent manner (107). TDE mediated
DC maturation and antigen presentation (MHC-II and ICAM)
propagates T cell stimulation, demonstrated by increased CD4+

and CD8+ T-cell proliferation, the induction of enhanced CTL
based tumor cell lysis (108, 109) and the generation of Th1-
type memory (110). Moreover, exosomes derived from DC cells
exposed to TAAs demonstrate 50-fold higher efficiency and 3-
fold higher T cell activation potential than non-TAA exposed
controls (109).

Conversely, other studies have demonstrated the immunosup-
pressive nature of TDEs. Work into the role of TDEs highlighted
their tumor suppressor potential (111), however the majority of
data, till now, indicates a more potent immunosuppressive nature.
For example, TDEs can prevent DC differentiation in vitro, in such
a manner that a pool of CD14+HLA-DRneg/low cells was generated,
culminating in the marked reduction of autologous T cell stimu-
lation (112). Also, in vivo experiments demonstrated an accumu-
lation of undifferentiated myeloid cells in the spleen of mice after

TDEs administration, consequently resulting in the formation of
a DC population that was incapable of maturation (99). Further-
more, this inhibition of DC maturation/differentiation was also
observed in human monocytes, following exposure to TDEs (99).
Moreover, TDEs have the potential to activate myeloid derived
suppressor cells (MDSCs), hampering immune responses, in this
case via Tregs (113).

The potential for TDE to influence an immune response has
generated contrasting bodies of research. However these observa-
tions may both be true and simply a consequence of experimental
design. For instance, time is an important issue for response
outcome when the TDE interact with immune cells. Yu et al.
investigating the effect of TDE on bone marrow derived myeloid
precursors, described a significant reduction in DC differentiation,
induced by treatment with GM-CSF, when the exposure occurred
within 3 days (99). In contrast, Andre et al. showed that pulsing
iDCs with TDE, after 5 days of GM-CSF treatment, resulted in an
observed DC-mediated T cell response (101). Moreover, research
into the effect of TDE, on induction of cytokine release from
monocytes, demonstrated that a cacophony of pro-inflammatory
cytokines (such as TNF, IL-6), as well as immunosuppressive fac-
tors (such as IL-8, IL-10, TGF-β) (114) were released. Importantly
immunosuppression was predominantly mediated via TGF-β.
The ability of TDE to induce IL-6 expression and/or release has
been implicated in their inhibition of myeloid precursor differ-
entiation, as well as accentuating the immunosuppressive capac-
ity of MDSC, which were themselves activated by TDEs (99).
Furthermore, research demonstrated enhanced exosomal HSP72,
induced by IFNγ stimulation of tumor cells, resulted in the up-
regulation of CD83 and potentiation of IL-12 production in
DCs (115).

Alterations in cancer dendritic cell-derived exosome (DEX)
expression of key immune-modulators have been shown to be
evoked by both tumor microenvironmental stress as well as cel-
lular stress induced by anticancer therapies, both traditional and
targeted approaches (101–105). However, due to the vast num-
ber of cell types that excrete exosomes, little is known about
the effect of therapy specifically on exosome-based host immune
activation in clinical settings. However, research in vitro has
demonstrated significant enrichment of TAAs as a consequence
of therapy. Moreover, combination therapy with exosomes and
DNA alkylating agents (such as cyclophosphamide) significantly
potentiated cancer killing compared to single agent (117, 118).
Fortunately, due to the biomarker potential of exosomes, progress
into exosomal population isolation is allowing further investiga-
tions of the immunomodulatory and overall clinical potential of
TDEs (116).

Importantly, the mode of antigen secretion can also alter the
immunogenicity toward TAAs (119). Antigens loaded into nano-
vesicles were shown to incite a significantly stronger immune
response, than when the same antigens were secreted freely. There-
fore the manipulation of how antigens are presented to immune
cells may be used to enhance the success of anti-tumor vacci-
nations (107). So, due to the contradictory effects of TDE on
DC-induced immune responses, the concept of TDE as a targeted-
cancer therapy was quickly surpassed by the use of safer and more
focused DC-DEXs, loaded with TAAs (120, 121).

www.frontiersin.org December 2013 | Volume 4 | Article 438 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dudek et al. DCs: dying cancer cells interface

THE EFFECT OF DENDRITIC CELL-DERIVED EXOSOMES ON CANCER
CELLS
The potential for endogenous DEXs to induce anticancer
responses remains unclear. However, existing research has identi-
fied that DEXs express, on their surface, multiple TNF superfamily
ligands (122). Through these ligands they can incite anticancer
immunity directly via the induction of cancer cell apoptosis, as
well as indirectly through the activation of NK cells (122, 123).
Recent work shows that similar to DCs, DEXs contain TNF, FasL,
and TRAIL. These ligands have the potential to trigger caspase
activation and apoptosis in a tumor cell models (122). Moreover,
DEXs can also activate NK cells and stimulate their IFNγ secretion,
inciting immune responses (122, 123).

However, research over the past decade has highlighted more
the use of engineered DEX as a feasible and successful route to
activate anti-tumor modalities in vivo (123, 124), that has gone on
to demonstrate success clinically (120). Interestingly, treatment
with engineered DEXs has shown a stronger anticancer effect than
the use of the DCs they are derived from to re-activate downstream
immune responses. These observations may in part be explained
by the immunosuppressive effect of the tumor microenvironment
on DC phenotypic functionality (125). Zitvogel and colleagues
demonstrated a perturbation in growth of mastocytoma and
spontaneous mammary carcinoma tumors by day 10, following
inoculation with DEXs, derived from bone marrow DC that were
pulsed with acid eluted tumor antigens (107). Furthermore, by day
60 ∼50% of mice treated with DEXs were diagnosed tumor free
(107). Interestingly, when re-challenged, the mice demonstrated
tumor rejection unless inoculated with a differing cancer type,
implying long-lasting anti-tumor immunity stimulated by DEXs
(107). Furthermore, Taieb et al. investigating the combination of
DEXs with cyclophosphamide showed that DEXs were capable
of boosting the immune response toward immunogenic cancers,
showing synergistic tumoricidial potency toward pre-established
tumors (118).

Elegant research into the potential of DEXs as anticancer mod-
ulators demonstrated that DEXs harvested from bone marrow
derived DCs that had been stimulated by LPS treatment mature
dendritic cells derived exosomes (mDEXs), compared to untreated
immature dendritic cells derived exosomes (imDEXs), were sig-
nificantly enriched in molecules (such as ICAM-1) capable of
mediating T cell priming, enhanced T cell proliferation and the
stimulation of naïve T cells to differentiate and produce cytokines
(108). The research of Naslund and colleagues showed that DEX
treatment induced T cell responses, yet in a B cell-dependent man-
ner (126). This suggests that immunization with DEXs carrying
only peptides for T cells would induce a sub-optimal response
(126). Furthermore, protein-loaded rather than peptide-loaded
DEXs showed greater T cell responses in vivo and a superior anti-
tumor capacity (126). Interestingly, the induced T cell response
requires the presence of B cells and mice deficient in complement
activation and antigen shuttling by B cells had reduced DEXs-
induced responses (126). Solidifying the dynamics of exosomal
signaling in immune cell activation and anti-tumor immunity,
DEXs secreted into the extracellular milieu during cognate T
cell–DC interactions, are targeted and engulfed specifically by

T cells, via the leukocyte function-associated antigen-1 (LFA-1)
receptor (127).

Moreover, findings from preliminary Phase I clinical trials for
the use of DEXs as a treatment for stage IV melanoma and non-
small cell lung cancer, demonstrated a restoration of NK cell
activity in over 50% of patients (107, 120). This increase in NK cell
activity was shown to stimulate their cell killing capacity in vitro
(120). Therefore, their lipid composition, that itself possesses
adjuvant qualities and exosome stability within the circulation
(128–130), coupled with simultaneous expression of MHC class I
and II molecules, as well as a plethora of co-stimulatory molecules
(102, 131), may indicate the cocktail of requirements that deem
DEXs capable to incite anti-tumor or pro-immunogenic effects.
Furthermore, the reported lack of toxicity highlights DEX-based
therapies as an interesting modality for cancer therapy (107, 120).
Further to this, investigation on combination of DEX-targeted
therapies with traditional therapeutics or other modern targeted
approaches should be done to explore their potential to restore
immune activity in the fight against cancer.

CONCLUDING REMARKS
The induction of an efficient anticancer immune response is
thought to contribute to the success of anticancer treatments,
by the establishment of a robust T cell mediated response capa-
ble of sustaining long-term control of cancer. Upon activation,
DCs are crucial inducers of T cell immunity and are therefore
at the frontline of immune-regulated responses. Hence, trig-
gering proper maturation of DCs is an outstanding therapeu-
tic objective as it may boost anti-tumor immunity and thwart
cancer-induced immunosuppression. The discovery of differ-
ent DCs sub-populations that exhibit wide functional plasticity
has made the initial dichotomy between immature/tolerogenic
and mature/immunogenic DCs, obsolete. However, in spite of
a functional definition of these DCs phenotypes, which ranges
from tolerogenic, partial/semi-mature to fully mature DCs, it
still remains challenging to understand how, when, and to what
extent this dynamic spectrum of DC activation drives tumor-
specific tolerance or anti-tumor immunity, also in the context of
anticancer therapy. In this respect, the existing (mostly immuno-
suppressive) or therapy-generated tumor microenvironments and
the cross-talk between (dying) cancer cells and DCs, established
through soluble (cytokines/chemokines) and vesicular (exosomes)
mediators, are emerging as crucial determinants of DC matu-
ration status and anticancer immune responses. Future preclin-
ical research combined with clinical investigations, will disclose
whether therapeutics inducing immunogenic cancer cell death,
will meet the therapeutic objective of re-establishing the proper
interface between dying cancer cells and DCs,promoting their fully
mature/immunogenic status that is required to sustain anti-tumor
immunity.
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