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Abstract. The objective of this work is a scalable, real-time, visual
search engine for 3-D medical images, where a user is able to select
a query Region Of Interest (ROI) and automatically detect the corre-
sponding regions within all returned images.
We make three contributions: (i) we show that with appropriate off-line
processing, images can be retrieved and ROIs registered in real time; (ii)
we propose and evaluate a number of scalable exemplar-based image reg-
istration schemes; (iii) we propose a discriminative method for learning
to rank the returned images based on the content of the ROI. The re-
trieval system is demonstrated on MRI data from the ADNI dataset [9],
and it is shown that the learnt ranking function outperforms the baseline.

Keywords: Immediate structured search, visual search, ROI, exemplar-
based registration, learning to rank

1 Introduction

Throughout the last decade there has been a rapid growth of medical image
repositories. Medical images and corresponding clinical cases, stored in these
large collections, capture a wide range of disease population variability due to
numerous covariates (diagnosis, age, co-morbidities, etc). Instant image retrieval
from such repositories could be of great value for clinical practice, e.g. by pro-
viding a “second opinion” based on the corresponding diagnostic information or
course of treatment. Apart from the processing speed, another important aspect
of a practical retrieval system is the ability to focus the search on a particular
part (structure) of the image which is of most interest.

This paper addresses the problem of immediate structured image retrieval in
large repositories of 3-D medical images. Given a query 3-D image (e.g. from a
new patient we wish to diagnose) and a user-drawn Region Of Interest (ROI)
in it, we seek to retrieve repository images with the ROI automatically located,
and rank them based on a clinically relevant score, driven by the content of the
ROI. Instant ROI localisation in large repositories is achieved by off-line pre-
processing of the repository based on fast image registration. Figure 1 shows
screenshots of our brain MRI retrieval system.
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The contribution of this paper is three-fold. First, we show that 90 (and
potentially more) images can be retrieved and ROIs registered in real time.
Second, we present and evaluate several modifications of scalable exemplar-based
image registration. Finally, we propose a technique for learning to rank the
retrieved ROI. We envisage a number of applications of the proposed framework,
and discuss three of them below.

Atrophy-Aware Brain MRI Retrieval. Structural MRI data has been shown
to provide reliable quantification of the atrophy process in the brain caused by
Alzheimer’s disease (AD) [5] or other neurodegenerative disorders. There are
numerous natural history studies, the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) [9], launched in 2003, being the most prominent. The immediate
visual search engine can aid in differential diagnosis, as there are discriminating
patterns between numerous forms of dementia. The ability to focus the search
on specific anatomical regions, that have been identified as being sensitive to
the disease, is an important advantage of structured (ROI-level) visual search
as opposed to retrieval based on global cues. For example, the hippocampal de-
terioration is increasingly being considered as a way of identifying subjects who
have a higher risk of developing AD. Providing the images with relevant ROI
and their respective diagnosis to clinicians will aid in their decision process. We
give an implementation of a search-engine for this application in this paper.

Lesion Retrieval in CT Scans. The wide application of computed tomog-
raphy to lesion detection (e.g. liver or kidney lesions) has led to the collection
of large quantities of imaging data together with corresponding clinical reports.
Recently, image retrieval frameworks [11] have been proposed, which can help
clinicians to search for similar lesions in image repositories. However, such meth-
ods do not take into account the relative location of the lesion inside the liver,
which can be an important search criterion (e.g. the query “find all visually sim-
ilar lesions in the same part of liver”). To process such queries, the geometrical
correspondence of a query ROI in target images should be quickly obtained,
which can be done using exemplar-based registration employed in the proposed
framework.

Image Quality Control. Another application of the visual search engine is
the quality control of incoming images for research studies and clinical trials.
This predominantly manual task is one of the most time consuming areas of the
processing pipeline. Even though the failure rate is low, all data needs to be
reviewed by radiologists and images with poor quality must be excluded from
the analysis. Typically, this task consists of a careful qualitative review of each
image independently. If the reviewers were provided with a visual search engine
to retrieve similar (on ROI-level) images from the repository and the outcomes
of their image quality review, this would speed up the process dramatically.
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Fig. 1. Screenshots of our brain MRI retrieval system for two different queries and the
top eight retrieval results. The system is accessed via a conventional Web browser. The
top of the page shows the three orthogonal views of the user-specified query volume
and axis-aligned ROI outlined in red. The high ranked retrieved volumes with the
corresponding ROI (in red) are shown below.

1.1 Related Work

The problem of content-based medical image retrieval has a vast literature. Most
conventional approaches [10] consist in retrieving images that are globally sim-
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ilar to the query image. Recently, the problem of ROI-level search has been
addressed in [1, 2, 14]. In [1, 2], an approach related to that of [15] was employed,
which consists in computing an ROI descriptor vector (known as a bag of visual
words), and retrieving images based on the distance between query and target
ROI descriptors. It should be noted that such a technique discards information
about the spatial location of the query ROI in an image. While this can be an
advantage when searching in natural images or videos [15], in the case of med-
ical images this can result in the retrieved ROIs lying in completely different
anatomical locations, which is often undesirable. To circumvent this, augment-
ing of visual desriptors with their spatial location was proposed in [1]. A more
principled approach is taken in the framework of [14], which makes use of the fact
that medical images are usually acquired under standardised protocols with a
fixed viewpoint, field of view, etc. It allows one to quickly compute registrations
between query and repository images, making the target ROI detection trivial.
We build upon their framework and review it in more detail below.

Outline. The rest of the paper is organised as follows. Section 2.1 contains
the details of our brain MRI dataset and the retrieval system implementation.
In Sect. 3 we present several exemplar-based registration techniques and evaluate
them. In Sect. 4 we describe a learning to rank framework.

2 ROI Retrieval Framework

To enable immediate ROI retrieval at run time, processing is divided into off-
line and on-line parts, as summarised in Fig. 2. A similar approach was previ-
ously applied to 2-D X-ray images retrieval [14]. The key idea is to pre-compute
registrations between repository images off-line, so that at run time the corre-
spondences of a query ROI in target images can be obtained immediately if the
query image is taken from the repository. Once the regions of interest have been
aligned in repository images, they can be ranked based on an application-specific
clinically relevant score.

If a query image is not in the repository, it is added there by registering
it with repository images. This brings up the issue of computational efficiency
in the case of large datasets. In [14] an efficient exemplar-based registration
technique was proposed to solve this problem. It requires only a small fixed
number of registrations to exemplar images to be computed. The transformations
to the rest of the repository is then obtained by computationally cheap transform
composition. It should be noted that registration with exemplar images can be
performed using any off-the-shelf method suitable for a particular type of images.
In this paper, we apply the framework to a large dataset of brain MRI scans,
where images exhibit similar fields of view.

2.1 Dataset and Implementation Details

Our dataset consists of 90 brain MRI scans randomly selected from the ADNI
dataset [9] (http://www.loni.ucla.edu/ADNI/Data/). The subset contains an
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1. On-line (given a user-specified query volume and ROI bounding box)

– Using the pre-computed registration and transform composition (Sect. 3), com-
pute the ROIs corresponding to the query ROI in all repository images.

– Rank the retrieved ROIs using a clinically meaningful ranking function of
choice (Sect. 4).

2. Off-line (pre-processing)

– Compute registration between exemplar images and all other images (Sect. 3)

Fig. 2. The retrieval algorithm outline.

equal number of images (30) of each of the three subject groups: Alzheimer’s
disease, control, and MCI (mild cognitive impairment). For the evaluation of
the methods proposed in the paper, for each of these images we computed the
“gold standard” parcellation and pairwise registrations. We note that this is
not required for the functioning of the proposed search engine. The parcellation
into 83 brain anatomical structures was performed using the method of [4]. The
non-rigid registration has been performed using the Free-Form Deformation ap-
proach [12]. Briefly, it consists of a cubic B-Spline parametrisation model where
the Normalised Mutual Information (NMI) is used as a measure of similarity.
We used an efficient implementation [8] that is freely available as a part of the
NiftyReg package. We provide a default ranking function based on the contents
of the ROI (the ranking function can also be learnt, Sect. 4). For the default,
we measure the χ2 distance between the brain tissue type distributions in query
and target ROI. The distributions were computed using the GMM-based prob-
abilistic segmentation algorithm [3].

Our retrieval system is implemented as a Web-based application, which can
be accessed from any device equipped with a Web browser (thin client paradigm).
The system is split into a front-end and back-end. The front-end, implemented in
Python and JavaScript, allows a user to select a query volume, specify arbitrary
axis-aligned ROI in it, and explore the retrieval results. The back-end is currently
implemented in unoptimised Python, leaving a lot of room for potential speed-
up. The average ROI registration time using five exemplar images (Sect. 3) on
a single CPU core is 0.06s per image, which allows for retrieval of hundreds of
MRI volumes under 1s when rolled out on a multi-core server.

In certain use cases, using multiple query ROI can be beneficial, as it would
allow one to select several relevant areas in a query image. Here we consider a
single query ROI, the extension to multiple ROI being rather straightforward.
We also restrict the ROI to be an axis-aligned 3-D bounding box, but in general
any ROI shape is possible.

3 Exemplar-Based Registration

Carrying out non-rigid registration of the query image with each of the target
images scales badly with the number of repository images as 3-D image reg-
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istration is computationally complex, and the number of registrations equals
the number of images. Moreover, storing all pairwise registrations is prohibitive
due to high storage requirements of non-rigid transforms (e.g. B-spline warps
computed over a dense 3-D grid).

The key idea behind scalable exemplar-based registration is that instead of
registering a query image with each of the repository images by pairwise regis-
tration, the query is registered with only a few fixed images (called exemplars),
which effectively define several reference spaces. The remaining repository im-
ages are already pre-registered with exemplars, so they can be registered with
the query by composing the two transforms. Finally, to obtain a single corre-
spondence from several exemplars, the composed transforms are aggregated. The
exemplar-based registration is schematically illustrated in Fig. 3 (left).

More formally, for a dataset of N images, a query image Iq is registered with
only a subset of K = const exemplar images, which results in K transforms
Tq,k, k = 1 . . .K. The transformations Tk,t between an exemplar Ik and each
of the remaining repository images It are pre-computed. Then the transforma-
tion between images Iq and It can be obtained by composition of transforms
(computed using different exemplars) followed by aggregation:

Tq,t(x) = f ({Tk,t ◦ Tq,k}) (x) (1)

where x is a point in the query image and f is the aggregation function.

The advantage of exemplar-based registration scheme is that for a query
image only K ≪ N registrations should be computed, and the transform com-
position complexity is negligible. Thus pairwise registrations between all images
can be computed in O(KN) rather than O(N2). The same estimates apply to
the storage requirements for the computed registrations, which allows them to be
stored in RAM for fast access. Compared to group-wise registration algorithms,
transform composition does not rely on the computation of a group mean model,
and is scalable in the case of rapidly growing datasets. Additionally, the use of
several transformations instead of one improves the registration robustness.

There are two important choices to make: how to select the exemplars and
how to define the function f , aggregating the transforms obtained using different
exemplars. In [14] the exemplars were selected randomly, and the aggregation was
performed by taking a median. In both cases the accuracy of registration is not
taken into account, which can potentially lead to the selection of exemplars which
can not be accurately registered with other images. If the ratio of such exemplars
is large, the median filter will not be able to recover the correspondence.

Here we investigate different ways of exemplar selection and transform ag-
gregation. We assume that the registration error dij = d(Ii, Ij) for two images Ii
and Ij belongs to the range [0, 1] with 0 corresponding to a perfect registration.
In general, the error can be computed using different cues (intensity, deforma-
tion field smoothness, re-projection error, etc.). In our experiments, we employed
inverse normalised mutual information, rescaled to the [0, 1] range.
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Fig. 3. Left : Exemplar-based registration. Right : Repository graph. The red dashed
line illustrates the graph cut into exemplars and other images.

3.1 Exemplar Images Selection

The objective of exemplar selection is to pick a fixed number (K) of repository
images, such that they can be accurately registered with the remaining ones. In
this section we describe several ways of deterministic (non-random) exemplar
selection from a set of images based on their pairwise registration errors. For
instance, the exemplars selection can be carried out on the full repository or
its subset. We stress that deterministic exemplar selection (including pairwise
registrations) is performed off-line and has no impact on the query times; random
exemplar selection does not require any additional processing at all.

It is natural to represent an image repository as a fully-connected graph with
vertices corresponding to images and edges weighted by the registration errors,
as shown in Fig. 3 (right). We employ the repository graph formalism to describe
the objective functions for deterministic exemplar selection.

Min-Sum Selection. The task of exemplar images selection can be formulated
as a min-cut problem on a repository graph. Indeed, we aim at splitting the
set of vertices (images) into two partitions such that the sum of edge weights
(registration errors) between vertices lying in these partitions is minimal. The
resulting optimisation problem is as follows:

α = argmin
α

∑

i,j

αi(1− αj)dij , s.t.
∑

i

αi = K (2)

where α ∈ {0, 1}N is a binary vector such that ak = 1 iff k-th repository image
is selected as an exemplar. The optimisation of (2) is NP-hard. While efficient
approximate solutions exist [7], we leave their evaluation for future work. In this
paper, we evaluate exemplar selection based on the following simplified objective:

α = argmin
α

∑

i,j

αidij , s.t.
∑

i

αi = K (3)
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which corresponds to selecting K exemplars such that the sum of edge weights
between them and all other images (including other exemplars) is minimal. The
solution of (3) can be easily obtained by ranking the images in the ascending
order of qi =

∑

j dij and then selecting the top-K images as exemplars.

Spectral Clustering Selection. Another approach to deterministic exemplar
selection is based on clustering the repository images into K clusters followed by
the selection of a single exemplar in each of these clusters. Given the pairwise
similarity matrix sij = 1 − dij , we use the normalised cuts technique [13] to
split the vertices (images) into a set of classes such that the similarity between
images in different clusters is small, and the similarity between images in the
same cluster is large. This corresponds to computing a normalised cut in the
repository graph. Once the images are divided into clusters, a single exemplar
is selected in each of the clusters as the image with minimal sum of registration
errors to the others (3).

3.2 Shortest Path Aggregation

Once the exemplars are selected and fixed, the way of aggregating several reg-
istrations into one should be defined (function f in (1)). In general, taking the
mean or median does not account for the exemplars registration error, which can
be large for certain pairs of query and target images. One of the possible ways
to account for these errors is to pick a single registration which corresponds to
the shortest path in the graph from the query to the target vertices and goes
through exactly one exemplar (Fig. 3, left). In other words, for a given (query,
target) pair of images, only one exemplar is selected, which has the lowest sum
of registration errors with these images:

f(q, t)(x) = (Ts,t ◦ Tq,s) (x), (4)

s = argmin
k

dqk + dkt

3.3 Evaluation

In this section, we compare the registration accuracy of different combinations
of exemplar selection and transform aggregation techniques. For exemplar selec-
tion, we consider random selection (“rand”), “min-sum” selection, and spectral
clustering selection (Sect. 3.1). For transform aggregation, “median”, “mean”,
and the shortest path exemplar (“single”, Sect. 3.2) are compared. The evalua-
tion was performed on the dataset described in Sect. 2.1, which was randomly
split into 45 training and 45 testing images. Exemplar selection was performed
on the training set, registration evaluation – on the test set. The experiment
was repeated three times. For each pair of test images, the accuracy of registra-
tion was assessed using two criteria. First, we measured the mean distance (in
mm) between points projected using pairwise (between query and target) and
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exemplar-based transformations. The measure describes how different exemplar-
based registration is from the pairwise registration. The points were selected to
be the centers of mass of the 83 parcellated anatomical structures. The second
measure is the mean overlap ratio (Jaccard coefficient) of 83 anatomical struc-
ture bounding boxes, projected from the query image to the target image, with
the bounding boxes in the target image. We used the bounding boxes of the par-
cellated anatomical structure volumes instead of the volumes themselves because
it more closely follows the search engine use case scenario, where we operate on
the level of bounding boxes. We note that this measure is noisy due to the pos-
sible inaccuracies of the “gold standard” parcellation. In Table 1 we report the
mean and standard deviation of the two measures across all test image pairs for
different number K of exemplar images.

Based on the presented results, we can conclude that all three exemplar
selection methods (including the random choice) exhibit similar levels of per-
formance when coupled with robust median aggregation. Aggregation based on
shortest path selection performs worse, and the mean aggregation is the worst.
The reason for such a behaviour could be that the global registration error,
which we used for exemplar selection, does not account for the local inaccura-
cies. Another reason for similar performance can be the lack of strong image
variation in our dataset. At the same time, using a single exemplar (K = 1)
results in worse accuracy compared to several exemplar images. The accuracy
of exemplar-based registration with median aggregation is at the same level as
that of pairwise registration without exemplars. The average distance between
the points projected using the two registrations is less than 1.4 mm. Considering
its low computational complexity, in our practical implementation we used the
randomised selection of K = 5 exemplars and the median aggregation of the
composed transforms.

Table 1. Exemplar-based registration accuracy. The overlap ratio of pairwise registra-
tion (without exemplars) is 0.568 ± 0.076. For the overlap ratio higher is better, and
for the distance smaller means closer to the direct registration without exemplars.

exemplar aggregation overlap ratio distance (mm)
K = 1 K = 5 K = 7 K = 1 K = 5 K = 7

rand
mean

0.555
±0.072

0.532± 0.073 0.53± 0.073
2.04
±0.28

1.44± 0.22 1.38± 0.21
median 0.569± 0.076 0.571 ± 0.076 1.45± 0.23 1.37± 0.23
single 0.557± 0.073 0.559± 0.073 1.99± 0.26 1.98± 0.25

min-sum
mean

0.557
±0.072

0.531± 0.072 0.529± 0.072

1.94
±0.26

1.42± 0.22 1.37± 0.22
median 0.569± 0.076 0.57± 0.076 1.43± 0.23 1.36± 0.23
single 0.558± 0.072 0.556± 0.072 1.94± 0.26 2.00± 0.32

cluster
mean 0.531± 0.072 0.529± 0.072 1.44± 0.22 1.39± 0.22
median 0.569± 0.076 0.57± 0.076 1.45± 0.23 1.38± 0.23
single 0.556± 0.072 0.556± 0.072 2.03± 0.32 2.03± 0.31
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4 Learning to Rank Retrieved ROI

In this section we propose a framework for discriminative learning of ROI rank-
ing. In general, we aim at automatically reproducing the ROI ranking provided
by a clinician in the form of preference constraints. That is, for a particular query
image and ROI the expert selects pairs of retrieved images (with corresponding
ROI) such that the first image of the pair should be ranked higher than the
second one. More formally, the annotation is represented as a set of triplets:
{(Iq, Rq), (Ih, Rh), (Il, Rl)}i where (Iq, Rq) are the query image and ROI, and
the (image, ROI) pair (Ih, Rh) should be ranked higher than (Il, Rl).

We propose to learn a distance in the space of ROI such that ranking of the
retrieved ROI based on their distance to the query ROI satisfies the ground-truth
preference constraints with a margin [6], i.e.

d(Ri
q, R

i
h) + 1 < d(Ri

q, R
i
l) (5)

where d is the distance between ROIs in the feature space (we omit image nota-
tion for brevity). We constrain the distance to be a generalised squared Maha-
lanobis distance of the form:

dA(Ru, Rv) = (φu − φv)
TA(φu − φv), (6)

where A � 0 is a positive semi-definite matrix to be learnt, and φu is the feature
vector of the ROI Ru (discussed later). It can be shown that the distance (6)
equals the squared Euclidean distance in the projected space defined by a pro-
jection matrix W such that WTW = A. Taking into account the preference
constraints (5), the large-margin learning objective takes the form:

A = argmin
A�0

∑

i

max
(

dA(R
i
q, R

i
h)− dA(R

i
q, R

i
l) + 1, 0

)

+
λ

2
‖A‖2F (7)

where the first term is a sum of ranking hinge losses, and the second term is a
Frobenius (Euclidean) norm of the matrix A. The parameter λ > 0, balancing the
two parts, is selected on a validation set. The max-margin formulation is closely
related to the LMNN formulation of [17]. The cost function (7) is strongly convex
and can be efficiently optimised by projected stochastic sub-gradient method.

ROI Feature Vector. The proposed ROI distance learning framework is generic
and can be applied to different ROI representations. Here we consider the “bag of
words” representation [15] which consists in computing visual descriptors inside
the ROI, assigning them to a nearest cluster (“visual word” from a vocabulary),
and then accumulating the assignments inside an ROI into a histogram of words.
The visual words vocabulary is computed using k-means clustering. The visual
descriptors, the corresponding vocabulary, and visual word assignments can be
pre-computed off-line. At query time, only the histogram over ROI should be
computed, which can be done quickly using integral volumes.
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Evaluation. Here we describe a preliminary experiment which was carried out
on the dataset of Sect. 2.1. Considering that expert-annotated preference con-
straints are not currently available for our data (it is a subject of future research),
we used the clinical diagnosis class labels (“AD”(Alzheimer’s) and “Control”)
to generate the constraints of the form (5). Namely, we constrain the distance
between same-class ROIs to be smaller than the distance between different-class
ROI. As the ROI, we used a bounding box in the hippocampal area, which is
known to be relevant to the Alzheimer’s disease. Bag of words was computed us-
ing single-scale dense textons [16] of size 3× 3× 3mm which were quantised into
512 visual words, leading to a 512-D ROI feature vector. We randomly selected
30 images for training, 10 for validation, and 20 for testing. The experiment was
repeated three times. Mean average precision of retrieval was measured to be
58.8% using Euclidean distance between feature vectors (i.e. A = I), and 63.8%
using the learnt distance. This shows that metric learning can indeed improve the
retrieval performance. We believe that with appropriate preference constraints
annotation and more sophisticated visual features, the results of the proposed
learning-to-rank framework can be further improved.

5 Summary

In this paper we presented a practical structured image search framework, ca-
pable of instant retrieval of brain MRI volumes and corresponding regions of
interest from large datasets. Fast ROI alignment in repository images was made
possible using scalable exemplar-based registration technique.

The evaluation of different exemplar-based registration methods has shown
that random exemplar image selection coupled with robust median transform
aggregation achieves registration accuracy on par with optimised exemplar se-
lection and pairwise registration without exemplars. We note that in the case of
diverse non-uniform image datasets, deviant images can be unrepresented in the
exemplar set. In that case, our conclusions might not be immediately applicable.

Finally, we have presented a discriminative distance learning framework for
ranking retrieved ROIs. It was demonstrated that it can indeed improve the
ranking performance. It should be noted that while the proposed ranking func-
tion has been learnt on a specific anatomical area (hippocampal area), the same
approach can be used to learn more generic ranking functions. A web-based
demo of 3-D ROI retrieval framework is available at http://www.robots.ox.

ac.uk/~vgg/research/med_search/
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