Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

imMens: Real-time Visual Querying of Big Data

Zhicheng Liu*, Biye Jiang® and Jeffrey Heer*

*Department of Computer Science, Stanford University
tDepartment of Computer Science and Technology, Tsinghua University

Abstract

Data analysts must make sense of increasingly large data sets, sometimes with billions or more records. We present
methods for interactive visualization of big data, following the principle that perceptual and interactive scalability
should be limited by the chosen resolution of the visualized data, not the number of records. We first describe
a design space of scalable visual summaries that use data reduction methods (such as binned aggregation or
sampling) to visualize a variety of data types. We then contribute methods for interactive querying (e.g., brushing
& linking) among binned plots through a combination of multivariate data tiles and parallel query processing. We
implement our techniques in imMens, a browser-based visual analysis system that uses WebGL for data processing
and rendering on the GPU. In benchmarks imMens sustains 50 frames-per-second brushing & linking among
dozens of visualizations, with invariant performance on data sizes ranging from thousands to billions of records.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces]: User Interfaces—;

1. Introduction

Traditional data visualization tools are often inadequate to
handle big data. While it is debatable what is meant by “big”,
visualization researchers have regularly used one million or
more data cases as a threshold [FP02, UTHO06]. More gener-
ally, many data sets are too large to fit in memory and may
be distributed across a cluster; modern data warehouses of-
ten include tables with billions or more records. Most visual
analysis tools are not designed to work at this scale, let alone
support real-time interaction [KPHH12].

Research on big data visualization must address two ma-
jor challenges: perceptual and interactive scalability. Given
the resolution of conventional displays (~1-3 million pixels),
visualizing every data point can lead to over-plotting and
may overwhelm users’ perceptual and cognitive capacities.
On the other hand, reducing the data through sampling or
filtering can elide interesting structures or outliers. Big data
also impose challenges for interactive exploration. Query-
ing large data stores can incur high latency, disrupting fluent
interaction. Even with data reduction methods like binned
aggregation, high dimensionality or fine-grained bins can re-
sult in data cubes too large to process in real-time.

In this paper we present techniques to address perceptual
and interactive scalability, following the principle that scala-
bility should be limited by the chosen resolution of the visu-

© 2013 The Author(s)

Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

alized data, not the number of records. We realize our tech-
niques in imMens', a browser-based system for real-time in-
teraction with scalable visual summaries of big data.

To support perceptual scalability, we first review applica-
ble data reduction methods, including filtering [AS94], sam-
pling [DSLG*12,MTS91] and aggregation [CLNL87,JS98].
We select binned aggregation as our primary data reduction
strategy and describe a design space of binned plots for nu-
meric, ordinal, temporal and geographic variables.

We then address interactive scalability for panning, zoom-
ing and brushing & linking in binned plots. As the number
of visualized dimensions increases, the size of the support-
ing data can explode combinatorially (c.f., [KPP*12]). In re-
sponse, we develop methods for real-time visual querying:

Precompute Multivariate Data Tiles. Precomputed im-
age tiles, as in Google Maps and Hotmap [Fis07], are a com-
mon solution for scalable panning and zooming. Rather than
generate image tiles intended for direct display, we instead
precompute multivariate data tiles: projections correspond-
ing to materialized database views [GM99]. By decompos-
ing a data cube into a set of 3- and 4-dimensional projec-

T The name imMens stems from our desire to visualize immense
data in a manner that our minds (Latin: mens) can apprehend.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

tions, imMens flexibly manages data subsets as needed. Us-
ing multidimensional projections, imMens can compute ag-
gregations across dimensions to support brushing & linking.

Parallelize Data Processing and Rendering. Depend-
ing on binning resolution, data tiles may still be quite large,
with millions or more values. To speed aggregation, imMens
uses a dense indexing scheme that simplifies parallel query
processing. To realize this approach in contemporary web
browsers, imMens uses WebGL to leverage parallel process-
ing on the GPU. We present a two-pass approach that uses
WebGL shader programs to first compute aggregate queries
and then render updated visualizations.

The contributions of our work are two-fold. First, we in-
troduce the use of multivariate data tiles for pre-processing
and dynamic loading of data to enable scalable interaction.
Second, the imMens system implements a novel synthesis
of binned aggregation, data representation and parallel pro-
cessing (here using GPU computation) to support interac-
tive visualization of big data. In performance benchmarks
imMens sustains near 50 frames-per-second brushing and
linking among dozens of visualizations. This performance
is invariant on data sets ranging from thousands to billions
of records. To our knowledge, imMens is the first system to
enable real-time interactive brushing of data sets this large.

2. Related Work: Visualizing Big Data

A number of prior research projects have focused on improv-
ing the scalability of visualization systems.

2.1. Scalability of Visual Encodings

In many visualizations, each data record maps to a visual
item, resulting in occlusion and cluttering for high data
densities. In response, researchers have proposed a num-
ber of approaches. Pixel-oriented visualization techniques
plot data points as single pixels to maximize screen uti-
lization [Kei0O]. Spatial displacement techniques like jitter-
ing [TGCO3] and topological distortion [KHD*10] reduce
occlusion but do not preserve spatial information. For paral-
lel coordinates and scatterplot matrices, dimension reorder-
ing can also reduce clutter [PWRO04]. Alpha blending (trans-
parency) is often used to encode density and thus combat
over-plotting [JS98,JLIC0O5,UTHO06]. Alpha blending effec-
tively performs aggregation in image space, rather than data
space. Still, each of these techniques requires drawing every
data record, which imposes inherent scalability limits.

An alternative is to reduce big data to smaller, derived
data more amenable to visualization [DBC™*13]. Data reduc-
tion strategies used in information visualization include fil-
tering [AS94], sampling [BS06, DSLG™ 12, Raf05], binned
aggregation [BBSBAOS, CLNLS87, EF10, Fis07, HDS*10,
KMSH12, KPP*12, RWC*08], and model-fitting. We com-
pare these approaches in more detail in the next section and
describe a design space for binned plots.

2.2. Scalable Visualization Systems

In addition to work on visualization design, both researchers
and companies have developed large scale visualization sys-
tems. Commercial products such as Tableau [Tab] and Spot-
fire [Spo] translate user interactions into database queries,
and can push processing of big data to dedicated databases.
The query results are typically aggregates, such that the vi-
sualizations are perceptually scalable. This approach has two
potential issues: query latency can be high for large data sets,
and there is no guarantee that the result size has a reason-
able upper bound. To reduce long query times, some sys-
tems prefetch based on the user’s current context [CXGHOS,
DRWO03]. To improve performance, other researchers exploit
modern hardware such as multi-core [RWC*08, PTMBO09,
HB10b] and GPU [FP02, ME09,ZBDS12] computing.

The system most similar to imMens is Kandel et al.’s Pro-
filer [KPP*12]. Profiler employs binned plots to enable in-
teraction with over a million data points. However, Profiler
uses a single in-memory data cube and sequential query pro-
cessing to support brushing & linking. As we show in our
benchmarks, this approach does not scale to larger data sets.

Our work extends and integrates these approaches. We as-
sume a client-server architecture in which scalable databases
can be used to precompute multivariate data tiles. imMens
then requests and manages data tiles to address issues of data
size and transfer, and uses parallel processing on the GPU
for real-time querying and rendering on the client.

3. Data Reduction Methods

Our approach to visualizing big data follows an overarch-
ing principle: perceptual and interactive scalability should
be limited by the chosen resolution of the visualized data,
not the number of records. We now survey data reduction
methods that can be used to realize this principle, including
filtering, sampling, aggregation and modeling.

3.1. Filtering & Sampling

Filtering and sampling techniques select a subset of data,
to which standard visualization techniques can be applied.
The selected subset, however, may still be too large to visu-
alize effectively and may omit elements of interest. In sim-
ple random sampling [Loh(09], every data point has the same
probability of being selected. The sample resulting may not
be representative and can miss important structures or out-
liers. Systematic sampling sorts data points in a particular
order and selects data points at regular intervals with a ran-
dom start. Stratified sampling divides a data set into disjoint
subgroups or “strata”, and applies simple or systematic sam-
pling within each stratum. However, these methods require
that specific dimensions be chosen ahead of time, requiring
prior knowledge and often costly pre-processing.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

antarie licier

()

= Deminicait
A I Rl
it — s

(b)

Figure 1: A symbol map (a) and heatmap (b) visualizing a dataset of Brightkite user checkins. The symbol map visualizes a
sample of the data, and the heatmap shows the density of checkins by aggregation. Compared to the heatmap, sampling misses
important structures such as inter-state highway travel and Hurricane Ike, while dense regions still suffer from over-plotting.

3.2. Binned Aggregation

Binning aggregates data and visualizes density by counting
the number of data points falling within each predefined bin.
For a numeric variable, one can define bins as adjacent inter-
vals over a continuous range. For categorical variables, one
can simply treat each value as a bin. Aggregation can also
be defined at multiple scales over a hierarchy [EF10], with
nested, potentially non-uniform, bins. For example, tempo-
ral values can be aggregated by day, week, month, quarter,
year, and so on. In terms of visualization, histograms and
heatmaps are exemplary 1D and 2D binned plots.

3.3. Model-based Abstraction

Another reduction strategy is to describe data in terms of
mathematical models or statistical summaries. For example,
one might fit a model and visualize the resulting parameters
or theoretical density. For scatter plots one can use regres-
sion models to fit trend lines; examples for time series data
include moving averages and auto-regressive models.

3.4. Hybrid Reduction Methods

The above data reduction methods can also be combined. For
example, a box plot with outliers applies both modeling and
filtering. In this vein, Novotny and Hauser [NH06] perform
two dimensional binning for parallel coordinates and show
specific data outliers along with the bins. To visually sum-
marize large networks, both Bagrow et al. [BBSBAO0S8] and
Kairam et al. [KMSH12] combine modeling and aggregation
through multi-scale histograms of network statistics.

Database researchers have explored the combination of
sampling and aggregation. To provide fast approximate
queries, BlinkDB [APM*12] builds multi-dimensional and
multi-resolution stratified samples and computes aggregates

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

over this reduced data. However, this approach still suffers
from the same problems with sampling discussed above. On-
line aggregation [HHW97,FPDs12] shows continuously up-
dating aggregates and confidence intervals in response to a
stream of samples. Our approach is compatible with these
two methods: one could compute approximate data tiles us-
ing the BlinkDB approach, or update data tiles in a streaming
fashion via online aggregation. Though not explored here,
these methods may provide low-latency results when com-
plete data tiles have not yet been precomputed.

4. Designing Binned Plots

In imMens we focus on binned aggregation as our primary
data reduction strategy. Here we present our rationale for us-
ing binned aggregation, and discuss the corresponding visu-
alization design space for binned plots.

4.1. Why Binned Aggregation?

We use binned aggregation because it conveys both global
patterns (e.g., densities) and local features (e.g., outliers),
while enabling multiple levels of resolution via the choice
of bin size. Consider Figure 1, which visualizes a data set
of over four million user checkins on Brightkite, a location-
based user checkin service, from April 2008 to October 2010
[CML11]. Figure 1(a) shows a symbol map of stratified sam-
ples generated by Google Fusion Tables [DSLG™12]. Figure
1(b) shows a binned heatmap in imMens, color-coded by the
density of checkins at different locations. One can see richer
information in the heatmap, including patterns on inter-state
highways, events outside the US, and a long trail of checkins
spanning the coast of Texas and Gulf of Mexico. These are
checkins made by Brightkite user account “Hurricane Ike”
that report the location of the hurricane along its path in
2008. Sampling can fail to show such interesting outliers.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

4.2. Visualization Design for Binned Plots

We consider binning schemes for four data types commonly
found in databases: ordinal, numeric, temporal and geo-
graphic. For ordinal and (sorted) categorical data, each dis-
tinct value is a bin. We group numeric data into adjacent
intervals over a continuous range. Temporal values can be
binned at various levels of granularity: year, month, week,
day, hour, efc. For geographic data, we treat 1D nominal
units such as states or countries as unique bins. If locations
are specified as latitude and longitude points, we bin their
projected spatial coordinates. We primarily use the Mercator
projection for consistency with existing map tile providers.

Table 1 provides a summary of relevant visualization de-
signs organized by data type and number of dimensions.
One-dimensional plots for ordinal, numeric, temporal and
geographical dimensions take the form of bar charts, his-
tograms, line graphs and choropleth maps. Two-dimensional
binned plots are heatmap variants; plots with heterogeneous
data types (e.g., a temporal and an ordinal variable) are also
possible. We focus on binned plots with up to two data di-
mensions, encoded spatially. Color is used to encode data
density and indicate highlights for brushing & linking. We
refrain from additional visual variables such as texture or
size, as they might interfere with visualization interpretation.
Multidimensional displays can be constructed in the form of
multiple coordinated views and trellis plots [BCS96].

Figure 2 shows binned scatter plots [CLNL87] of two
numeric dimensions. Unwin et al. describe three binning
schemes that can tessellate a plot: triangular, rectangular and
hexagonal [UTHO6]. Carr et al. [CLNL87] argue for hexago-
nal bins due to reduced bias in density estimation compared
to rectangular bins; however, Scott [Sco92] shows that the
differences are marginal. In imMens, we choose rectangu-
lar binning for consistency and efficiency of query process-
ing. Applying consistent binning schemes over 1D (e.g., his-
tograms) and 2D plots ensures compatibility when perform-
ing linked selections between plots.

Statisticians have proposed various heuristics to select bin
sizes for a numeric range (e.g., Sturges’ formula [Stu26] and
Scott’s reference rule [Sco79]). These heuristics can vary

Numeric Ordinal Temporal Geographic
- ok L =)
ID umveew e T ‘
Histogram Bar Chart Line Graph / Choropleth Map
Area Chart
- kb ﬂ
2D Emlmend f_.'
Binned Heatmap Temporal Geographic
Scatter Plot Heatmap Heatmap

Table 1: Example visualization designs for binned plots.

(a) (b)

©) (d)

Figure 2: Scatter plots with 100,000 data points: (a) tradi-
tional, (b) hexagonal bins, (c) rectangular bins and (d) rect-
angular bins with perceptual (cube root) color adjustment.

significantly and their applicability to big data is unclear.
In imMens, we treat bin count as an adjustable parameter,
bounded by the screen pixels allocated to a plot and avail-
able resources. At the limit, we can map one bin to one pixel
and include as many bins as memory constraints allow.

4.3. Color Encoding

For color encoding, one can map density values to hues, lu-
minance or opacity. We map a non-zero density value x to a
luminance (or opacity) value Y € [0, 1] using the formula:

A X Y
Y:a+(M) (1—a))

Xmax — Xmin

Here £ denotes the value of x, bounded from above and be-
low by the range parameters xmuqx and x,,;,. These parameters
can be determined from the data, or adjusted interactively to
explore value ranges at finer resolutions.

Our color encoding employs two techniques to enhance
perception. First, linear changes in Y values may not corre-
spond to perceptually linear changes. The y parameter can be
used to introduce a non-linearity. By default we set Y= %, as
the cube root approximates perceptual linearity, akin to the
lightness channel in the CIELAB color space [Sto03] (com-
pare Figures 2(c) and 2(d)). Second, when visualizing big
data the maximum density value in a binned plot may be or-
ders of magnitude greater than the minimum non-zero den-
sity value. A naive color ramp can render such bins invisible.
To ensure the visibility of outliers, we set a minimum value
of o = 0.15 for non-zero densities, based on prior experi-
mental results for luminance contrast [SB09, HB10a].

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

20 o 30
o -10 ”
-20 -20 50
-40 -0 -£0
-60 0 =70
-80 0 -80

—B0-60-40-20 0 20 40 -50-40-30-20-10 0 10 -50-40-30-20-10 0

Figure 3: Panning and zooming in a binned plot: initial view
(left), zooming in (middle), panning to the lower-left (right).

5. Enabling Interaction in Binned Plots

Interaction is essential to exploratory visual analysis [HS12],
but big data imposes challenges to real-time response rates.
While each binned chart type in the previous section visual-
izes one or two aggregated dimensions, more data resolution
is needed to support interaction. Panning and zooming may
require finer grained bins, as in Figure 3.

Brushing & linking, in which selections in one view high-
light the corresponding data in other views, requires com-
puting aggregates filtered by an initial data selection. These
queries require partially de-aggregated data over which to
compute the filtered aggregation (or “roll-up”). Sending
these queries to a server incurs latency due to both process-
ing and networking delays, and can easily exceed a 100 mil-
lisecond threshold for interactive response [CMNS83]. Fur-
thermore, multiple clients might overload the server.

In this section, we present our method for enabling real-
time visual querying in imMens. We use brushing & linking
over the Brightkite data set as a running example. The raw
Brightkite data has five dimensions: User, Date, Time, Lat
and Lon. Figure 4 shows four linked visualizations depict-
ing binned data from different perspectives. The geographi-
cal heatmap (X, Y) is based on Mercator-projected Lon, Lat
coordinates; the three histograms show monthly (Month),
daily (Day) and hourly (Hour) checkin distributions derived
from the Date and Time fields. The Jan bin is selected in the
Month histogram. In response, corresponding data are high-
lighted in orange in the other histograms, and the geographic
heatmap shows only checkins in the month of January.

5.1. Data Cube Queries to Support Interaction

Applying binned aggregation to X, Y, Month, Day and Hour,
we form a 5-dimensional data cube (Figure 5(a)). The data
cube contains the lowest level of data resolution in the
linked visualizations. To perform brushing & linking from
the Month histogram to the Day histogram, we can filter the
data cube to only the rows with bin value O in the Month di-
mension (corresponding to January; highlighted in yellow in
Figure 5(a)) and perform a roll-up by summing data along
the Hour, X and Y dimensions. To zoom out, we can aggre-
gate adjacent bins to compute a coarser-grained projection.
Panning at the most zoomed-in level involves querying the
bins visible in the current viewport.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

13

g xese811 x Y812-767-4

I S12-767-4 x ¥512-767~3

;
5

Tornen g =

X256-511-4 x Y76 K512-76774 £ ¥7

Figure 4: Multiple coordinated views of Brightkite user
checkins in North America. Cyan lines in the heatmap in-
dicate data tile boundaries. Each visualization region is an-
notated by its backing data dimensions and indices.

5.2. From Data Cubes to Multivariate Data Tiles

A full data cube is often too big to fit in memory and query
in real-time. The size of a cube is []; b;, where b; is the bin
count for dimension i. As the number of dimensions or bins
increases, the data cube size may become unwieldy. To ad-
dress this issue, we decompose the full cube into sub-cubes
with at most four dimensions.

The primary contributor to data cube size is the combina-
torial explosion of multiple dimensions. However, for any
pair of 1D or 2D binned plots, the maximum number of
dimensions needed to support brushing & linking is four
(e.g., between two binned scatterplots that do not share a
dimension). As a result, we can safely decompose the full
cube into a collection of smaller 3- or 4-dimensional projec-
tions. For example, four 3-dimensional cubes can cover all
the possible brushing and linking scenarios shown in Figure
4: (X,Y,Hour), (X,Y,Day), (X,Y,Month), (Hour, Day, Month).
If we assume a uniform bin count b, this decomposition re-
duces the total data record count from b° to 4b°; when b=50,
the reduction is from 312.5M to 0.5M records.

After decomposition, individual sub-cubes may still be
prohibitively large if the bin count is high. In some plots,
we can treat the bin count as a free parameter, and adjust ac-
cordingly. For others — particularly geographic heatmaps —
we may wish to zoom in to see fine-grained details, requir-
ing an exponentially increasing number of bins across zoom
levels. To handle large bin counts, we segment the bin ranges
to form multivariate data tiles, as illustrated in Figure 5(b).

Data tiles are inspired by the notion of map tiles used in
systems such as Google Maps and Hotmap [Fis07]. How-
ever, data tiles differ in two important ways. First, they pro-
vide data for dynamic visualization, not pre-rendered im-
ages. Second, they contain multidimensional data to support
querying as well as rendering. Given a set of data tiles and
a query selection (bin range), we can dynamically compute
roll-up queries and render projected data. Figure 4 shows ge-
ographic tile boundaries highlighted in cyan. We label each

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

ﬁfﬂﬁ%

e) —W‘t‘é
Y

7 o

Hf

=

(.

ﬁ .‘“,—;"

(a)

,_}%

s

i B

full 5-D cube

I

Ff[

(b)

Figure 5: (a) A 5-dimensional data cube of Brightkite check-ins; (b) Decomposing a full cube into sub-cubes and data tiles.

tile dimension as Dbg-b.-z, where D is the binned data di-
mension, b, represents the starting bin index, b. represents
the ending bin index, and z represents the zoom level.

The Brightkite visualization in Figure 4 uses 13 data tiles:
one tile representing the 3-dimensional projection of month,
day and hour (i.e., Month0-11-0 x Day0-30-0 x Hour0-23-0),
and twelve tiles containing 3-dimensional projections for
all combinations of the four geographic segments and three
histograms (e.g., X256-511-4 X Y512-767-4 X Month0-11-0).
Multivariate data tiles are precomputed on a server and then
loaded on demand to support client-side visualization.

Brushing & linking involves aggregating these data tiles.
For example, when the user selects a region in the geo-
graphic heatmap, we need to highlight the corresponding
checkin distributions in the three histograms. In the worst
case, the selected geographic region covers bins in all four
map tiles. To render the highlight in the Day histogram we
need to roll-up the four data tiles containing the X x Y x Day
dimensions and sum the results. Figure 6 shows this process.
For interactions like panning and zooming, we dynamically
fetch data tiles precomputed at different levels of binning
resolution, similar to existing mapping services.

5.3. Dense vs. Sparse Data Tile Storage

Data tiles can use either sparse or dense packing schemes.
A sparse representation stores indices and values only for
non-zero bins (Figure 7(b)). A dense representation includes
zero values, but can store all the data as a simple array if the
bin counts for all dimensions are known (Figure 7(c)).i Ifa
data tile has many empty bins, a sparse representation can re-
duce storage costs. For example, a sparse packing is used in
Profiler [KPP*12] for full data cubes of up to 5 dimensions.

¥ We treat row indices as numbers in a mixed-radix number sys-
tem [Knu06]. The row index in a k-dimensional data tile can be ex-
pressed as V (k— 1)g—1) [V (K —2)g(x—2) |- [V (0)g(0)» where V (k)
is the value of the kth digit, and R(k) is the radix of the kth digit.

2(...__..
a0

3 5

Figure 6: Brushing & linking from the geographic heatmap
to the Day histogram. We aggregate four data tiles along the
X and Y dimensions and sum up the projections.

des | X v My count sperie x ¥ Day Caunt
PRE 57 n fiki 56 512 b 378
1| °RE B 1 n
. . 51 30 1209
a0 1209 206 513 0 ki
o 6T a0 460G
727 50 [} il
512 ¢ denic
—* 3B 0 . 129 76 .. 0 O . dE5

ic)
Figure 7: Sparse and dense representations of a data tile.

However, as the number of data records increases, the den-
sity of the data typically also increases. Once the proportion
of non-zero bins exceeds a threshold (20% for 4D tiles, 25%
for 3D tiles), a dense representation is more efficient because
we can omit bin indices. In imMens we use dense tiles to ex-
ploit these space savings, safeguard worst-case performance,
and simplify parallel query processing.

5.4. Parallel Query Processing

A dense representation scheme supports simple, efficient
parallel processing when aggregating data tiles. Dense tiles
provide a consistent indexing scheme that enables direct

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

lookup of any multidimensional bin using a predictable in-
teger index. As a result, aggregation queries can be paral-
lelized easily. For each output bin (summed value), we can
use a simple loop that accesses only the bins needed for that
summation. These computations can be run in parallel in a
shared memory environment without any conflicts, resulting
in faster query performance than a sequential scan.

Input: Cc2, C3, Rg, R3, T
Output: sum v at index i of d;’s projection
v=0;
foreach j € R, do

foreach k € R3 do

v+ =Tli*cy*c3+ j*c3+Kk;

end
end
Algorithm 1: Data tile roll-up for a projection index.

Consider a 3D data tile 7 with dimensions (dy, d», d3),
with respective bin counts (¢, ¢p, ¢3). If users brush a 2D
binned plot of d; and d3 to select ranges R, and R3, we can
compute the summed value v at index i of the d| projection
using Algorithm 1. With this simple roll-up procedure, we
can run the algorithm in parallel for all c¢; indices.

We note that our summation scheme can be further opti-
mized by the use of summed area tables. If data tiles instead
store cumulative densities over index ranges, the summation
for an output bin can be computed with a constant number
of lookups. However, in practice we find that our simpler
scheme provides good performance, while the use of cumu-
lative densities exacerbates issues of arithmetic overflow.

6. Implementation Details

We implement our visualization and interaction techniques
in imMens, a browser-based system for interactive visual ex-
ploration of big data. Given a visualization definition, im-
Mens loads data tiles from a server and provides an interac-
tive multiple view display of binned plots within standards-
compliant web browsers. We use WebGL, a JavaScript vari-
ant of the OpenGL ES 2.0 specification, to perform GPU-
based computation and render visualizations to HTMLS5 can-
vas elements. We also use Leaflet [Lea] to display map im-
age tiles and D3 [BOH11] to render axes and labels. We now
describe our scheme for storing data tiles as image textures
and present our querying and rendering pipeline.

6.1. Storing Data Tiles as Image Files

By packing data tiles in an image format, we can directly
bind them to the WebGL context as textures and take ad-
vantage of existing browser caching facilities. Packing data
tiles into images facilitates efficient storage and transfer of
tiles and makes the data accessible for parallel processing
on the GPU. For each data tile integer value v, we apply the

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

scheme in Equation 2 to pack it into the 8-bit RGBA chan-
nels of a pixel. If the value is smaller than 231 we can pre-
serve complete information with no precision loss. We set
the highest-order bit in the alpha channel to 1 due to image
format constraints; we use the PNG file format for its loss-
less compression and network portability. The PNG specifi-
cation instructs that fully transparent pixels be assigned the
same RGB values (zero) for better compression. Storing zero
values in alpha channels thus results in data loss.

A =0x80 | ((0xFF000000 & v) >> 24)
R = (0x00FF0000 & v) >> 16

G = (0x0000FF00 & v) >> 8

B = (0x000000FF & v)

(€3

The maximum supported texture size imposes a constraint
on the amount of data we can fit into a data tile. The maxi-
mum texture size can vary by graphics card from 1,0242 to
16, 3847 pixels. A texture of size 4,0962 (a commonly sup-
ported size) has 16 million pixels. With this size, the finest
possible resolution is 256 bins per dimension for a 3D data
tile and 64 bins per dimension for a 4D tile. Assuming 50
bins per dimension, the average file size is 30KB for a 3D
PNG tile and 150KB for a 4D tile. The 13 PNG-encoded
data tiles used in the Brightkite example require 352KB.

Applying more aggressive packing schemes by quantiz-
ing data tile values into fewer pixel channels is more space-
efficient, but comes at a cost of precision loss. We have ex-
perimented with packing each value into one of the RGBA
channels, quantizing the value to a single byte. Benchmarks
show per-bin root mean square errors ranging from 0.003 to
0.18, where an error of 0.01 maps to a perceptual difference
of one pixel in a 100-pixel-tall histogram. We leave more
efficient packing schemes that limit data loss to future work.

6.2. Parallel Query and Render via Shader Programs

WebGL uses shader programs that run on the GPU: ver-
tex shaders transform 3D geometry, fragment shaders com-
pute pixel colors. In imMens, we use a default vertex shader
and implement query processing and rendering as fragment
shaders. We use a two-stage process, illustrated in Figure 8.

The query fragment shader reads from data tiles bound
as textures and performs a roll-up (§5.4), providing the data
to visualize. The shader program computes the sum for a
single output bin, and writes the result to an offscreen frame
buffer object (FBO). This program is run in parallel for all
bins in the resulting plot. With multiple plots, we need to
compute roll-ups for each. To do so, we dynamically change
data tiles during the execution of the shader, and store all the
aggregates in the same FBO. For queries spanning multiple
data tiles (as in Figure 6), we bind the required data tiles and
perform multiple roll-ups in a loop.

The render fragment shader binds the FBO as a texture
and renders the plots. For each pixel in a plot, the shader de-

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

#3167
! 15w a
UERY - 2 6 B & render
lragmenl 1 ool o|e Magmenl
shader . 36 B & shader

= off-scoeen FRO canvas
Pass 1 Pass 2

dara tiles

Figure 8: A two-pass approach for parallel data querying
and rendering using WebGL fragment shaders.

termines which bin that pixel belongs to and assigns it an ap-
propriate color. Consider the case of rendering a histogram.
The query fragment shader first computes the necessary data
and writes it as a 1D array in the FBO. To draw a histogram
with an on-screen bin width of ¢ pixels, the render fragment
shader computes the corresponding bin index i for each pixel
coordinate (x,y). If the histogram starts at x-coordinate 0,
then i = x/c. By reading the data value from the FBO, the
shader determines the height 4 of the bar at bin index i. Fi-
nally the shader makes a binary choice to assign the pixel a
color: if y > h, the color is left as background; otherwise the
pixel is colored as part of the histogram bar.

Our two-pass approach carries two advantages. First, us-
ing the FBO we can eliminate redundant computation for
pixels corresponding to the same data bin. Second, by ex-
amining the FBO we can identify the maximum bin value.
The FBO enables us to render bar heights and cell color val-
ues accurately by normalizing with this maximum value.

7. Performance Benchmarks

To evaluate the scalability of imMens, we measure the sys-
tem frame rate during brushing & linking. For a given visu-
alization configuration (consisting of both 1D and 2D plots),
we programmatically brush the bins in each 1D histogram.
Brushing only the 1D histograms and not the 2D plots pro-
vides a conservative estimate of performance, as brushing
2D bins results in more selective queries and hence faster
processing. For each brushed bin, we record the time taken
to both compute a roll-up query and re-render the display.
We average these update times over multiple runs.

We first conducted benchmarks using two real-world data
sets: 4 million user checkins on Brightkite [CML11] and 118
million records regarding on-time performance of U.S. do-
mestic flights [BTS]. We visualize the Brightkite data set
with a geographic heatmap and three temporal histograms
as shown in Figure 4. For the flight delay data set, we use a
similar visualization configuration, including a binned scat-
ter plot of departure delay versus arrival delay and three his-
tograms showing the distributions of delayed flights by air-
line, year and day of week.

To compare imMens to the existing state-of-the-art, we
replicate the benchmarks used for Profiler [KPP*12] and
compare the two systems. We generate a total of 60 test
data sets by varying three parameters: the per-dimension bin

wofplots | rows
HoINg AXA wXo
1300

1000

10
500

firw in ms

40 L 52 45 A0 a7
T R |- T R R | N N T IR (I]
500

1000

500

irw i T

20020z Ya g 9 E oz oz 21 oz A0
1500

1300

fime 1 ms

500 .2
o og 120 119188 210

ET 1272

1200

=
=
timz nme
o
=1
a

503 Qg4 &

120
! 1141 1176
1000 — —_
o4 P
501

i
=
brainms

4 4de

19 18 19 19 19 4@ wa 27?7 P2 2 32
10k 100k AM 10M 100N 15 10k 100k 1M 108 100 1B

Figure 9: Average time (ms) for imMens (blue) and Profiler
(orange) to update frames during brushing & linking.

Data Set Brightkite Flight Delays SPLOM

Size 4M 118M 1B

Bins Month (12) Carrier (28) Dim. A (50)
Day (31) Year (20) Dim. B (50)
Hour (24) Day of Week (7) Dim. C (50)
X (256) Dep. Delay (174) Dim. D (50)
Y (256) Arr. Delay (174) Dim. E (50)

Data Tiles 13 4 10

Time 17.76 ms 16.56 ms 20.47 ms

Table 2: Benchmark results for three data sets.

count (10, 20, 30, 40, 50), the number of dimensions (4,
5), and the number of input records (10K, 100K, 1M, 10M,
100M, 1B). Each generated data set contains five dimensions
consisting of random samples drawn from normal distribu-
tions. Three of these distributions are independent; the other
two distributions are linearly derived from the first. We vi-
sualize the data as a scatter plot matrix (SPLOM) with uni-
variate histograms along the diagonal, and programmatically
brush the bins in each of these histograms.

We ran the benchmarks in Google Chrome v.23.0.1271.95
on a quad-core 2.3 GHz MacBook Pro (OS X 10.8.2)
with per-core 256K L2 caches, shared 6MB L3 cache and
8GB RAM. The test machine has a PCI Express NVIDIA
GeForce GT 650M graphics card with 1024MB video RAM.
Table 2 summarizes the benchmark results, and Figure 9
plots the detailed results for the comparative benchmark
across all 60 test data sets. Due to memory limits, Profiler
can not visualize data with 10M or more records. imMens

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

sustains an average 50 fps across all conditions. The perfor-
mance is invariant to the original data set size.

8. Conclusion and Future Work

In this paper, we contribute methods for real-time visual
querying of big data. We first provide a review of data re-
duction methods to support scalable visual summaries, and
examine the design space of binned plots for large multidi-
mensional data. To enable real-time interaction, we integrate
multivariate data tiles and parallel processing.

We implement these methods in imMens, a browser-based
system using WebGL. We use WebGL because it is cur-
rently the only standardized way to access GPU processing
in a web browser. Future browser-based GPGPU or parallel
computing (multi-core) features will permit alternative ap-
proaches. Our general approach of generating multivariate
data tiles and leveraging parallel query processing is also di-
rectly applicable in standard (non-web) desktop contexts.

With a sustained performance of 50 frames-per-second
brushing and linking, imMens enables data analysts to in-
teractively examine summaries of billions of data records
in real-time. To our knowledge, it is the first system to en-
able real-time brushing with data sets this large. imMens is
available as open source software at https://github.com/
StanfordHCI/imMens.

One limitation of our approach is the lack of support
for ad-hoc compound brushing of more than four dimen-
sions. For example, in the Brightkite visualizations in Fig-
ure 4, users may want to explore the geographic distribution
of checkins across 24 hours in a particular day. To do so,
they may select both a specific month and day, then perform
brushing and linking between the Hour histogram and the ge-
ographic heatmap. Currently such compound queries require
computing 5-dimensional data tiles — an untenable increase
in tile size. However, once queries become highly selective,
the decrease in data size due to filtering may permit more re-
sponsive server-side querying and dynamic tile generation.

In future work, we plan to automatically optimize client-
side visualization specifications (including requested dimen-
sions and bin counts) based on available resources. For ex-
ample, the maximum size and number of textures supported
by WebGL varies across machines and graphics cards. Given
a client’s resource constraints, reducing the number of bins
or dimensions may preserve quality of service.

A critical issue in providing a seamless user experience is
supporting natural transitions between levels of detail and vi-
sualization configurations. Ideally all possible data tiles are
pre-computed and stored on a server. The client might an-
ticipate possible user interactions and prefetch data tiles to
reduce latency [DBC*13]. This strategy may not be realis-
tic for high-dimensional data sets as preprocessing all pos-
sible data tiles can be computationally expensive. Graceful

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

degradation is thus important when data tiles are yet to be
computed. One possibility is to adopt approaches such as
BlinkDB [APM*12] and online aggregation [HHW97] to
rapidly provide approximate tiles on the fly based on data
samples. The resulting visualizations will have a coarser res-
olution and can be enhanced with more details after the full
data tiles are computed.

Another future step is to provide an interface for visu-
alization construction. Currently imMens uses hand-coded
specifications. In contrast, Tableau’s drag-and-drop interface
[Tab] supports dynamic construction of multiscale visualiza-
tions. We plan to combine a similar design with the visual-
ization and interaction facilities of imMens.

Finally, by focusing on 2-dimensional binned plots of
multi-dimensional data, we do not address scalability issues
in higher-dimensional plots such as parallel coordinates or
for complex data types such as networks. These remain as
interesting challenges for future research.

Acknowledgments

This work was supported by the Intel Science and Technol-
ogy Center for Big Data and the DARPA XDATA program.
We thank Leilani Battle, Justin DeBrabant and Michael
Stonebraker for their helpful insights and conversations.

References

[APM*12] AGARWAL S., PANDA A., MOZAFARI B., MADDEN
S., Stoica 1.: BlinkDB: queries with bounded errors and
bounded response times on very large data. arXiv:1203.5485
(Mar. 2012). 3,9

[AS94] AHLBERG C., SHNEIDERMAN B.: Visual information
seeking: Tight coupling of dynamic query filters with starfield
displays. In Proceedings of CHI (1994), pp. 313-317. 1,2

[BBSBAO8] BAGROW J. P., BOLLT E. M., SKUFCA J. D., BEN-
AVRAHAM D.: Portraits of complex networks. EPL (Europhysics
Letters) 81, 6 (2008), 68004. 2, 3

[BCS96] BECKER R. A., CLEVELAND W. S., SHYU M. J.: The
visual design and control of trellis display. Journal of Computa-
tional and Graphical Statistics 5, 2 (1996), 123-155. 4

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-
driven documents. /EEE TVCG 17,12 (2011), 2301-2309. 7

[BS06] BERTINI E., SANTUCCI G.: Give chance a chance: mod-
eling density to enhance scatter plot quality through random data
sampling. Information Visualization 5, 2 (2006), 95-110. 2

[BTS] Bureau of
http://www.transtats.bts.gov/. 8

[CLNL87] CARR D. B., LITTLEFIELD R. J., NICHOLSON
W. L., LITTLEFIELD J. S.: Scatterplot matrix techniques for
large n. Journal of the American Statistical Association (1987),
424-436. 1,2, 4

[CML11] CHOE., MYERS S. A., LESKOVEC J.: Friendship and
mobility: user movement in location-based social networks. In
Proceedings of SIGKDD (2011), pp. 1082—-1090. 3, 8

[CMN83] CARD S. K., MORAN T. P., NEWELL A.: The Psy-
chology of Human-Computer Interaction. Psychology Press,
1983. 5

transportation statistics.

https://github.com/StanfordHCI/imMens
https://github.com/StanfordHCI/imMens

Zhicheng Liu, Biye Jiang & Jeffrey Heer / imMens: Real-time Visual Querying of Big Data

[CXGHO8] CHAN S.-M., XI1AO L., GERTH J., HANRAHAN P.:
Maintaining interactivity while exploring massive time series. In
Proceedings of VAST (Oct. 2008), pp. 59 —66. 2

[DBC*13] DEBRABANT J., BATTLE L., CETINTEMEL U.,
ZDONIK S., STONEBRAKER M.: Techniques for visualizing
massive data sets. In New England Database Summit (Feb 2013).
2,9

[DRWO03] DosHIP. R., RUNDENSTEINER E. A., WARD M. O.:
Prefetching for visual data exploration. In Proceedings of the
Eighth International Conference on Database Systems for Ad-
vanced Applications (2003), DASFAA °03, pp. 195-203. 2

[DSLG*12] DAS SARMA A., LEE H., GONZALEZ H., MADHA-
VAN J., HALEVY A.: Efficient spatial sampling of large ge-
ographical tables. In Proceedings of SIGMOD (2012), ACM,
pp. 193-204. 1,2, 3

[EF10] ELMQVIST N., FEKETE J. D.: Hierarchical aggregation
for information visualization: Overview, techniques, and design
guidelines. /IEEE TVCG 16, 3 (2010), 439-454. 2,3

[Fis07] FISHER D.: Hotmap: Looking at geographic attention.
IEEETVCG 13,6 (2007), 1184-1191. 1,2, 5

[FPO2] FEKETE J.-D., PLAISANT C.: Interactive information vi-
sualization of a million items. In Proceedings of InfoVis (2002),
pp. 117-124. 1,2

[FPDs12] FISHER D., POPOV 1., DRUCKER S., SCHRAEFEL M.:
Trust me, i’m partially right: Incremental visualization lets ana-
lysts explore large datasets faster. In Proceedings of CHI (2012),
pp. 1673-1682. 3

[GM99] GuPTA A., MUMICK 1. S. (Eds.): Materialized views:
techniques, implementations, and applications. MIT Press, Cam-
bridge, MA, USA, 1999. 1

[HB10a] HEER J., BOSTOCK M.: Crowdsourcing graphical per-
ception: using mechanical turk to assess visualization design. In
Proceedings of CHI (2010), pp. 203-212. 4

[HB10b] HEER J., BOSTOCK M.: Declarative language design
for interactive visualization. IEEE TVCG 16, 6 (2010), 1149—
1156. 2

[HDS*10] HAO M. C., DAYAL U., SHARMA R. K., KEIM
D. A., JANETZKO H.: Visual analytics of large multi-
dimensional data using variable binned scatter plots. In Proceed-
ings of SPIE (2010), Bibliothek der Universitat Konstanz. 2

[HHW97] HELLERSTEIN J. M., HAAS P. J., WANG H. J.: On-
line aggregation. ACM SIGMOD Record 26, 2 (1997), 171-182.
3,9

[HS12] HEER J., SHNEIDERMAN B.: Interactive dynamics for
visual analysis. Queue 10,2 (2012), 30. 5

[JLICO5] JOHANSSONJ., LIUNG P., JERN M., COOPER M.: Re-
vealing structure within clustered parallel coordinates displays.
In Proceedings of InfoVis (Oct. 2005), pp. 125 —-132. 2

[JS98] JERDING D. F., STASKO J. T.: The information mural: A
technique for displaying and navigating large information spaces.
IEEETVCG 4, 3 (1998), 257-271. 1,2

[KeiO0] KEIM D. A.: Designing pixel-oriented visualization tech-
niques: Theory and applications. IEEE TVCG 6, 1 (2000), 59-78.
2

[KHD*10] KEIM D. A., HAO M. C., DAYAL U., JANETZKO H.,
BAK P.: Generalized scatter plots. Information Visualization 9,
4 (2010), 301-311. 2

[KMSH12] KAIRAM S., MACLEAN D., SAVVA M., HEER J.:
GraphPrism: compact visualization of network structure. In Pro-
ceedings of AVI (2012), pp. 498-505. 2, 3

[Knu06] KNUTH D. E.: The art of computer programming, vol. 2.
Addison-Wesley, 2006. 6

[KPHH12] KANDEL S., PAEPCKE A., HELLERSTEIN J. M.,
HEER J.: Enterprise data analysis and visualization: An inter-
view study. IEEE TVCG 18, 12 (2012), 2917-2926. 1

[KPP*12] KANDEL S., PARIKH R., PAEPCKE A., HELLER-
STEIN J. M., HEER J.: Profiler: Integrated statistical analysis
and visualization for data quality assessment. In Proceedings of
AVI (2012), pp. 547-554. 1,2, 6, 8

[Lea] Leaflet. http:/leafletjs.com/. 7

[Loh09] LoHR S. L.: Sampling: Design and Analysis, 2 ed.
Duxbury Press, Dec. 2009. 2

[ME09] MCDONNEL B., ELMQVIST N.: Towards utilizing
GPUs in information visualization: A model and implementa-
tion of image-space operations. IEEE TVCG 15, 6 (Nov. 2009),
1105—1112. 2

[MTS91] MIHALISIN T., TIMLIN J., SCHWEGLER J.: Visualiz-
ing multivariate functions, data, and distributions. IEEE Comput.
Graph. Appl. 11,3 (May 1991), 28-35. 1

[NHO6] NOVOTNY M., HAUSER H.: Outlier-preserving focus+
context visualization in parallel coordinates. I[EEE TVCG 12, 5
(2006), 893-900. 3

[PTMB09] PIRINGER H., TOMINSKI C., MUIGG P., BERGER
W.: A multi-threading architecture to support interactive visual
exploration. JEEE TVCG 15, 6 (Nov. 2009), 1113-1120. 2

[PWR04] PENG W., WARD M. O., RUNDENSTEINER E. A.:
Clutter reduction in multi-dimensional data visualization using
dimension reordering. In Proceedings of InfoVis (2004), pp. 89—
96. 2

[Raf05] RAFIETI D.: Effectively visualizing large networks
through sampling. In Proceedings of VIS (2005), pp. 375-382.
2

[RWC*08] RUBEL O., WU K., CHILDS H., MEREDITH J.,
GEDDES C. G., CORMIER-MICHEL E., AHERN S., WEBER
G. H., MESSMER P., HAGEN H., HAMANN B., BETHEL E. W.:
High performance multivariate visual data exploration for ex-
tremely large data. In Proceedings of the 2008 ACM/IEEE con-
ference on Supercomputing (2008), IEEE Press, pp. 51-62. 2

[SBO9] STONE M., BARTRAM L.: Alpha, contrast and the per-
ception of visual metadata. In Color Imaging Conf (2009). 4

[Sco79] ScoTT D. W.: On optimal and data-based histograms.
Biometrika 66, 3 (1979), 605-610. 4

[Sco92] ScoTT D. W.: Multivariate Density Estimation: Theory,
Practice, and Visualization, 1 ed. Wiley, Aug. 1992. 4

[Spo] TIBCO spotfire. http://spotfire.tibco.com/. 2

[Sto03] STONE M.: A Field Guide to Digital Color, 1sted. AK
Peters/CRC Press, Aug. 2003. 4

[Stu26] STURGES H. A.: The choice of a class interval. Journal
of the American Statistical Association 21, 153 (1926), 65-66. 4

[Tab] Tableau software. http://www.tableausoftware.com. 2, 9

[TGCO3] TRUTSCHL M., GRINSTEIN G., CVEK U.: Intelli-
gently resolving point occlusion. In Proceedings of InfoVis (Oct.
2003), pp. 131-136. 2

[UTHO6] UNWIN A., THEUS M., HOFMANN H.: Graphics of
Large Datasets: Visualizing a Million, 1 ed. Springer, July 2006.
1,2,4

[ZBDS12] ZINSMAIER M., BRANDES U., DEUSSEN O., STRO-
BELT H.: Interactive level-of-detail rendering of large graphs.
IEEETVCG 18, 12 (Dec. 2012), 2486 —2495. 2

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

