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Abstract— A human interacting with a hybrid system is
often presented, through information displays, with a simplified
representation of the underlying system. Thisinterface should
not overwhelm the human with unnecessary information, and
thus usually contains only a subset of information about the
true system model, yet, if properly designed, represents an
abstraction of the true system which the human is able to use
to safely interact with the system [1]. For cases in which the
human interacts with all or part of the system from a remote
location, and communication has a high cost, the need for a
simple abstraction which reduces the amount of information
that must be transmitted is of the utmost importance. The user
should be able to immediately determine the actual state of
the system, based on the information displayed through the
interface. In this paper, we derive conditions for immediate
observability in which the current state of the system can be
unambiguously reconstructed from the output associated with
the current state and the last or next event. Then, we show
how to construct a discrete event system output function which
makes a system immediately observable, and apply this to a
reduced state machine which represents an interface.

Keywords: discrete observability, discrete event systems,
interface design, remote systems

I. I NTRODUCTION

Human-automation systemsare automated systems with
which a human interacts. These types of systems are perva-
sive, occurring in consumer products (alarm clocks, VCRs,
cellular phones), transportation systems (automobiles, com-
mercial aircraft), scientific research platforms (unmanned
ocean- and aerial-vehicles), military systems (fleets of single-
man aircraft), and in other realms. Many of the systems users
interact with havehybrid behavior, in which the underlying
system’s continuous-state dynamics switch according to dis-
crete rules governed by operating conditions or mode-logic,
for example. The user, when interacting with such complex
systems, is often presented with a simplified representation
of the underlying system, which we call theinterface.

This representation can be based upon a discrete abstrac-
tion of the system: discrete event systems easily capture the
way in which a user interacts with a hybrid system. For
example, one abstraction might be based on requirements of
safety [2], [3], while another abstraction could be based on
the desired trajectory, as in autopilot mode-logic. In aircraft
autopilots, a simple discrete indication, a word, can represent
an infinite number of physical aircraft trajectories. A pilot
recognizes, upon seeing the word “FLARE” on the cockpit
mode control panel, that the aircraft is following a path to
touchdown smoothly on the runway. The user interacts with
the system in discrete ways, as well: pilots push buttons,

adjust levers, and flip toggles – all discrete events under the
pilot’s control.

We presume to begin with such an abstraction to represent
the underlying hybrid system. The problem of determin-
ing an acceptable interface for a system involves finding
a suitably reduced discrete event system which accurately
represents the information relevant for the user. We are
motivated by the work of Heymann and Degani, who have
determined a method to synthesize interfaces using state
reduction techniques [1]. Here, we study the relationship
between observability and interface design. For an interface
to be useful, the user must be able to reconstruct, on the basis
of a given output, information about the original system.

We define a type of observability necessary for user-
interfaces:immediate observability, or the ability to deter-
mine the current state of the system based only on the current
output and events associated with the current state. Discrete
systems which model user-interfaces of safety-critical sys-
tems must be immediately observable in order to be “good”
interfaces: that is, to accurately represent the underlying
system to the user, so that the user will not be misled or
confused. We formulate conditions for immediate observabil-
ity, as well as an output synthesis method to synthesize state
outputs which fulfill these conditions and which are minimal
in cardinality. In remote and distributed systems, in which
communication is prohibitively expensive, this method could
be used to synthesize outputs for interfaces. The result is
an output which minimizes necessary communications, yet
provides all information relevant to the user.

There has been a wealth of research on discrete observ-
ability, mostly with application to the synthesis of discrete
supervisors. In this paper, we examine discrete observability
in the context of reconstruction of state information from
a given output. Discrete observability has been defined in
many ways. Ramadge [4] derives conditions for current
state observability under which the current state can be
uniquely determined from a sequence of past events and
state observations.̈Ozveren et al. [5] consider a discrete
event system whose output is a subset of an event set, and
derive a condition to determine the current state uniquely at
times separated by bounded numbers of transitions. Caines
et al. [6] propose a dynamical logic observer for a par-
tially observed discrete event system and develop observer
synthesis methods using a current state observer tree. The
state observer in [5] may not always determine the current
state and that proposed in [6] needs a number of state



transitions to determine the current state, and even then
can determine only the state which belongs to a subset of
states. Based on [4], Lin et al. [7] develop necessary and
sufficient conditions for the existence of a supervisor which
enables and disables controllable events based on recorded
occurrences of observable events, so that the closed-loop
system meets some specifications.

We start with background for the problem as well as some
basic definitions, then define immediate observability and de-
rive conditions for a system which is immediately observable.
We show how to use these conditions to synthesize a state
output of minimal cardinality for a reduced system which
represents an interface. We illustrate the output synthesis
through an example: minimal, observable interface design for
an individual aircraft in a group of formation-flying aircraft.

II. PROBLEM FORMULATION

While the conditions we derive for immediate observ-
ability are quite general, we typically only wish to apply
the output synthesis method on systems which are already
reduced. A reduced system produces the same behavior
(output sequences) as the original system, but with fewer
discrete states. (If the system we wish to observe were not
reduced, the output would create distinctions which may
not be necessary for the user.) While methods for state
reduction were developed in the late 1950s ([8], [9], [10],
[11]), obtaining a minimal model, in which the number of
states of a reduced model is minimal, is more complicated.
A method to determine minimal models was developed in
the 1960s [12], and much research has been done since
then on methods to compute the minimal model ([13], [14],
[15], [16], [17]). Techniques for state reduction or state
minimization are not limited to deterministic systems ([15],
[18]) and this is also an active topic of research. However,
interfaces by nature must be deterministic: not only must
the user know the current state of the system, but the user
must also be able to predict, uniquely, where the system will
transition to next. Nondeterminism is responsible for such
phenomena as mode confusion and automaton surprises [19].

Interface design involves selecting relevant information
about the underlying system to display to the user: too much
information can overwhelm the user, and too little infor-
mation can confuse and mislead the user [19]. There have
been many recent efforts to use formal methods [20], [21],
[22], [23], as well as a hybrid system verification method
[3], [2] to verify that an interface accurately represents its
underlying system. In [1], the authors use state reduction
techniques to synthesize an interface as a reduced model of
a more complex system. The reduction process occurs by
effectively combining states for which all input sequences
produce the same output sequences: examining the system’s
behavior from the output, the two states appear to function
in exactly the same way. For interfaces, combining states
is a way to eliminate information unnecessary to the user,

while maintaining necessary distinctions allows the user to
distinguish between potentially important states.

In this paper, we make use of two discrete event system
models: an automatonG and another automatonGsys. While
we first considerG to be a generic, nondeterministic automa-
ton, when considering application of immediate observability
to user-interfaces, we presume thatG is a deterministic and
reduced automaton which represents a more complicated, but
also deterministic, automatonGsys. Additionally, the notation
| · | indicates the cardinality of a set.

Let the nondeterministic discrete event systemG =
(Q,Σ, δ,Q0) consist of a finite state setQ, a finite event set
Σ = Σo ∪ Σuo, which is composed of the set of observable
eventsΣo and the set of unobservable eventsΣuo, the one-
to-many state transition functionδ : Q×Σ → 2Q, and the set
of the possible initial statesQ0 ⊂ Q. We define the finite set
Ψ as the set of observable events combined with theε event
which represents all unobservable events, i.e.Ψ = Σo ∪{ε}.
In addition, the finite output setY , defined by the many-to-
one output maph : Q→ Y , is assumed to be available. Thus,
we can infer information about the state from the sequence
of events belonging toΨ and the sequence of outputs.

III. I MMEDIATE OBSERVABILITY AND IMMEDIATELY

OBSERVABLE OUTPUT SYNTHESIS

Using the systemG = (Q,Σ, δ,Q0) as defined in Section
II, we first enunciate the conditions forco-observabilityfrom
[4], which we calleventual observabilityhere. We then derive
conditions for immediate state observability of a generic
systemG and provide an illustrative example. Using this
result, we describe a method to synthesize an output maph
such that(G,h) is immediately observable.

Definition 1: A system is eventually observableif the
following two properties from Proposition 6.2 of [4] hold:

1) For each pair(q, σ) ∈ Q× Σ, if q1, q2 ∈ δ(q, σ) with
q1 6= q2, thenh(q1) 6= h(q2).

2) No two distinct statesq1, q2 have a common event se-
quence which can generate a common output sequence.

Remark 1:The first condition (calledtrackability in [4])
allows for the determination of the next-state, given the next
output and the current event. The second condition allows
for unique determination of the initial state.

Remark 2: In an eventually observable system, given a
sequence of events and a sequence of outputs, the initial
state and the current state can be determined. While these
sequences are finite, there are no further constraints on the
length of these sequences, hence the notion of “eventual”
observability.

A. Condition for immediate state observability

Definition 2: A discrete event system isimmediately ob-
servableif the current state can be determined uniquely from
the current state output and either the last or next event.



First define the following sets:

Qy := {q ∈ Q | ∃y ∈ Y, y = h(q)}
If
σ := {q′ ∈ Q | ∀q ∈ Q,∃σ ∈ Ψ, q′ = δ(q, σ)}
Ib
σ := {q ∈ Q | ∀q′ ∈ Q,∃σ ∈ Ψ, q′ = δ(q, σ)}

(1)

whereQy is the set of all states whose output isy ∈ Y ,
If
σ is the set of all states reachable through an eventσ ∈ Ψ

from any q ∈ Q, and Ib
σ is the set of all states which can

reach any stateq′ ∈ Q through an eventσ ∈ Ψ. Using this
notation, we state conditions for immediate observability.

Proposition 1: The systemG = (Q,Σ, δ,Q0) is immedi-
ately observable if and only if the following conditions hold
(∀σ, σ′ ∈ Ψ, ∀y ∈ Y ):

1) (For initial state:y0 = h(q0)) for all q0 ∈ Q0

a) h−1(y0) exists, (onlyQy0
available)

∨

b) |Qy0
∩Ib

σ| = 1 (Qy0
and the next event available).

2) (For any state:y = h(q) for all q ∈ Q and for i ∈ N
+

a) h(q(i−1)) 6= h(q(i)) if q(i) ∈ δ(q(i−1), ε), and
b) |Qy ∩ If

σ | = 1 (Qy and last event available),
∨

c) |Qy ∩ Ib
σ| = 1 (Qy and next event available),

∨

d) |If
σ ∩ Qy ∩ Ib

σ′ | = 1 (Qy, last, and next events
available).

Proof: (if) (i) For the initial states, if Condition (1a)
is true, the initial state can be uniquely determined from the
state output. If Condition (1b) is true, there is a unique initial
state with the outputy0 and from which the eventσ ∈ Ψ
occurs. Thus, the initial state can be determined uniquely.
(ii) Condition (2a) states that the unobservable events can
be detected and thus validates the assumption that both the
current state output and the last (or the next) event are
available to determine the current state. If Condition (2b)
is true, there is only one state which has the current state
outputy and is reachable through the last eventσ ∈ Ψ. Thus,
the current state can be uniquely reconstructed. Similarly,
Conditions (2c) and (2d) can be proved.
(only if) [proof by contradiction] Since Condition (1) is obvi-
ous, we consider Condition (2) only. (i) Suppose Condition
(2a) is not true. Since the event is unobservable, only the
current state output is available to determine the current
state. However, more than one state has the same output.
Therefore, the current state cannot be uniquely determined.
This is a contradiction to the assumption that the current state
is immediately observable. (ii) Suppose Condition (2b) is not
true. Then, there is more than one state which has the current
output y and is reachable through the last eventσ ∈ Ψ.
Therefore, the current state cannot be uniquely determined.
This is a contradiction. Similarly, Conditions (2c) and (2d)
can be proved.

To test for immediate observability, choose the appropriate
condition of Proposition 1 to test, depending on available
information. For the remainder of the paper, we consider
only the case in which the current state output and the last
occurring event are available. For this discrete event system
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Fig. 1. Nondeterministic
discrete event systemG

Fig. 2. Output and event sequences
showG is not immediately observable.

to be immediately observable, Conditions (1a), (2a), and (2b)
must be true for all combinations ofσ ∈ Ψ and y ∈ Y
dictated by the transition functionδ. Without Condition (2a)
we cannot determine the current state reached through theε
event whose output is the same as the previous output.

The complexity of the tests for immediate observability
depends on the number of outputs and events. For com-
pletely specified automata (in whichδ is defined over all
combinations of(q, σ) ∈ Q × Σ) with nY = |Y | outputs
and nΨ = |Ψ| events at mostnY nΨ intersections must be
evaluated. Incompletely specified automata (in whichδ is
defined for some combinations of(q, σ) ∈ Q×Σ) will require
fewer intersections, depending on the relationδ.

Example: To illustrate Proposition 1, we consider a non-
deterministic discrete event systemG = (Q,Σ, δ,Q0) where
Q = {1, 2, 3, 4}, Σ = {a, b}, Q0 = {1, 4}, and the state
transition functionδ is defined as in Figure 1. We assume
eventsΨ = {a, b} outputsY = {A,B}, and the output map
h is defined by:h(1) = h(4) = B and h(2) = h(3) = A.
Thus, we have two observed sequences: the output sequences
and the event sequences. Consider two state sequences shown
in Figure 2. Start from the initial stateq(0): the only available
information is the outputB. Since both cases have the same
output, we cannot identify the initial state. Let the state move
to the next stateq(1) through an observable eventa. New
information available is the eventa and the current output
B. Since both cases generate the same observed sequences,
we still cannot distinguish the current state or the initialstate
uniquely. Now, let the state again move to the next stateq(2).
New information distinguishes the two cases: Although both
cases show state outputA, in case 1 eventb is observed,
and in case 2 eventa is observed. Using the observability
condition of Definition 1, we can uniquely reconstruct the
initial conditions for both cases and thus determine all the
states up toq(2) uniquely for both cases. This system satisfies
the observability condition of Definition 1, yet it is not
immediately observable. From Condition (2b) of Proposition
1, with QA = {2, 3}, QB = {1, 4}, If

a = {1, 2, 4}, and
If
b = {1, 3}, we obtainQA

⋂
If
a = {2}, QA

⋂
If
b = {3},

QB

⋂
If
a = {1, 4}, andQB

⋂
If
b = {1}. SinceQB

⋂
If
a is

not a singleton, the system is not immediately observable and
the states 1 and 4 are indistinguishable.



B. Relationship to Eventual Observability

Proposition 2: If a systemG is immediately observable,
then it is also eventually observable.

Proof: In an immediately observable system, only one
event (the last occurring event) and one output (the current
output) are necessary to determine the current state. The
initial state can be uniquely determined from the initial
state output. Thus an immediately observable system fulfills
the two conditions of Definition 1, and so is eventually
observable.

We repeat the following from [8], [9], [10], [11]:
Definition 3: Two modesqi, qj ∈ Qsys are compatible

if 1) hsys(qi) = hsys(qj), and 2) for all eventsσ ∈
Ψsys possible from both modes, the two resulting modes
after the eventσ is applied also have the same output:
hsys(δsys(qi, σ)) = hsys(δsys(qj , σ)).

Definition 4: A set of modesS is compatible if and only
if all possible pairs of modes inS are compatible.

Proposition 3: Given a deterministic automatonGsys and
an outputψ, the minimal (or simply reduced), deterministic
automatonG is eventually observable with respect toψ.

Proof: By definition, compatible states are those which
have the property that no sequence of events will distinguish
between them. The states of the reduced automatonG are
the largest sets of compatible states which produce the same
output sequence. The states ofGsys which have not been
lumped together (distinct states ofG) can be distinguished
after a finite number of steps, discounting loops.

C. Immediately Observable Output Synthesis

Interfaces can be formed through state reduction [1]. How-
ever, there is often freedom in forming a reduced automaton
G from the underlying systemGsys. A reduced or minimized
model G can be formed by first identifying its modesQ,
through state reduction. The set of events inG is Σ =
Ψsys, and the deterministic transition functionδ is defined
according to the event-successors of each transitionσ ∈ Σ
possible for each compatible. Recall that event-successors are
defined by:

Definition 5: An event-successorof a compatibleCi =

{q
(1)
i , ...q

(ni)
i } for a given eventσ is a compatibleCj which

contains{δ(q(1)i , σ), ..., δ(q
(ni)
i , σ)}.

If more than one event-successor is possible for a given
event σ, only one event-successor should be selected. In
anticipation of the upcoming output synthesis, the event-
successor can be chosen to minimize constraints on that
output. For example, if we knowC1

σ
→ C2 andC2 is one

of multiple event-successors forσ from another compatible
C3, we should chooseC3

σ
→ C2.

We now want to determine how to choose the output func-
tion h such that(G,h) is immediately observable. There are
many possible choices; one option is the identity map. With
y = q, (G,h) is immediately observable. For situations in

which the interface is physically connected to the underlying
system, this would likely be the best solution, since the
user has an intuitive sense of the various interface modes.
However, in distributed systems, information about the state
of the system is dependent on outside information. Given
communication bandwidth limitations, in which minimizing
information passed to each of the distributed units is of the
utmost importance, an outputh can be used to determine the
minimum of information which must be transferred in order
to be able to reconstruct the interface mode.

The conditions on a systemG and its outputh for
immediate observability result in a minimal set of restrictions
on h. We can then use these restrictions to determine the
output of minimal cardinality which fulfills these conditions,
and guarantees immediate observability of the interface.

Conditions (2a) and (2b) of Proposition 1 for immediate
observability result in the following constraints on the output:

∀p, q such thatp
ε
→ q, h(q) 6= h(p) (2)

∀p, q ∈ If
σ ⊆ Q, h(p) 6= h(q) (3)

From Condition (2a), we know the state outputs before and
after an unobservable event must be distinct. From Condition
(2b), we know that the current state must be uniquely and
immediately determined from the last occurring event and the
current output. For a given set of statesIf

σ , and an outputy,
there must uniquely exist one state inIf

σ with output y. (If
more than one state maps to the same outputy, |If

σ ∩Qy| > 1
so the system cannot be immediately observable.) Therefore
none of the states inIf

σ can map to the same output: all states
in If

σ must have different outputs.

To make use of immediate observability constraints (3) and
(2), we define the following, based on [8], [9], [10], [11]:

Definition 6: A pair of modes (qi, qj) ∈ Q × Q is
allowable if h(qi) = h(qj).

Definition 7: A set of modesS is anallowable setif each
mode pair inS is an allowable pair.

Definition 8: A set of modesS is a maximum allowable
set if it is not contained in any other allowable set.

Definition 9: A set of allowablesT coversQ if and only
if it contains all elements ofQ.

Although we define the maph such that it is many-to-
one, and defined for allq ∈ Q, we do not invoke closure
conditions as they are invoked in the construction of a
reduced automaton from compatibles.

We can determine the maximum allowable sets for a
given set of constraints through a merger table [11] for



Q = {q1, q2, · · · , qn}.

q2 *
q3 * *

...
...

. ..
qn−1 * * · · · *
qn * * · · · * *

q1 q2 · · · qn−2 qn−1

(4)

We first enumerate all possible pairs (4), then mark pairs
which are not allowable by “×”, as determined by each
If
σ . (For If

σ with nσ elements, there arenσ(nσ − 1)/2
constraints.) As opposed to the procedure used in [11], we do
not need to iterate (4) through the transition functionδ: we
are constructing an output, rather than an automaton. (The
user will not interact directly with the minimized system.
Rather, this output can be decoded so that the reduced model
(the interface) will be displayed to the user).

We determine the maximum allowables by examining the
resultant table according to the same procedure as in [11]
to determine maximum compatibles. From the maximum
allowables, we now can create a list of all possible allowable
sets, which will also be the set of all possible output
mappings. For each maximum allowableAi, enumerate all
subsets which have not been enumerated through examining
the subsets of another maximum allowableAj (so that each
subset is counted only once). This results in a total ofnA

allowables, each of which is a potential output. We use
integer programming to determine which outputs (allowable
sets) must be selected to minimize the cardinality of the
output as well as guarantee immediate observability. For
each modeqk ∈ Q, one allowable set which containsqk
must be selected in the minimal output map. (Each mode
must have exactly one output associated with it: the output
Y must disjointly coverQ.) This results in a constraint in
nk variables, wherenk is the number of allowables which
containqk.

x
(1)
k + ...+ x

(nk)
k = 1 (5)

The binary variablex(j)
k represents thejth allowable which

containsqk: x(j)
k = 1 if the allowable it represents is selected,

and x(j)
k = 0 otherwise. There will be a total ofn such

constraints, one for each mode of the interface. This differs
from the process of obtaining prime compatibles in that we
do not need to satisfy any closure conditions.

To solve the problem of minimizing an interface we form
a set-partitioning problem, in which a set of statesQ must
be partitioned subject to constraints (5) necessary to enforce
immediate observability. These problems are, in general,NP
complete. However, for this particular problem,

min 1
Tx

subject to Ax = 1
(6)

4
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qsys
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y
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Fig. 3. Five aircraft flying in formationqsys
0 . Each aircraft knows its

position relative to a the lead aircraft (Aircraft 1) and communicates with
Aircraft 1, which issues control commands.

with A ∈ {0, 1}n×nA and x ∈ {0, 1}nA the vector of
all possible allowablesx(j)

k , can be solved in polynomially
bounded time [24]. For a fixednA, the set-partitioning can
be accomplished inO(nA

2 log nA) steps [24], [25].
Unlike linear programs, there is no certificate of optimal-

ity; however all possible solutions, given a feasible set of
restrictionsAx = 1, can be enumerated. This computation
would likely be done off-line.

Proposition 4: Given a reduced modelG and a set of
m equality constraintsAx = 1 which enforce immediate
observability, the solutionx∗ to an integer program (6)
determines the output maph : Q→ Y of minimal cardinality
which results in immediate observability for(G,h).

Proof: A sketch of the proof follows: The solutionx∗

specifies which allowables should be chosen to produce an
output Y which is of minimal cardinalityn∗Y = 1

Tx∗ and
which satisfies conditions of immediate observability for the
reduced systemG with respect to the output maph. This
solution is not necessarily unique.

IV. EXAMPLE : COORDINATED A IRCRAFT MANEUVERS

We consider a distributed system with five formation-flying
aircraft. While this is an inherently hybrid system due to the
nonlinear aircraft dynamics, we assume that the aircraft are
completely controllable, and therefore only consider discrete
relative position changes based on a known sequence of
desired formations for all five aircraft. While we assume for
simplicity that each aircraft in the formation communicates
only with the lead aircraft, other communication structures
might also be considered, such as one in which each aircraft
communicates only with its immediate neighbors [26].

Figure 3 shows the five aircraft in their initial configu-
ration (modeqsys

0 ), flying nominally at a constant velocity.
Each aircraft knows its position relative to the lead aircraft
(Aircraft 1), and all five aircraft travel nominally at the same
speed. Each aircraft receives its instructions from the lead
aircraft, and does not have access to information regarding
the other aircraft in formation. These instructions may be
events (i.e. ‘Change formation’) or outputs (i.e. ‘Maneuver
A’). Only some of these events and outputs may affect a given
aircraft in the formation (for example, perhaps ‘Maneuver A’
involves only the leading aircraft) – so an individual aircraft



may not need to know about every single event and output
that occurs in order to maintain its proper location in the
formation. Each aircraft only needs to know sequences of
events and outputs which will affect its position relative to
the lead aircraft.

The five aircraft maneuver according to the automaton
shown in Figure 4. Transitions between formations occur
based on simple, physically constrained trajectories: for
example, for aircraft to directly invert their “V” formation
in modeqsys

0 to that inqsys
2 (when eventα2 occurs), Aircraft

2 and 3 must move forward in thex direction two grid
spaces, while Aircraft 4 and 5 move four grid spaces.
(Note that aircraft maintain the same orientation in they
direction for the entire automaton: 4-2-1-3-5.) In Figure 4,
all aircraft following Aircraft 1 are placed according to their
position relative to the lead aircraft along an(x, y) coordinate
system (shown by a grid). However, some formations involve
separation of the five aircraft into either two or three groups
(see modesqsys

4 and qsys
6 ). Aircraft not following the lead

aircraft are not drawn on top of a grid: these aircraft maintain
their relative spacing to other aircraft in their group. For
example, in modeqsys

4 , while Aircraft 2 and 4 maintain their
positions relative to Aircraft 1, Aircraft 3 and 5 are separate
from the group and are following another mission in which
Aircraft 3 leads Aircraft 5.

For the remainder of the problem, we will focus on
observability from the point of view of Aircraft 2. Examining
Figure 4, Aircraft 2 must distinguish between four different
formations: these are exemplified by formations in modes
qsys
0 , qsys

2 , qsys
6 , and qsys

9 . Formations inqsys
0 , qsys

1 , qsys
5 , qsys

10 ,
andqsys

11 are essentially equivalent for Aircraft 2, so we map
them to the same output,ysys

0 . Similarly, {qsys
2 , qsys

3 , qsys
4 } →

ysys
1 , {qsys

8 , qsys
9 } → ysys

2 , and{qsys
6 } → ysys

3 . Notice that in
qsys
8 andqsys

9 Aircraft 2 leads Aircraft 4, and inqsys
6 Aircraft

4 leads Aircraft 2.
However, this automaton has more information than Air-

craft 2 needs in order to maintain one of its four po-
sitions relative to the lead aircraft. We reduce Figure 4
according to the four outputsysys

0 , ysys
1 , ysys

2 , ysys
3 to find

the minimal information Aircraft 2 needs to distinguish
between in order to maintain its correct position in the
aircraft formation. This allows us to take advantage of
situations in which Aircraft 2 may not need to change
its relative position in two different formations, for exam-
ple. Using state reduction techniques, we obtain the min-
imal model G for Aircraft 2. Its modesQ are formed
by the mapping{qsys

8 , qsys
9 } → q1, {qsys

2 , qsys
3 , qsys

4 } →
q2, {qsys

1 , qsys
7 , qsys

11 } → q3, {qsys
0 , qsys

1 , qsys
5 , qsys

11 } → q4,
{qsys

0 , qsys
1 , qsys

10 , q
sys
11 } → q5, {qsys

6 } → q6. The aircraftmust
be able to distinguish between the six modes shown in
Figure 5. For the pilot of Aircraft 2, this defines the pilot’s
“interface”: this is the information about the underlying five-
aircraft systemGsys which the pilot must have at his disposal.

Communication costs are often prohibitively high in dis-
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tributed systems [27]. To reduce those costs, we find the
minimal information to broadcast to each aircraft. To do this,
we synthesize an output which is minimal in cardinality, and
which allows reconstruction of information in the reduced
model, Figure 5. The output is constructed as in Section III-
C from the conditions for immediate observability of(G,h):
We first find the maximum allowables and their subsets, and
then solve an integer optimization to determine which set of
allowables results in an output of minimal cardinality, subject
to covering conditions.

Assuming that the last event and the current output are
accessible to the system, the following restrictions arisedue
to ε events:

h(q2) 6= h(q3)
h(q2) 6= h(q4)
h(q2) 6= h(q5)

(7)

and the set of forward-eventsIf
σ results in the following non-



2

2

2

2

2

4

2

4

σR, ε β2

ε

α2, ε

σT

σS ,

σR, β1

σR, α1

θ
σR

σS

σS ,

σR

σSσT σR, θ

σS ,
σR, α1

Y1Y3

Y1

Y2

Y1

Y4

Fig. 5. The minimal outputh for the minimal modelG, which makes
(G, h) immediately observable for Aircraft 2.

singular sets and resultant output constraints:

If
σR

= {q2, q3, q5} ⇒ h(q2) 6= h(q3) 6= h(q5)
If
σS

= {q1, q2, q5} ⇒ h(q1) 6= h(q2) 6= h(q5)
If
σT

= {q1, q6} ⇒ h(q1) 6= h(q6)

If
θ = {q4, q5} ⇒ h(q4) 6= h(q5)

(8)

The restrictions in equations (7) and (8) are indicated in the
following table of allowable state pairs.

q2 ×
q3 * ×
q4 * × *
q5 × × × ×
q6 × * * * *

q1 q2 q3 q4 q5

(9)

Allowable pairs of the reduced modelG are marked with (*),
unallowable pairs are indicated with (×). The maximum al-
lowables are{(q3, q4, q6), (q5, q6), (q2, q6), (q1, q3), (q1, q4)}.
The elements of the binary vector x =
[x1, x2, x3, x4, x5, x6, x13, x14, x26, x34, x36, x46, x56, x346]
represent each maximum allowable and its subsets. The
elementxij = 1 if the set containingqi and qj is selected,
and xij = 0 if it is not. The covering constraints which
constrain the minimization of1Tx are

x1 + x13 + x14 = 1
x2 + x26 = 1

x3 + x13 + x34 + x36 + x346 = 1
x4 + x14 + x34 + x46 + x346 = 1

x5 + x56 = 1
x6 + x26 + x36 + x46 + x56 + x346 = 1

(10)

A solution to integer program isx∗1 = 1, x∗2 = 1, x∗5 =

Model State Event State Information
Information Information Cardinality

Gsys Qsys Σobs
sys 12

G Y Σo 4

TABLE I. Comparison of information cardinality in original model Gsys

and reduced model (interface)G with synthesized outputY .

1, x∗346 = 1 and all other elements ofx∗ equal to 0. This is
shown in Figure 5, withh(q1) := Y2, h(q2) := Y3, h(q5) :=
Y4, andh(q3) = h(q4) = h(q6) := Y1. While there are many
choices of outputs which would result in an immediately
observable system, this one is minimal in that it results
in an output of minimal cardinalityn∗Y = 4. The output
broadcast to the aircraft is the minimum set of information
from which the aircraft can reconstruct its current state (of
the reduced model,G). Table I compares the quantities (as
determined by set cardinality) of information which must be
transmitted to Aircraft 2 using different model formulations.
In addition, the minimal model in Figure 5 has a fewer
number of issuing instructions (number of arcs) needed to
change formation than the original model in Figure 4, i.e.,
the frequency of communication required is reduced. While
there is a significant reduction in the amount of information
about the state which must be transmitted, the cardinality
of the event set is not necessarily reduced by this synthesis
technique. This is an area of future work.

V. CONCLUSION

We have presented conditions for immediate observability,
a property for systems (such as user-interfaces) in which
immediatedetermination of the actual state of the system
is paramount. Our conditions for immediate observability
assume that the current state output as well as either the
last-occurring or next-occurring event (or both) are known.
For the case in which the last event and the current output are
known, we used these conditions to synthesize a state-output
map which guarantees immediate observability. This syn-
thesis draws from techniques in state reduction, and makes
use of integer optimization. We have applied this condition
and output synthesis to the problem of user-interface design
for remote systems, in which high communication costs
inspire minimized information transfer. Each remote agent
must be able to reconstruct the minimal set of information
which makes up the agent’s user-interface. We determined the
minimal output map for which a specific aircraft, flying in a
five-aircraft formation, will be able to reconstruct information
necessary for the pilot of a specific aircraft to maintain
proper formation. The state-related information which must
be transmitted is significantly reduced through this synthesis.
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