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Abstract

Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in 

most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early 

genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting 

behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach 

is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using 

IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying com-

plex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research 

directions.
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Introduction: complex behaviors 
with miniature brains

Social insects like termites, ants, wasps, and bees build large 

colonies ranging from dozens to hundreds of thousands of 

individuals with overlapping generations and division of 

labor [1]. The multiplicity of tasks a colony is faced with 

is not coordinated by a centralized control system, but is 

rather exercised via self-organisation. Single individuals 

make decisions based on locally available information and 

interact with nestmates to produce a highly structured collec-

tive behavior [2, 3]. Even though their brains are rather small 

and comprise a neuronal network of relatively low complex-

ity, social insects show sophisticated capabilities in terms 

of communication, navigation, and cognitive tasks. Paper 

wasps (Polistes fuscatus), for example, identify and learn 

individual faces of nestmates [4], Cataglyphis desert ants 

show complex navigational behaviors [5], and leaf-cutting 

ants (Acromyrmex ambiguus) learn to avoid fungus–noxious 

plants [6]. Moreover, social bees are capable of cognitive 

behaviors almost comparable to vertebrates [7–12]. Bumble 

bees, for example, show observational learning and cultural 

transmission of complex behaviors [13, 14], and honey bees 

are capable of time and place learning, communication of 

navigational information via dancing behavior [15–17], 

counting [18–20], and complex non-elemental forms of 

learning [21–23]. The richness in complex behaviors and 

the extensive collective interactions provide valuable oppor-

tunities to study underlying neuronal circuits, their plastic-

ity, and processes involving memory formation (Table 1) 

and sets social insects apart from well-established genetic 

insect model organisms, such as Drosophila, or more simple 

invertebrate models like Caenorhabditis. 

In combination with behavioral assays, several tools, 

including live (calcium) imaging, as well as pharmaco-

logical, electrophysiological, genetic, and histological 

approaches, have been developed to search for a memory 

trace in social insects. Studies on the processes of memory 

formation showed that brain plasticity is reflected in changes 

in the firing rate of neurons, alterations in their molecular 

and epigenetic profile, and in reorganization of the synaptic 
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network [6, 36–42]. Particularly, the latter can be considered 

as the neuronal substrate of long-term memories (LTM) and 

behavioral plasticity [43]. However, the mechanisms provid-

ing the important link between transient changes of physi-

ological properties of individual neurons and long-lasting 

structural reorganization or re-wiring of brain circuits 

are largely unexplored. A noted element of this transition 

process is the activation of a genomic cascade, which is pre-

cisely tuned and includes the expression of genes involved 

in neuronal physiology [44–46]. This leads, for example, to 

changes in the storage and mobilization of synaptic neuro-

transmitter-releasing vesicles and cell adhesion molecules 

(CAMs), which are essential for neuronal circuit formation 

(for a comprehensive review on molecular mechanisms 

involved in synaptic plasticity see Ho et al. [47]).

A unique group of genes that is expressed in the first 

transcriptional wave after neuronal activation are the 

immediate early genes (IEG). IEGs largely encode for 

transcription factors that orchestrate cellular homeostasis 

and neuronal plasticity. In vertebrates, IEGs are known 

to respond to neuronal stimulation in a rapid and tran-

sient fashion without the need of de novo protein synthesis 

[48–50]. Due to their transient expression that can peak 

within tens of minutes after stimulation, IEGs can be used 

as molecular markers in the search for neuronal circuits 

that contribute to the transition from short-term neuronal 

activation to long-lasting structural changes at the synaptic 

and neuronal network level. In social insects, this approach 

has not yet been established for routine use, although it 

would allow the study of elaborate behaviors in freely 

moving animals in the social context and under natural 

conditions (Fig. 1) [51–54]. Monitoring behavior-related 

IEG expression, therefore, is a very promising tool to 

access brain functions related to social behavior, sensory 

exposure and learning. It bears the potential to provide a 

highly attractive extension to already established neuro-

biological methods, like electrophysiological recordings, 

calcium imaging, and immunohistological approaches to 

analyze protein expression profiles (Table 2). A particular 

benefit of IEG expression analyses is that entire brains 

can be screened for neuronal activity, whereas other meth-

ods require a certain degree of prior knowledge on neuron 

populations and neuronal circuits that might be involved in 

the response to the applied stimulation paradigm. There-

fore, the analysis of IEG activation may be particularly 

beneficial in identifying the brain regions or even neurons 

involved in complex behavioral processes like individual 

decision making, behavioral transitions, navigation, cogni-

tion, and advanced social communication.

With the present review, we aim to provide an overview 

of the current knowledge on the use of IEGs as neuronal 

activity markers in social insects, particularly in the honey 

bee, and to discuss potential perspectives for a broader 

implementation in social insects.

Table 1  Selected social insect 

models and examples of 

complex behaviors that show 

potential to study underlying 

neuronal circuits

Social insect model organism Behavior of interest References

Termites

 Macrotermes natalensis Vibrational communication Hager and Kirchner [24]

Ants

 Cataglyphis spec. Navigation Wehner [5]

 Ooceraea biroi Chemical communication Trible et al. [25]

 Harpegnathos saltator Social stress and reproduction Yan et al. [26]

 Camponotus floridanus Caste-specific polyethism Zube and Rössler [27], 

Bonasio et al. [28]

Wasps

 Polistes fuscatus Individual face recognition Tibbetts [29]

Bees

 Bombus terrestris Color learning Lichtenstein et al. [30]

Social learning/cultural transmission Alem et al. [13]

 Bombus impatiens Route learning (traplining) Saleh and Chittka [31]

Decision making Riveros and Gronenberg [32]

 Apis mellifera Dance communication von Frisch [17]

Time–place memory Koltermann [16]

Age-related polyethism Withers et al. [33]

Associative learning and memory Giurfa [21]

Age-related (neuro-) plasticity Groh et al. [34]

 Apis florea Dance behavior Dyer [35]
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Molecular mechanisms of neuronal plasticity

Social insect brains undergo plastic changes in the course 

of ontogenetic development and in response to sensory 

exposure, (pheromone) communication, as well as learn-

ing and memory processes. This is reflected in a modified 

neuropil structure, synaptic connectivity, firing properties 

of single neurons, and gene expression [46, 55–59]. In the 

context of memory formation, different phases can be dis-

tinguished that contribute to neuronal plasticity based on 

underlying molecular processes (Fig. 2). The first cellular 

responses to stimulation occur within seconds to minutes 

and include the activation of voltage-dependent  Ca2+ chan-

nels or membrane receptors that respond to extracellular 

signals such as neurotransmitters and growth factors. This 

activation triggers a series of intracellular second mes-

senger pathways that include phosphatases and protein 

kinases, e.g., protein kinase A (PKA) and  Ca2+/calmod-

ulin-dependent protein kinase II (CaMKII). Kinases then 

modify ion channels and constitutive transcription factors 

(transcription factors that do not necessarily require an 

activation but are rather permanently expressed) to orches-

trate delayed neuronal responses [60–64].

Delayed responses last between hours and days and may 

result in permanent changes in neuronal properties and rear-

rangements of synaptic networks. On the molecular level, 

activation of constitutive transcription factors, e.g., the 

cAMP response element binding protein (CREB), leads to 

the expression of IEGs. This process constitutes the “first 

IEG Expression

Genomics
Multilevel
Plasticity

Perception

Environmental
Stimuli

egr-1
c-jun
c-fos
etc.

Fig. 1  Social insects show extensive collective interactions and a 

striking plasticity in their behaviors. Stimuli from the environment 

and from interactions with other individuals are integrated and pro-

cessed within neurocircuits by each colony member. Sensory expo-

sure and learning activate a genomic response cascade in neurons that 

leads to changes in the structure and/or physiology of the neurocir-

cuits. The first transcriptional wave after neuronal activation includes 

the expression of immediate early genes (IEG), which orchestrate 

plasticity at the neuronal, behavioral, and perceptual level. Their 

central role in controlling mechanisms of plasticity and the transient 

nature of their translation-independent expression makes IEGs prom-

ising markers for activated neuronal circuits

Table 2  Comparison of advantages and limitations of different approaches for measuring neuronal activation and plasticity

Genomic tools: 

immediate early 

genes

Electrophysiology/live (calcium) 

imaging

Circuit analyses/neuroanatomy: neu-

ronal/synaptic connectivity

Investigating complex behaviors in 

freely moving animals

Yes Limited (partially using implanted 

electrodes/objectives)

Yes

Investigating Pavlovian conditioning in 

harnessed animals

Yes Yes Yes

Accessing the brain in vivo No Yes Very limited

Temporal resolution Snapshot Live image Snapshot

Screening the complete brain for neu-

ronal activity

Yes No Limited (requires quantitative screening 

for changes in synaptic circuits/neuro-

pil volumes)
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genomic response” to stimulation [44, 48, 49]. In analogy 

to the classical electrophysiological action potential (eAP), 

this “genomic action potential” (gAP; terminology intro-

duced by Clayton [48]) represents a neuronal integration 

process which involves regulation of nuclear gene expression 

instead of membrane-associated ion channels. In contrast to 

the immediate synaptic transmission initiated by the eAP, 

the gAP regulates slower acting functional and structural 

modulations of the synaptic network via a pulse of increased 

transcription of IEGs. Activation of IEGs represents the first 

wave of gene transcription in response to neuronal stimula-

tion and their expression is a prerequisite for transcription-

dependent long-term neuronal plasticity. The expression of 

IEGs also occurs in the presence of protein synthesis inhibi-

tors [65–67] and each IEG responds in a characteristic man-

ner in distinct brain regions to different types or qualities 

of stimulation [68]. In the absence of sensory stimulation, 

most IEGs are expressed at low levels, with only few excep-

tions [69].

Protein products of IEGs are involved in a multitude of 

cellular processes with diverse functions that are important 

in the reorganization of neuronal networks [49]. In general, 

two classes of IEGs can be distinguished, based on the func-

tional role of the encoded products. The first class encodes 

for proteins with direct implications in cell structure and 

signal transduction. These IEGs are directly involved in 

processes such as receptor modulation, vesicle storage, or 

synaptic trafficking and are, therefore, called direct effec-

tors (e.g., arc and homer1a). The second class, comprising 

most of the commonly studied IEGs, encodes for inducible 

transcription factors (e.g., egr–1, c-jun, c-fos) which regulate 

the expression of downstream late-response genes involved 

in neuronal physiology [48, 66, 69] (Fig. 2). In both cases, 

transient cellular stimulation gets converted into long-term 

changes via the activation of a molecular response cascade.

The rapid and transient nature of their induction makes 

IEGs ideal markers for neuronal activation and their study 

offers two benefits: on the one hand, it helps understanding 

the molecular processes leading to modifications in synaptic 

functioning. On the other hand, as their expression indicates 

sites of neuronal activation, analyses of IEG activation pat-

terns may provide important insights into the functional con-

struction of the brain. In this way, the spatial distribution and 

temporal succession of activated neuronal circuits that are 

Fig. 2  Intracellular activation 

cascade of immediate early 

genes (IEGs; left column) and 

examples of involved molecules 

and molecule classes (right 

column). Extracellular signals 

activate via membrane receptors 

and channels a series of intra-

cellular biochemical pathways. 

Kinases then mediate the activa-

tion of constitutively expressed 

transcription factors that initiate 

the expression of IEGs. Protein 

products of IEGs can act either 

as inducible transcription fac-

tors to orchestrate the expres-

sion of downstream genes, or 

as direct effector proteins with 

implications in cell physiology 

and signaling
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involved in the formation and storage of memories can be 

localized and analyzed.

IEGs in studies of complex behaviors 
in vertebrates

Eukaryotic IEGs were first described in vertebrates, for 

which they are now routinely used in functional mapping 

studies to monitor neuronal activation [65, 66]. For most 

IEGs, peak mRNA levels are detectable around 30–60 min 

after stimulation onset and highest protein levels occur 

between 60 and 120 min after stimulation [70–73]. IEG 

induction in neurons was first demonstrated in response to 

seizures [74]. Since then, a vast number of studies reported 

functional links between the induction of IEG expression 

and social stimuli or complex behaviors, and perceptual 

stimulations associated with memory formation (reviewed 

in Refs. [48, 51, 65]). For example, IEG activation occurs 

in the hippocampus of rodents after visual, olfactory and 

spatial learning, and in the cortex when exploring novel 

environments [72, 75, 76]. In songbirds, IEG expression 

in the brain is induced when individuals are exposed to a 

novel conspecific song for the first time. After a song and its 

context became familiar by repetition, that particular song 

no longer induced the genomic response [70, 71, 77]. In 

addition, stimulus-enriched environments and drugs of abuse 

are known to activate IEG responses in specific brain parts 

[78, 79]. Dysregulated IEG expression was linked to the 

pathophysiology of human neurodegenerative disorders such 

as Alzheimer’s dementia and amyotrophic lateral sclerosis 

[80, 81], demonstrating their central role in orchestrating 

neuronal plasticity.

Besides investigating the function of IEGs within neu-

ronal systems, IEGs were also used to monitor activation 

of neuron populations in co-expression experiments. The 

simultaneous detection of activity-regulated IEGs and cell 

markers such as neurotransmitters and receptors helped to 

identify neuron populations involved in complex vertebrate 

behaviors, such as mating and aggression [82] or social 

stress [83].

The honey bee: insect model for monitoring 
IEG expression

To shed light on the molecular and neuronal processes 

involved in complex learning and memory formation in a 

social context, the honey bee became an important and fruit-

ful insect model system (reviewed in Refs. [42, 64, 84, 85]). 

Accelerated by the sequencing of the honey bee genome, 

molecular tools have been developed to study intracellular 

pathways in neurons and to determine the role of behavio-

rally relevant genes [86, 87].

So far, IEG expression patterns in honey bees were rarely 

analyzed at the protein level (to our knowledge, only one 

study analyzed IEG protein levels in the context of ontoge-

netic development; [88]), whereas most studies analyzed 

mRNA levels using RT-qPCR and in situ hybridization, 

respectively (Table 3). Activation of IEGs or genes regulated 

by them were compared between different pupal and adult 

stages [89, 90], and between individuals performing differ-

ent tasks like nursing the brood, dancing to communicate a 

novel food source to nestmates, and foraging for nectar or 

pollen [91, 92]. Behavioral approaches aiming to stimulate 

IEG expression in honey bees included more general stimu-

lation like seizures induced by awakening from anesthesia 

[92–95], exposure to light [96] or plant and pheromonal 

odors [96–98], and sucrose feeding (food reward stimula-

tion; [99]). In addition, more specific behaviors were cor-

related with IEG expression, for example, feeding of sucrose 

or pollen of different qualities [100], as well as different 

aspects of orientation flights [92, 95, 101] and foraging 

activity [102, 103].

IEG candidates in honey bees: putative 
functions and pathways

Studies in honey bees focused on five candidate IEGs. Four 

of these genes (egr-1, c-fos, Hr38, and c-jun) have well stud-

ied orthologs in vertebrates and encode for regulators of 

gene transcription. Among metazoans, these transcription 

factors show a high degree of conservation in the structure 

of their functional domains and, presumably, in involved 

upstream and downstream regulatory networks [89, 94, 

104–107]. However, in addition to the above-mentioned 

transcription factors, one candidate IEG in honey bees 

encodes for a non-coding RNA called kakusei that might be 

specific to honey bees [93]. We discuss the candidate genes 

in more detail below.

egr (zif-268, zenk, stripe, ng�-a, krox-24; Fig. 3a)

One of the best studied IEGs both in vertebrates and in the 

invertebrate Aplysia is egr-1 [108, 109]. This gene encodes 

a transcription factor belonging to the early growth response 

(Egr) protein family. The family comprises four members 

(Egr-1 to Egr-4) that are expressed in various isoforms [68]. 

A common structural feature of all members is a highly 

conserved DNA-binding domain comprising three tandem 

 Cys2His2 zinc finger motifs, that target a GC-rich sequence 

of nine consecutive nucleotides (5′-GCG C/GGG GCG-3′), 
termed Egr-binding sequence (EBS; [68, 110–112]). EBS 

can be found in the promotors of several genes involved in 
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the ecdysteroid-signaling pathway [91] and nerve cell func-

tioning, including genes encoding synapsin I and II [113, 

114], and acetylcholinesterase [115]. In addition to motifs 

responsive for CREB and Elk–1 transcription factors [116], 

Egr genes also contain the EBS motif, resulting in a nega-

tive feedback loop [117]. All Egr protein members target the 

same DNA consensus sequence, yet their activity is regu-

lated by interactions of a variable peptide sequence outside 

Table 3  Main candidate IEGs investigated in honey bees

↑ upregulation, AL antennal lobes, AMMC antennal mechanosensory and motor center, DL dorsal lobe, GNGl lateral gnathal ganglia (formerly 

termed as lateral suboesophageal ganglion), IPA isopentyl acetate, KC Kenyon cells, LP lateral protocerebrum, MB mushroom bodies, OL optic 

lobes, sKC small KC

Gene Stimulant Effector sites Method References

Amegr (Egr-1, zenk, 

zif/268, Krox-24, 

Stripe)

Environmental novelty MB ↑ mRNA: in situ hybridiza-

tion, RT-qPCR

Lutz and Robinson [101]

Seizure induction AL ↑, OL ↑, MB ↑ mRNA: in situ hybridiza-

tion, RT-qPCR

Ugajin et al. [94]

Ontogenetic development: 

early to mid pupal stage

OL ↑ mRNA: in situ hybridiza-

tion, RT-qPCR (isoform-

specific)

Ugajin et al. [89]

IPA or light No effect mRNA: RT-qPCR Sommerlandt et al. [96]

Foraging Entire brain ↑ mRNA: RT-qPCR Singh et al. [102]

Time-dependent foraging AL ↑, OL ↑, KC ↑ mRNA: in situ hybridiza-

tion, RT-qPCR

Shah et al. [103]

Nurse-forager-transition Entire head CAGEscan (Cap Analysis 

of Gene Expression: pro-

motor region characteriza-

tion of activated genes)

Khamis et al. [91]

Amjra (c-jun) IPA AL ↑ mRNA: RT-qPCR Alaux and Robinson [97]

IPA AL (inconsistent effects) mRNA: RT-qPCR Alaux et al. [98]

Sucrose feeding AMMC ↑, MB ↑, LP ↑, 
GNGl ↑, OL ↑

mRNA: in situ hybridiza-

tion,

RT-qPCR

McNeill and Robinson [99]

(a) Food type

(b) Food value

(a) LP, AL, OL, MB

(b) AMMC, AL, OL, MB, 

GNGl

mRNA: in situ hybridiza-

tion

McNeill et al. [100]

IPA or light AL ↑, OL ↑, MB ↑ mRNA: RT-qPCR Sommerlandt et al. [96]

c-Fos (kayak) Ontogenetic development: 

embryonic, nymphal and 

adult stage

AL, MB Protein: immunohistochem-

istry, immunocytochemis-

try, immunoblotting

Fonta et al. [88]

Drone development Mucus gland ↑ mRNA: RT-qPCR; cDNA 

Representational Differ-

ence Analysis (RDA)

Colonello-Frattini et al. [143]

Bacterial infection Fat body↑, oenocytes ↑ mRNA: RT-qPCR; whole 

genome microarray

Richard et al. [142]

Exposure to xenobiotics Not specified mRNA: RT-qPCR Cizelj et al. [90]

hr38 (Nr4a) Caste and division of labor MB ↑ mRNA: in situ hybridiza-

tion, RT-qPCR

Yamazaki et al. [145]

Foraging Entire brain ↑ mRNA: RT-qPCR Singh et al. [102]

kakusei Seizure induction, dancer 

vs. forager vs. nurse, 

reorientation

sKC ↑, OL ↑, AL ↑ mRNA: in situ hybridiza-

tion, RT-qPCR

Kiya et al. [92]

Seizure induction OL, MB, DL ↑ mRNA: in situ hybridiza-

tion, RT-PCR

Kiya et al. [93]

(a) Seizure induction and 

thermal stimulation

(b) IPA induction

(a) KC ↑
(b) No effect

mRNA: in situ hybridiza-

tion, RT-qPCR

Ugajin et al. [146]

Seizure induction, foraging, 

reorientation, light

OL ↑
AL (no effect)

mRNA: double-in situ 

hybridization, RT-qPCR

Kiya and Kubo [147]
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the DNA-binding domain with other proteins or co-factors 

[118].

Egr genes were first discovered in a screening assay 

searching for factors determining the differentiation of 

embryonic rat neuroblasts into neuron-like cells [119]. 

Besides its activation by the neuropeptide NGF in neuro-

blasts, egr expression is also induced by a variety of phar-

macological and physiological stimulants, including gluta-

mate and NMDA, dopamine and cocaine, caffeine, ethanol, 

visual and tactile stimulation, restrainment, and learning 

(reviewed in [68]). The putative role of Egr in learning and 

memory formation is of increasing interest in vertebrate 

neuroscience. Cerebral expression of Egr family members 

is induced by various learning tasks including visual asso-

ciative learning (macaques [120]), spatial learning (rats [75], 

mice [121]), vocal communication and auditory memory 

formation (zebra finches [70]), as well as the formation of 

olfactory long-term memories (mice [122]). In all cases, the 

formation of new associations is required for the activation 

of egr genes, as sensory stimulation and motor responses 

alone are not sufficient to increase expression levels. Mem-

bers of the Egr family are critically involved in long-term 

potentiation (LTP) processes, for which the activation of egr 

genes is required for the maintenance of late phases of LTP 
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Fig. 3  Potential cellular pathways and major players for the induc-

tion of the immediate early genes egr (a) and c-jun (b), and down-

stream targets, with focus on pathways previously linked to learning 

and memory in honey bees [42, 64, 85, 158]. a Activation of tyrosine 

receptor kinases (Trk) by neurotrophins induces via Ras (G protein) 

and Raf (kinase) the MAPK/ERK pathway, resulting in an activation 

of the transcription factors (TF) Elk-1 and/or CREB-1. By binding to 

their consensus target sequences (ETS and CRE sites), the TFs induce 

the transcription of egr. The Egr  protein product in turn functions 

as a TF and activates the transcription of various late-response tar-

get genes. A list of candidate downstream genes in honey bees can be 

found in Khamis et  al. [91]. Egr additionally auto-regulates its own 

expression by interacting with the promotor of the egr gene. Alterna-

tive regulation pathways include the cAMP-PKA signaling pathway 

and NMDA receptor-mediated activation of PKC or CaM kinases. 

b Activation of c-jun is also mediated by the MAP/ERK pathway. 

Another MAPK signaling pathway includes the c-jun NH2-terminal 

kinase (JNK), which activates c-jun expression by binding of the 

MEF2 site in the promotor. c-Jun protein is regulated through phos-

phorylation by JNK and forms homo- or heterodimers (e.g., with 

c-Fos) resulting in the activator protein 1 (AP-1) complex, which 

regulates gene transcription via AP-1 binding sites on the DNA. c-Jun 

also auto-regulates its own transcription. Pathways compiled after 

[64, 112, 113, 135, 180–182]
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and the formation of LTM (reviewed in Refs. [112, 122, 

123]). The degree to which Egr is up-regulated after learning 

correlates with the persistence of LTP [124].

In honey bees, only a single orthologous egr gene (named 

Amegr in Apis mellifera) is known, located on chromosome 

15 and expressed in three distinct isoforms of unknown func-

tion [89, 96]. Induction of Amegr mRNA expression was 

observed in the developing brain [89], after awakening from 

 CO2 anesthesia [94, 95], in mushroom bodies after orienta-

tion flights in young foragers [95, 101], and in response to 

conspecific intruders [125]. In addition, foraging bees had, 

on average, higher Amegr levels compared to nursing bees 

[91], and foragers showed an increase in Amegr levels when 

starting to continuously visit a feeding site [102]. In contrast, 

exposure to isolated stimuli like a pulse of light or alarm 

pheromone was not sufficient to induce Amegr expression in 

harnessed bees [96]. By analyzing the promoter regions of 

differentially expressed genes between nurses and foragers, 

Khamis et al. [91] identified 424 genes that are potentially 

regulated by the Amegr protein. This underlines the wide 

range of functional connections of this transcription factor. 

So far, no direct role of Amegr expression in learning and 

memory processes was shown, even though its implication 

in orientation [101], foraging [91, 102, 103], and drone 

mating flights [126] strongly suggest such a function. Singh 

et al. [102] showed that a foraging-dependent upregulation 

of Amegr is associated with an activation of downstream 

genes involved in learning and memory. Another open ques-

tion is whether the three expressed isoforms of Amegr have 

different functions or show brain-neuropil-specific expres-

sion patterns.

c-jun (jra) and c-fos (kayak): formation 
of the dimeric AP-1 transcription factor complex 
(Fig. 3b)

The activator protein-1 (AP-1) transcription factor is com-

posed of homo- or heterodimers formed between Jun and 

Fos protein family members. Both, c-Jun and c-Fos, belong 

to bZIP-type DNA-binding transcription factors, which are 

characterized by a basic DNA-binding domain and the “Leu-

cine zipper” dimerization domain [127, 128]. AP-1 regulates 

genes by binding to the DNA consensus sequence 5′-TGA 

G/C TCA-3′, which is present in the promotor region of tar-

get genes and called TPA responsive element (TRE) or AP-1 

site (reviewed in [129, 130]). AP-1 regulates genes involved 

in neuronal signal transmission.

C-Jun is a highly conserved member of the Jun family, 

which is encoded by an intronless gene that is expressed in 

a single isoform, both in vertebrates and honey bees [96, 

131]. The mRNA consists of one of the longest 5′ untrans-

lated regions known, possibly indicative of a strong post-

transcriptional regulation, which is in accordance with the 

pronounced differences between c-jun mRNA and protein 

levels found in stimulated cells [132, 133]. The expression 

of the c-jun gene is regulated by constitutively expressed 

transcription factors such as CREB and ATF, in response 

to various stimuli including growth factors, cytokines, and 

UV radiation [134]. In addition, c-jun is positively autoregu-

lated by AP-1, resulting in signal amplification and signal 

prolongation [133, 135]. Jun proteins include a Jun domain, 

which can be modified by posttranslational phosphoryla-

tion, e.g., by c-Jun N-terminal kinases (JNK; [136, 137]). 

In honey bees, the c-jun gene (known as Apis mellifera 

Jun-related antigen, Amjra) was shown to be expressed in 

cell somata throughout the honey bee brain [99]. Expres-

sion of Amjra was induced in the antennal lobes (AL) after 

stimulation with isopentyl acetate, a component of the bees’ 

alarm pheromone [96–98], with plant odors [97], and after 

light exposure [96]. In the lateral protocerebrum, mushroom 

bodies (MB), and optical lobes (OL), Amjra expression was 

increased after sucrose feeding [99, 100]. Interestingly, the 

response of Amjra after stimulation seems to be globally in 

the entire brain and independent of the stimulus modality 

[96, 99].

c-fos, in turn, is expressed in two different isoforms in 

Drosophila and, presumably, in honey bees [132, 138]. Fos 

transcription is mediated by CREB, and in contrast to c-

jun, c-fos is downregulated by its own protein product and 

the AP-1 complex [134, 139–141]. Studies in human cells 

revealed that while both genes get rapidly and transiently 

induced, high c-jun mRNA levels last considerably longer 

than c-fos levels [129]. In honey bees, c-Fos protein lev-

els were increased during development and in antennal-

lobe somata of adult bees [88]. Regulation of c-fos mRNA 

expression was analyzed for honey bees mostly in the con-

text of immunoreaction and pesticide exposure [90, 142], as 

well as in mucus gland of differentially aged drones [143]. 

To our knowledge, no analysis of brain mRNA expression 

of c–fos has been done so far.

Hr38 (Nr4a)

The hormone receptor 38 (Hr38) in insects bears structural 

homology to the vertebrate nuclear receptor related 1 protein 

(NURR1, also known as NR4A). It is regulated by Egr and 

has been suggested to fulfil important neuronal functions 

by mediating ecdysteroid signaling [91, 102]. Expression of 

hr38 was used to monitor neuronal activation in Drosophila 

and moths (Bombyx mori) [53, 144]. In honey bees, foragers 

possess elevated hr38 expression as compared to nurses and 

queens [145]. Only recently was Hr38 expression shown to 

be induced following seizure and orientation flights [95], 

during foraging behavior [102] and in the context of aggres-

sion [125]. The hr38 gene is likely expressed in more than 

one isoform.
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Other potential IEG candidates in honey bees

The non-coding nuclear RNA kakusei was found to be 

induced in the densely packed inner compact Kenyon cells 

of the mushroom bodies by a variety of stimuli including 

seizure following anesthesia, during the behavioral transi-

tion from nurses to forager bees, and after reorientation in 

foragers [92, 93]. Even though its function is unclear, one 

inducible and several constitutively expressed transcript var-

iants were identified [93]. Additional IEG candidates were 

discovered by seizure induction experiments and included 

genes encoding protein kinases and nucleotidyltransferases 

[95]. However, kakusei does not appear to have any ortholo-

gous genes in other taxa, and for the other two gene groups 

orthologous genes are still awaiting annotation. Therefore, 

these genes might be currently less suitable for (compara-

tive) functional IEG studies in social insects.

Outlook and future directions

Several studies in recent years emphasized the potential of 

IEGs as genomic markers for neuronal activation in social 

insect brains [92, 100–103]. This approach helped, for exam-

ple, to identify brain regions in honey bees that are involved 

in the evaluation of food type and value [100] or that are 

active during orientation flights [92, 101] and foraging [102, 

103]. Honey bees showed an increased IEG expression even 

in anticipation of foraging behavior, particularly in the small 

Kenyon cells of the mushroom bodies [103]. Kiya and Kubo 

[147] went one step further and demonstrated a behavior-

dependent IEG activation of biochemically identified neuron 

populations in the optic lobes by simultaneously measur-

ing expression of kakusei and the neurotransmitter gamma-

Aminobutyric acid (GABA) in a double-in situ hybridization 

assay. This approach is particularly promising as in insects 

most neuronal cell bodies are located in the cell body rind 

surrounding the neuropil mass and often cannot be associ-

ated with a specific brain region (except for the mushroom 

bodies). Double labeling could, therefore, help to identify 

neuron types and neuronal circuits based on biochemical 

markers.

Promising brain neuropils to study the neuron-specific 

expression and differential activation of IEGs in more detail 

are the insect mushroom bodies (MB) and the central com-

plex (CX). MBs are brain centers for multimodal sensory 

integration and learning and memory, and functional cor-

relations between the connectivity of MB synaptic micro-

circuits and various behaviors were found in bees [36, 148], 

wasps [149, 150], and ants [6, 151]. Depending on the 

type of stimulation, properties of the synaptic network in 

MBs can change: for example, sensory exposure leads to 

presynaptic pruning and postsynaptic sprouting [56, 152], 

and associative learning and long-term memory formation 

is correlated with presynaptic sprouting [6, 36]. The CX is 

involved in sensory integration and high-order motor con-

trol and was shown to express neuronal plasticity induced 

by complex visual learning and memory formation [151, 

153–155]. The specific programs underlying plasticity in 

both neuropils are likely orchestrated by different sets of 

IEGs or, alternatively, the same IEGs expressed in different 

sets of neurons [103, 156]. Therefore, IEG-based approaches 

are applicable at two different levels: first, identification of 

relevant IEGs, followed by double-in situ hybridization 

could help to identify the type of neuron populations that are 

involved in the different physiological programs and types 

of neuroplasticity. Second, inhibition of the expression of 

particular IEGs should, for example, impact the level of syn-

aptic connectivity and result in a reduced memory capacity 

[157]. To test the latter, IEG knockdown assays, like in vivo 

RNA interference (RNAi), combined with behavioral learn-

ing experiments or neuroanatomical analyses are promising. 

Such an approach, for example, uncovered the importance 

and the distribution of the activated “memory protein” CaM-

KII, which has a dual function both as activator and target of 

IEGs in long-term memory formation [158–160].

IEG studies are also promising for the identification of 

neurocircuits involved in processing sensory information. 

The use of a magnetic compass, for example, is known 

from various animals like birds, mammals, crustaceans, and 

also social insects such as ants and honey bees [161–164]. 

Despite the broad distribution of magnetoreception in the 

animal kingdom, the sensory pathways and perceptual 

mechanisms are mostly unexplored. In insects, a sensory 

mechanism and putative brain areas responsible for process-

ing magnetic information are completely unknown, making 

the use of electrophysiological recording or live-imaging 

techniques inefficient. Screening for a magnetic-field driven 

induction of IEGs, for example, during learning or orien-

tation excursions in naïve animals, might be a promising 

approach to identify involved neurocircuits. A similar 

approach could help to uncover neurobiological mechanisms 

that underlie the honey bee’s dance communication [165]. 

Between dancing bee species and species that lack the ritu-

alized dances (e.g., bumble bees), no apparent differences 

were found in sensory projections [166]. Adaptations in the 

neuronal circuitry that facilitate the specific dance behavior 

thus seem to be rather small and a comparative IEG expres-

sion analysis might help to identify such differences.

As IEG expression is likely in many cases highly spe-

cific regarding the stimulation paradigm and the behav-

ioral responses [144], a systematic analysis of the role of 

different stimulation programs and contexts is required to 

specify the functional role of candidate genes. In song-

birds, for example, expression of an egr homolog is sig-

nificantly increased in the brain when birds hear a song of 
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their own species, as compared to heterospecific songs, 

and decreases when the song has been made familiar 

by repetition [70, 71]. Therefore, known IEGs in social 

insects need to be tested in a larger variety of developmen-

tal stages, stimulus repetition rates or behavioral contexts 

as IEG expression can be highly selective for one or all of 

these parameters. Honey bees and bumble bees, for exam-

ple, respond to the same scent marks deposited by conspe-

cifics at food sources either by avoiding or approaching 

them, depending on previous foraging success on marked 

flowers [167]. In leaf-cutting ants of the genus Acromyr-

mex, the degree of allogrooming behavior as a part of the 

social immune response is regulated depending on pre-

vious infections of the colony [168]. Such adaptive and 

context-specific behaviors are potentially mediated by a 

differential regulation of IEGs in inhibitory or excitatory 

neuronal circuits. Therefore, a careful dissection of the 

relationship between stimulation properties and the char-

acteristics of IEG activation is essential. In addition, one 

has to keep in mind that neuronal activation might occur 

without the induction of IEGs or that the expression of 

IEGs might occur independently from neuronal stimula-

tion [169]. For example, an isolated exposure of honey 

bees to olfactory or visual stimuli does not induce egr 

expression, even though neuronal activation in this para-

digm is indicated by the expression of the IEG jra [96].

To study the potential of IEG-based approaches, Pavlo-

vian conditioning under harnessed conditions as it is now 

established in various bee [30, 170–173] and ant species 

[174, 175] is a promising complement to experiments with 

free-moving animals. In such an approach, stimulus fea-

tures can be gradually dissected when individuals are kept 

under controlled conditions [176, 177] and the brain can 

be accessed in vivo [38, 178]. Approaches monitoring IEG 

expression thus provide a unique possibility to analyze the 

neuronal control of naturally motivated behaviors both in 

natural (social) environments and under more isolated and 

controlled laboratory conditions.

Finally, while putative IEGs are now available for honey 

bees, other social insect species need to be screened for 

homologous genes, to broaden the field of IEG applications 

and the understanding of gene functions. For example, IEG-

based comparative studies among different social insect spe-

cies could help to unveil the neuronal correlates that facili-

tate the emergence of sociality. In contrast to vertebrates 

(social brain hypothesis), the level of sociality in insects 

is not reflected in simple correlations with brain (neuropil) 

volumes [179]. Therefore, an alternative approach to reveal 

general neuronal constraints underlying social systems might 

be the IEG-based detection of neuronal circuits involved in 

social tasks, the processing of social signals, such as recruit-

ment pheromones or cuticular hydrocarbons, and the regu-

lation of behavioral plasticity. In this context, egr-1 might 

be particularly useful, as it was shown to respond to social 

stimuli in different vertebrate species [49, 51].

The hitherto success and obvious benefits of IEG analyses 

in vertebrates and pioneering studies in honey bees should 

encourage more researchers in behavioral neuroscience to 

pursue this new approach. We, therefore, aim to advance the 

usage of this promising tool to other social insect species, 

as comparative studies are needed to uncover the mecha-

nisms underlying their sophisticated behaviors in the social 

context.
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