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1. INTRODUCTION

The term “immersed boundary method” was first used in reference to a method de-
veloped by Peskin (1972) to simulate cardiac mechanics and associated blood flow.
The distinguishing feature of this method was that the entire simulation was carried
out on a Cartesian grid, which did not conform to the geometry of the heart, and a
novel procedure was formulated for imposing the effect of the immersed boundary
(IB) on the flow. Since Peskin introduced this method, numerous modifications and
refinements have been proposed and a number of variants of this approach now ex-
ist. In addition, there is another class of methods, usually referred to as “Cartesian
grid methods,” which were originally developed for simulating inviscid flows with
complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998,
Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to
simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus
have capabilities similar to those of IB methods. In this review, we use the term im-
mersed boundary (IB) method to encompass all such methods that simulate viscous
flows with immersed (or embedded) boundaries on grids that do not conform to the
shape of these boundaries. Furthermore, this review focuses mainly on IB meth-
ods for flows with immersed solid boundaries. Application of these and related
methods to problems with liquid-liquid and liquid-gas boundaries was covered in
previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999).

Consider the simulation of flow past a solid body shown in Figure 1a. The
conventional approach to this would employ structured or unstructured grids that
conform to the body. Generating these grids proceeds in two sequential steps.
First, a surface grid covering the boundaries �b is generated. This is then used as
a boundary condition to generate a grid in the volume � f occupied by the fluid. If
a finite-difference method is employed on a structured grid, then the differential
form of the governing equations is transformed to a curvilinear coordinate system
aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to
the surface of the body, the transformed equations can then be discretized in the
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Figure 1 (a) Schematic showing a generic body past which flow is to be simu-
lated. The body occupies the volume �b with boundary �b. The body has a charac-
teristic length scale L , and a boundary layer of thickness δ develops over the body.
(b) Schematic of body immersed in a Cartesian grid on which the governing equations
are discretized.

computational domain with relative ease. If a finite-volume technique is employed,
then the integral form of the governing equations is discretized and the geometrical
information regarding the grid is incorporated directly into the discretization. If
an unstructured grid is employed, then either a finite-volume or a finite-element
methodology can be used. Both approaches incorporate the local cell geometry
into the discretization and do not resort to grid transformations.

Now consider employing a nonbody conformal Cartesian grid for this simu-
lation, as shown in Figure 1b. In this approach the IB would still be represented
through some means such as a surface grid, but the Cartesian volume grid would
be generated with no regard to this surface grid. Thus, the solid boundary would
cut through this Cartesian volume grid. Because the grid does not conform to the
solid boundary, incorporating the boundary conditions would require modifying
the equations in the vicinity of the boundary. Precisely what these modifications
are is the subject of a detailed discussion in subsequent sections. However, as-
suming that such a procedure is available, the governing equations would then be
discretized using a finite-difference, finite-volume, or a finite-element technique
without resorting to coordinate transformation or complex discretization operators.

At this point it is useful to compare the advantages and disadvantages of these
two approaches. Clearly, imposing the boundary conditions is not straightforward
in IB methods and, furthermore, the ramifications of the boundary treatment on the
accuracy and conservation properties of the numerical scheme are not obvious. In
addition, alignment between the grid lines and the body surface in body-conformal
grids allows better control of the grid resolution in the vicinity of the body and this
has implications for the increase in grid size with increasing Reynolds number.
For example, consider the case of the two-dimensional (2D) body of characteristic
length L in Figure 1a with a boundary layer of thickness δ wherein it is required
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to provide an average grid spacing of �n and �t in the directions normal and
tangential to the body surface. It is now easy to show that for moderately high
Reynolds numbers for which δ � L , the size of a body-conformal grid scales
as (L/�t )(δ/�n), whereas that of a Cartesian grid scales as (L2/�2

n). Assuming
further that �n ∝ δ and �t ∝ L , we find that the ratio of sizes for a Carte-
sian to a body-conformal grid will scale as (L/δ)2. For a laminar boundary layer,
(L/δ) ∝ Re0.5 (Schlichting & Gersten 1996), which implies that the grid-size
ratio will scale with (Re)1.0 for 2D bodies. For a three-dimensional (3D) body, it
can similarly be shown that the grid-size ratio would scale with (Re)1.5. Thus, as
the Reynolds number increases, the size of a Cartesian grid increases faster than
a corresponding body-conformal grid. However, note that this faster increase in
grid size does not necessarily imply a corresponding increase in the computational
cost because a substantial fraction of the grid points can be inside the solid body
where the fluid flow equations need not be solved. This fraction is proportional to
the ratio of the volume of the solid to the volume of the bounding box for the body
and therefore depends on the shape and orientation of the body. Furthermore, in
comparison with structured curvilinear body-formal grids, using a Cartesian grid
can significantly reduce the per-grid-point operation count due to the absence of
additional terms associated with grid transformations. When compared with un-
structured grid methods, the Cartesian grid–based IB method retains the advantage
of being amenable to powerful line-iterative techniques and geometric multigrid
methods, which can also lead to a lower per-grid-point operation count.

The primary advantage of the IB method is associated with the fact that the task
of grid generation is greatly simplified. Generating body-conformal structured or
unstructured grid is usually very cumbersome. The objective is to construct a grid
that provides adequate local resolution with the minimum number of total grid
points. For anything but the simplest geometries, these conflicting requirements
can lead to a deterioration in grid quality, which can negatively impact the accuracy
and the convergence properties of the solver (Ferziger & Peric 1996). Thus, even
for simple geometries, generating a good-quality body-conformal grid can be an
iterative process requiring significant input from the person generating the grid.
As the geometry becomes more complicated, the task of generating an acceptable
grid becomes increasingly difficult. Within the structured grid approach, complex
geometries are often handled by decomposing the volume into subdomains and
generating a separate grid in each subdomain (Quarteroni & Valli 1999). Apart
from the complexity that is introduced into the solution algorithm due to the
presence of multiple subdomains, grid smoothness can deteriorate at the interface
between subdomains. The unstructured grid approach is inherently better suited
for complex geometries, but here, too, grid quality can deteriorate with increasing
complexity in the geometry. In contrast, for a simulation carried out on a nonbody
conformal Cartesian grid, grid complexity and quality are not significantly affected
by the complexity of the geometry.

The advantage of the Cartesian grid–based IB method also becomes eminently
clear for flows with moving boundaries. Simulating such flows on body-conformal
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grids requires generating a new grid at each time step as well as a procedure to
project the solution onto this new grid (Tezduyar 2001). Both of these steps can
negatively impact the simplicity, accuracy, robustness, and computational cost of
the solution procedure, especially in cases involving large motions. In contrast,
including body motion in IB methods is relatively simple due to the use of a sta-
tionary, nondeforming Cartesian grid. Thus, despite the significant progress made
in simulating flow with moving boundaries on body-conformal grids (Baum et al.
1998, Ramamurti & Sandberg 2001, Tezduyar 2001), due to its inherent simplicity,
the IB method represents an extremely attractive alternative for such flows.

2. IMPOSITION OF BOUNDARY CONDITION
ON IMMERSED BOUNDARIES

Imposition of boundary conditions on the IB is the key factor in developing an IB
algorithm. It is also what distinguishes one IB method from another. Consider the
simulation of incompressible flow past the body in Figure 1b, which is governed
by the following equations:

∂�u
∂t

+ �u · ∇�u + 1

ρ
∇ p − µ

ρ
∇2�u = 0 and (1)

∇ · �u = 0 in � f

with �u = �u� on �b, (2)

where �u is the the fluid velocity, p is the pressure, and ρ and µ the density and
viscosity, respectively. The solid body occupies the domain �b, with boundary de-
noted by �b, and the surrounding fluid domain denoted by � f . The outer boundary
of the flow domain is disregarded for the purposes of this discussion. For ease of
discussion, the coupled system of momentum and continuity equations can be
notionally written as

L(U ) = 0 in � f (3)

with U = U� on �b, (4)

where U = (�u, p) and L is the operator representing the Navier-Stokes equations
as in Equation 1. It should be noted that in the context of the imcompressible
Navier-Stokes equations, pressure is determined by the continuity constraint and,
consequently, the continuity equation is considered an implicit equation for pres-
sure. A number of numerical integration schemes such as fractional-step (Chorin
1968) and SIMPLE (Patankar 1980) also explicitly derive and solve a Poisson
equation for pressure, which, depending on the particular implementation, also
requires appropriate boundary conditions.

Conventional methods proceed by developing a discretization of Equation 3
on a body-conformal grid where the boundary condition (Equation 4) on the
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immersed boundary �b is enforced directly. In an IB method, Equation 1 would
be discretized on a nonbody conformal Cartesian grid and the boundary condition
would be imposed indirectly through modification of Equation 3. In general, the
modification takes the form of a source term (or forcing function) in the govern-
ing equations that reproduces the effect of boundary. Introduction of a forcing
function, the precise nature of which will be discussed in the following sections,
into the governing equations can be implemented in two different ways and this
leads to a fundamental dichotomy in IB methods. In the first implementation, the
forcing function, denoted here by f

b
, is included into the continuous governing

Equation 3 leading to the equation L(U ) = f
b
, which then applies to the entire

domain (� f + �b). Note that f
b

= (�fm, f p) where �fm and f p are the forcing
functions applied to the momentum and pressure, respectively. This equation is
subsequently discretized on a Cartesian grid, leading to the following system of
discrete equations:

[L] {U } = { f
b
}, (5)

and this system of equations is solved in the entire domain.
In the second approach, the governing equations are first discretized on a Carte-

sian grid without regard to the immersed boundary, resulting in the set of discretized
equations [L] {U } = 0. Following this, the discretization in the cells near the IB
is adjusted to account for its presence, resulting in a modified system of equations
[L ′]{U } = {r}, which are then solved on the Cartesian grid. In this equation, [L ′]
is the modified discrete operator and {r} represents known terms associated with
the boundary conditions on the immersed surface. The above system of equations
can be rewritten as

[L]{U } = { f ′
b
}, (6)

where { f ′
b
} = {r} + [L]{U } − [L ′]{U }. Comparing Equations 5 and 6 clearly

shows the connection between the two approaches. In the first approach, which we
term “continuous forcing approach,” the forcing is incorporated into the continuous
equations before discretization, whereas in the second approach, which can be
termed the “discrete forcing approach,” the forcing is introduced after the equations
are discretized. An attractive feature of the continuous forcing approach is that it is
formulated independent of the underlying spatial discretization. On the other hand,
the discrete forcing approach very much depends on the discretization method.
However, this allows direct control over the numerical accuracy, stability, and
discrete conservation properties of the solver. In the following sections we describe
methods that fall into each of these categories.

3. CONTINUOUS FORCING APPROACH

Among existing methods in this category, elastic and rigid boundaries require
different treatments and we discuss these separately in this section.
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3.1. Flows with Elastic Boundaries

The original IB method by Peskin (1972, 1981) was developed for the coupled
simulation of blood flow and muscle contraction in a beating heart and is generally
suitable for flows with immersed elastic boundaries. In this method the fluid flow
is governed by the incompressible Navier-Stokes equations and these are solved
on a stationary Cartesian grid. The IB is represented by a set of elastic fibers and
the location of these fibers is tracked in a Lagrangian fashion by a collection of
massless points that move with the local fluid velocity. Thus, the coordinate �Xk of
the kth Lagrangian point is governed by the equation

∂ �Xk

∂t
= �u( �Xk, t). (7)

The stress (denoted by �F) and deformation of these elastic fibers is related by a
constitutive law such as the Hooke’s law. The effect of the IB on the surrounding
fluid is essentially captured by transmitting the fiber stress to the fluid through a
localized forcing term in the momentum equations, which is given by

�f m(�x, t) =
∑

k

�Fk(t)δ(|�x − �Xk |), (8)

where δ is the Dirac delta function. Because the location of the fibers does not
generally coincide with the nodal points of the Cartesian grid, the forcing is dis-
tributed over a band of cells around each Lagrangian point (see Figure 2a) and this
distributed force is imposed on the momentum equations of the surrounding nodes.
Thus, the sharp delta function is essentially replaced by a smoother distribution
function, denoted here by d , which is suitable for use on a discrete mesh. Due to

Figure 2 (a) Transfer of forcing �Fk from Lagrangian boundary point ( �Xk) to sur-
rounding fluid nodes. Shaded region signifies the extent of the force disctribution.
(b) Distribution functions employed in various studies.
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the fibers, the forcing at any grid point xi, j is then given by

�f m(�xi, j , t) =
∑

k

�Fk(t)d(|�xi, j − �Xk |). (9)

The fiber velocity in Equation 7 is also obtained through the use of the same
smooth function. The choice of the distribution function d is a key ingredient in
this method. Several different distribution functions were employed in the past
(Beyer & Leveque 1992, Lai & Peskin 2000, Peskin 1972, Saiki & Biringen
1996) and Figure 2b shows four such functions. For a simple one-dimensional
model problem, Beyer & Leveque (1992) showed that it is possible to design a
distribution function that preserves the accuracy of the spatial scheme. Methods in
this category have been successfully used for a wide variety of problems including
cardiac mechanics (Peskin 1981), cochlear dynamics (Beyer 1992), aquatic animal
locomotion (Fauci & McDonald 1994), bubble dynamics (Unverdi & Tryggvason
1992), and flow past flexible filaments (Zhu & Peskin 2003).

3.2. Flows with Rigid Boundaries

The previous method is naturally well suited for elastic bodies but its application
to flows with rigid bodies poses problems because the constitutive laws used for
elastic boundaries are not generally well posed in the rigid limit. This problem
could be circumvented by considering the body to be elastic but extremely stiff.
A second approach is to consider the structure attached to an equilibrium location
(Beyer & Leveque 1992, Lai & Peskin 2000) by a spring with a restoring force �F
given by

�Fk(t) = −κ
( �Xk − �Xe

k(t)
)

(10)

where κ is a positive spring constant and �Xe
k is the equilibrium location of the

kth Lagrangian point. Accurately imposing the boundary condition on the rigid
IB requires large values of κ . However, this results in a stiff system of equations
that is subject to severe stability constraints (Lai & Peskin 2000, Stockie & Wetton
1998). On the other hand, lower values of κ can lead to spurious elastic effects such
as excessive deviation from the equilibrium location as noted in the low Reynolds
cylinder wake simulations of Lai & Peskin (2000).

The above approach can be viewed as a specific version of the model developed
by Goldstein et al. (1993) to simulate the flow around rigid bodies. In this model, the
effect of the rigid body on the surrounding flow is modeled through a forcing term

�F(t) = α

t∫

0

�u(τ )dτ + β�u(t), (11)

where the coefficients α and β are selected to best enforce the boundary con-
dition at the immersed solid boundary. The original intent behind Equation 11
was to provide feedback control of the velocity near the surface (Goldstein et al.
1993), but from a physical point of view, it can also represent a damped oscillator
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(Iaccarino & Verzicco 2003). This method has been used to simulate start-up flow
past a circular cylinder at a moderate Reynolds number and a low Reynolds num-
ber turbulent flow in a channel with streamwise grooves (Goldstein et al. 1993).
In general, results are promising at low Reynolds numbers but accurately enforc-
ing the boundary conditions requires large values of α and β, which can lead to
stability problems, especially for highly unsteady flows.

Another method in this class is the one developed by Angot et al. (1999) and
Khadra et al. (2000). In this method, the entire flow is assumed to occur in a
porous medium and is therefore governed by the Navier-Stokes/Brinkman equa-
tions (Brinkmann 1947). These equations contain an extra force term with respect
to the classical Navier-Stokes equations of the form �F = (µ/K )�u. Here K is the
permeability of the medium and is defined as infinity or zero for fluid and solid
regions, respectively. The force therefore activates only within the solid, driving
the velocity field to zero. In practice, K is large (small) in fluid (solid) regions and
this, along with the smoothing of the variation of K at the fluid-solid interface,
leads to an error in the imposition of the correct velocity on the solid surface. The
similarity between this and the previous forcing approach is evident because it is
essentially equivalent to choosing α ≡ 0 and β ≡ µ/K . As such, this method
is also subject to stiffness problems associated with large variations in the values
of K . This method has been used to simulate flow past a circular cylinder for
Reynolds numbers up to 200 and for flow over a backward facing step (Khadra
et al. 2000). In direct contrast to this approach, in which the fluid is considered
as a solid with infinite porosity, the approach of Glowinski et al. (1994) treats the
solid as a fluid subject to a rigidity constraint, which can also be interpreted as a
forcing term in the governing equations (Patankar 2001).

3.3. General Considerations

The continuous forcing approach is very attractive for flows with immersed elastic
boundaries. For such flows, the method has a sound physical basis and is simple
to implement. Consequently, many of the applications of these methods are found
in biological (Beyer & Leveque 1992, Fauci & McDonald 1994, Peskin 1981) and
multiphase flows (Unverdi & Tryggvason 1992) where elastic boundaries abound.
However, using this approach for flows with rigid bodies poses some challenges
associated with the fact that the forcing terms used are generally not well behaved
in the rigid limit. This problem is essentially tackled by employing simplified
models that attempt to mimic the effect of the solid boundary on the flow. The
parameters introduced in these models, however, have implications for numerical
accuracy as well as stability. The smoothing of the forcing function inherent in these
approaches also leads to an inability to provide a sharp representation of the IB and
this can be especially undesirable for high Reynolds number flows. Finally, all of
these methods require the solution of the governing equations inside the immersed
body. As noted earlier, with increasing Reynolds numbers, the proportion of grid
points inside the IB also increases, and the requirement of solving the equations
inside the solid can be a burdensome overhead.
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4. DISCRETE FORCING APPROACH

In this section, methods are categorized into those that are formulated so as to
impose the boundary condition on the immersed boundary through indirect means,
and those that directly impose the boundary conditions on the IB.

4.1. Indirect BC Imposition

For a simple, analytically integrable, one-dimensional model problem, it is possible
to formally derive a forcing term that enforces a specific condition on a boundary
inside the computational domain (Beyer & Leveque 1992). The same is not usually
feasible for the Navier-Stokes equations because the equations cannot be integrated
analytically to determine the forcing function. Consequently, all the approaches
in the previous section employ what are essentially simplified models of the re-
quired forcing. To avoid this issue, Mohd-Yosuf (1997) and Verzicco et al. (2000)
developed a method that extracts the forcing directly from the numerical solution
for which an a priori estimate can be determined. Starting from the discretized
Navier-Stokes equations without any modification due to the presence of the IB,
and using the same notation introduced in section 2, the system [L] {U ∗} = 0 is
solved at each time step where {U ∗} represents a prediction of the velocity field.
The forcing { f ′

b
} in Equation 6 is then defined as

{ f ′
b
} ≈ {r} + [L]{U ∗} − [L ′]{U ∗} = {r} − [L ′]{U ∗}, (12)

where {r} = {U�}δ(| �Xk − �xi, j |) and [L ′] = [L] + ([I ] − [L])δ(| �Xk − �xi, j |),
[I ] being the identity matrix. As before, the Dirac delta function is replaced by a
smooth distribution function d and the Equation 6 for this method then becomes:

[L] {U } = {U� − U ∗}d(| �Xk − �xi, j |) + [L] {U ∗}d(| �Xk − �xi, j |) (13)

and this formally represents the enforcement of the boundary condition at location
�Xk on the immersed surface.

The major advantage of the discrete forcing concept is the absence of user-
specified parameters in the forcing and the elimination of associated stability con-
straints. However, the forcing still extends into the fluid region due to the use of a
distribution function and the details of the implementation depend strongly on the
numerical algorithm used to discretize the governing equations. This technique
has been applied to several problems including turbulent flow inside an internal
combustion engine (Verzicco et al. 2000), and flow past 2D (Balaras 2004) and
3D bluff bodies (Verzicco et al. 2002) and in a cylindrical stirred tank (Verzicco
2003).

4.2. Direct BC Imposition

Although the application of IB methods to low and moderate Reynolds num-
ber flows has been successful, their extension to higher Reynolds numbers is
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challenging due to the need to accurately resolve the boundary layers on (im-
mersed) surfaces not aligned with the grid lines. In such cases the local accuracy
of the solution assumes greater importance, and the spreading of the effect of
the IB introduced by the smooth force distribution function is less desirable. For
this reason, other approaches can be considered where the immersed boundary is
retained as a “sharp” interface with no spreading and where greater emphasis is
put on the local accuracy near the IB. This can usually be accomplished by mod-
ifying the computational stencil near the immersed boundary to directly impose
the boundary condition on the IB. Here we describe two methods that fit into this
category.

4.2.1. GHOST-CELL FINITE-DIFFERENCE APPROACH The boundary condition on the
IB is enforced here through the use of “ghost cells.” Ghost cells are defined as
cells in the solid that have at least one neighbor in the fluid. For instance, cell
“G” in Figure 2 is a ghost cell. For each ghost cell, an interpolation scheme that
implicitly incorporates the boundary condition on the IB is then devised. A number
of options are available for constructing the interpolation scheme (Majumdar et al.
2001). One simple option is bilinear (trilinear in 3D) interpolation where a generic
flow variable φ can be expressed with reference to Figure 2 as

φ = C1x1x2 + C2x1 + C3x2 + C4. (14)

The four coefficients in the above equation can be evaluated in terms of the values
of φ at fluid nodes F1, F2, and F3, and at the boundary point B2, which is the
normal intercept from the ghost node to the IB. Boundary point B1, which is
midway between points P1 and P2, can also be used instead of B2. Note that P1

and P2 are the intercepts with the y- and x-lines passing through the ghost point,
respectively. A less accurate, linear interpolation scheme (i.e., C1 ≡ 0 in Equation
14) would not employ the fluid node F3 and therefore would retain a discrete form,
which is well suited for line-solution techniques (Ferziger & Peric 1996).

Applying a linear reconstruction is acceptable for laminar flows or for high
Reynolds number flows when the first grid point is located in the viscous sublayer
(Iaccarino & Verzicco 2003). At high Reynolds numbers when the resolution
is marginal, linear reconstruction could lead to erroneous predictions. For such
cases higher-order interpolation can be used. For instance, one could employ an
interpolant that is linear in the tangential direction and quadratic in the normal
direction (Majumdar et al. 2001), such as

φ = C1n2 + C2nt + C3n + C4t + C5, (15)

where n and t are local coordinates normal and tangent, respectively, to the IB. The
five coefficients can be determined by using the four fluid points values F1 to F4

and the boundary condition at point B2 where the selection of point F4 depends on
the surface normal. Alternatively, the points F1 to F3 and the two boundary points
P1 and P2 could be used without losing generality. Other interpolation schemes
can also be employed (Ghias et al. 2004).
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Irrespective of the particular interpolation scheme used, the value of the variable
at the ghost-cell node, φG , can be expressed as∑

ωiφi = φG, (16)

where the summation extends over all the points in the stencil, including one or
more boundary points, and ωi are known geometry dependent coefficients. The
above equation represents the modified discrete Equation 6 for the ghost cell
and this can now be solved simultaneously with the discretized Navier-Stokes
equations for fluid nodes. This method has been used for simulating a wide variety
of flows including compressible flow past a circular cylinder and an airfoil (Ghias
et al. 2004) at Reynolds numbers up to O(105), aquatic propulsion (Mittal et al.
2004), flow through a rib-roughened serpentine passage (Iaccarino et al. 2003) and
turbulent flow past a road vehicle (Kalitzin et al. 2003).

4.2.2. CUT-CELL FINITE-VOLUME APPROACH None of the IB methods discussed so
far are designed to satisfy, the underlying conservation laws for the cells in the
vicinity of the IB. Strict global and local conservation of mass and momentum can
only be guaranteed by resorting to a finite-volume approach and this is the primary
motivation for the cut-cell methodology. This methodology was first introduced in
the context of Cartesian grid methods for inviscid flow computations (Clarke et al.
1986) and was later applied to simulation of viscous flows (Udaykumar et al. 1996,
2001, 2002; Ye et al. 1999). Figure 3a shows a schematic of a Cartesian grid with
an IB that demarcates a solid from a fluid. In this method, cells in the Cartesian
grid that are cut by the IB are identified, and the intersection of the boundary with
the sides of these cut cells is determined. Next, cells cut by the IB, whose cell
center lies in the fluid, are reshaped by discarding the portion of these cells that
lies in the solid. Pieces of cut cells whose centers lie in the solid are absorbed
by neighboring cells. This results in the formation of control volumes, which are
trapezoidal in shape (Ye et al. 1999), as shown in Figure 3a.

Figure 3 Representation of the points in the vicinity of an immersed boundary used
in the ghost-cell approach. Fi are fluid points, G is the ghost point, and Bi and Pi are
locations where the boundary condition can be enforced.
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Finite-volume discretization of the Navier-Stokes equations requires the esti-
mation of mass, convective and diffusive flux integrals, and pressure gradients on
the faces of each cell and the issue is to evaluate these on the cell faces of the trape-
zoidal cells. The approach proposed by Ye et al. (1999) is to express a given flow
variable φ in terms of a two-dimensional polynomial interpolating function in an
appropriate region and evaluate the fluxes f based on this interpolating function.
For instance, to approximate the flux on the southwest face, fsw, φ (in the shaded
trapezoidal region shown in Figure 3b) is expressed in terms of a function that is
linear in x1 and quadratic in x2:

φ = C1x1x2
2 + C2x2

2 + C3x1x2 + C4x1 + C5x2 + C6, (17)

where C1 to C6 are six unknown coefficients that can be expressed in terms of
values of φ at the six stencil points shown in Figure 3b and an expression similar
to Equation 16 is developed for fsw. Equation 17 represents the most compact
function that allows at least a second-order accurate evaluation of φ or its derivative
at the sw location. A similar approach can be employed to evaluate the flux on the
east-face fe as well as the interface flux fi . This approach results in a discretization
scheme that is globally as well as locally second-order accurate and also satisfies
conservation of mass and momentum exactly irrespective of the grid resolution.

This method has been used to simulate various flows with stationary and moving
boundaries including flow-induced vibrations (Mittal et al. 2003), flapping foils
(Mittal et al. 2002b), objects in free fall through a fluid (Mittal et al. 2004), and
diaphragm-driven synthetic jets (Utturkar & Mittal 2002). Extending this approach
to three dimensions, however, is nontrivial because the cut-cell procedure leads to
complex polyhedral cells, and discretization of the full Navier-Stokes equations on
such cells is complicated. Extension to three dimensions would likely be based on
“cell-trimming” procedures (Berger & Aftosmis 1998) that generate body-fitted
grids from a Cartesian grid.

4.3. General Considerations

The methods presented in this section and other related methods not discussed
here (Fedkiw & Liu 2000, Leveque & Li 1994) introduce the boundary condition
directly into the discrete equations. The forcing procedure is therefore intimately
connected to the details of the discretization approach and practical implementation
is not as straightforward as the continuous forcing approach. However, discrete
forcing enables a sharp representation of the IB, and this is desirable, especially
at higher Reynolds numbers. Furthermore, the discrete forcing approach does
not introduce any extra stability constraints in the representation of solid bodies.
Finally, this approach decouples the equations for the fluid nodes from those for the
nodes in the solid, thereby obviating the solutions of the governing equations for the
solid grid nodes. This is highly desirable for high Reynolds number flows. As we
discuss in the following section, one disadvantage of the discrete forcing approach
is that inclusion of boundary motion can be more difficult. Finally, methods in
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this category also usually require imposition of a pressure boundary condition
on the immersed boundary (see, for instance, Udaykumar et al. 2001), whereas
no pressure boundary condition is needed for methods that employ continuous
forcing.

5. FLOWS WITH MOVING BOUNDARIES

In the context of flows with moving boundaries, most of the methods described here
can be viewed as Eulerian-Lagrangian, wherein the Eulerian form of the governing
equations (as in Equation 7) is solved on a stationary grid and moving boundaries
are tracked in a Lagrangian fashion (as in Equation 7). The use of a stationary, non-
deforming grid and the associated retention of the Eulerian form of the governing
equations greatly simplify the incorporation of moving boundaries into IB meth-
ods. In contrast, Lagrangian methods have to deal with moving/deforming grids
(Tezduyar 2001) as well as discretized equations that incorporate time derivatives
of cell volumes and other grid-related quantities.

Further distinctions among these methods can be made based on the technique
used to track the IB as well as the approach used to represent its effect on the un-
derlying Eulerian flow-field variables. For instance, in Peskin’s IB method (1981),
the boundary is tracked as a distinct and sharp Lagrangian entity while it is treated
as diffuse in accounting for its effect on the fluid phase. In contrast, for methods
such as cut cell and ghost cell, the IB is tracked as a sharp, Lagrangian entity and
also treated as such when incorporating its effect on the fluid phase. Using this
taxonomy, IB methods can also be contrasted with so-called Eulerian methods
such as Volume-of-Fluid (Anderson et al. 1998), which retain the diffuse nature
of the interface both in tracking as well as representing its effect on the flow field.

For sharp-interface methods such as cut-cell and ghost-cell, one additional issue
has to be dealt with in order to enable boundary motion. As shown in Figure 4, as
the IB moves across the fixed Cartesian grid, “freshly-cleared” cells, i.e., cells in

Figure 4 Schematics showing the key features of the cut-cell methodology. (a) Trape-
zoidal finite volume formed near the immersed boundary for which f denotes the
face-flux of a generic variable. (b) Region of interpolation and stencil employed for
approximating the flux fsw on the southwest face of the trapezoidal finite volume.
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Figure 5 Schematic showing the creation of “freshly-cleared” cells on a fixed Carte-
sian grid due to boundary motion from time step (t −�t) to t . Schematic indicates how
the flow variables at one such cell could be obtained by interpolating from neighboring
nodes and from the immersed boundary.

the fluid which were inside the solid at the previous time step, are encountered. In
effect, for cases involving boundary motion, the spatial discontinuity associated
with the sharp IB leads to a temporal discontinuity for cells near the boundary.
Straightforward temporal discretization of the momentum equation for these cells
is not possible since flow variables in these cells do not have a valid time-history.
One approach to handle this issue is to merge these cells with adjacent fluid cells
(Udaykumar et al. 1999) for the first time step after a cell emerges from the body.
This approach is essentially similar to what is done in body-conformal Lagrangian
methods and does not affect the spatial accuracy of the method (Udaykumar et al.
1999). Another approach is to determine the flow velocity in this cell for one time
step by interpolating from neighboring cells (Udaykumar et al. 2001). The issue
of freshly-cleared cells is not encountered in IB methods that employ continuous
forcing since the spreading of the effect of the IB over a few grid cells on both
sides of the boundary, provides a smooth transition between the fluid and solid
phases, and removes the temporal discontinuity for cells emerging into the fluid.
Thus, inclusion of boundary motion is quite straightforward in these methods.

6. APPLICATIONS

Applications included here cover a broad spectrum of flows and methodologies
and are intended to highlight the extensive capabilities of these methods.

6.1. Flow Past Flapping Filaments

Simulations of flow past two flexible, flapping filaments (threads) in a flowing soap
film were performed using Peskin’s original IB method (Zhu & Peskin 2003). The
force density �F contributed by the fibers is computed from the elastic potential
energy associated with the stretching and bending of the fibers. The Reynolds
number based on the thread length (Lt ) and terminal velocity of the soap film is 200
and the simulations employ a 512 × 256 Cartesian grid. The initial configuration
chosen for the two filaments is a pair of in-phase, parallel sine waves separated by
a distance equal to 0.3 Lt and have amplitudes equal to 0.25 Lt .
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Figure 6 Clapping motions of two filaments in a flowing soap film simulated by
Zhu (2003) using an immersed boundary method. (a) Instantaneous snapshot of fluid
markers. (b) Spanwise vorticity contours at this time instant.

Figure 6 shows computed results from this simulation. The flow of the soap
film is from top to bottom and this film is driven by gravity and falls against
air resistance. Figure 6a shows the instantaneous motion of fluid tracers that are
introduced intermittently along the top boundary. In Figure 6b, contours of vorticity
are plotted, clearly showing the complex vortex shedding from this filament pair.
Even though the two filaments start in phase with each other, they spontaneously
develop a 180◦ difference in oscillation after about one cycle, and maintain this
phase difference thereafter. Thus, after an initial transient, the filaments settle into
a stable flapping state, which consists of a clapping motion that is symmetrical
with respect to the flow midline. This clapping is self-sustained and periodic in
time and these results are in general agreement with experiments conducted at
higher Reynolds numbers (Zhang et al. 2000).

6.2. Flow Past a Pick-Up Truck

As discussed above, applying the IB method to high Reynolds numbers external
flows is challenging because resolution of thin boundary layers present on the IB
requires extremely large computational grids. In Kalitzin et al. (2003), a 3D, ghost-
cell-based IB Reynolds-Averaged Navier-Stokes (IBRANS) solver was employed
for simulating the flow past a road vehicle, in this case a pickup truck, at a realistic
Reynolds number of 3 × 105 based on the vehicle length.
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Figure 7 Simulation of the flow around a pickup truck using a ghost-cell method
(Kalitzin et al. 2003). (a) Side view of the geometry and the nonuniform Cartesian
grid in the symmetry plane. (b) The top plot shows comparison of computed (line) and
measured (symbols) velocity profiles behind the cabin and the bottom figure shows
vortical structures in the wake of the truck.

Figure 7a shows the vehicle geometry with a cross-section of a typical nonuni-
form Cartesian grid. The total number of grid cells for these simulations ranged
from 2 to 30 million, with an average of 30% of the cells located inside the body
of the truck. The simulation on the largest grid required about six CPU hours on
16 processors of an SGI Origin-2000. The computational grid and the additional
information required to define the forcing terms was generated in less than 20 min-
utes starting from a CAD representation of the geometry. The flow is extremely
complicated, exhibiting a large recirculation region downstream of the cabin and
inside the truck bed, as Figure 7b shows. A comparison between computed velocity
profiles and PIV data is shown in Figure 7b and this, along with other extensive
comparisons with experiments (Kalitzin et al. 2003), indicates that the IBRANS
technique successfully predicts the key features of the flow.

6.3. Flow Past a Sphere

Yun et al. (2003) conducted large-eddy simulations (LESs) of flow past a sphere
at the Reynolds numbers of 3700 and 104, based on the freestream velocity and
sphere diameter (d). The IB method was implemented in a cylindrical coordinate
system, and momentum forcing and mass sources/sinks were introduced inside
the IB to satisfy the no-slip condition on the sphere surface and continuity for
the cell containing the IB, respectively (Kim et al. 2001). A hybrid spatial dis-
cretization scheme was used wherein a third-order compact upwind scheme was
employed before separation to avoid dispersion errors and the second-order central
difference scheme was applied to the wake region together with a dynamic subgrid-
scale model. The computational domain was −15 ≤ x/d ≤ 15, 0 ≤ r/d ≤ 15
and 0 ≤ θ < 2π , where x, r , and θ are the streamwise, radial, and azimuthal
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Figure 8 Flow structures in the near wake behind a sphere: (a) Re = 104 (IB
simulation); (b) Re = 1.5 × 104 (experiment).

directions, respectively. The numbers of grid points used were 577(x) × 141(r ) ×
40 (θ ).

Figure 8 shows computed vortical structures visualized using particle tracers
for Re = 104, together with an experimental flow visualization at Re = 1.5 × 104

(Werlé 1980). Vortex rings are observed forming immediately behind the sphere
and the computed wake structure for Re = 104 (Figure 8a) is very similar to
that observed in the experiment (Figure 8b). Simulation results are summarized in
Table 1, where the computed time-averaged drag coefficient (C̄d ), base pressure
coefficient (C̄ pb ), and Strouhal number (St) are presented together with previous
experimental and numerical data. In general, the results from the IB simulations are
in good agreement with these other studies, thereby further validating the fidelity
of the IB simulations.

6.4. Flutter and Tumble of Bodies in Free Fall

Cut-cell method-based simulations have also been employed to examine the dy-
namics of plates falling freely in a fluid under the influence of gravity (Mittal
et al. 2003, 2004). The motion of such plates is governed by three parameters: the

TABLE 1 Flow parameters for turbulent flows over a sphere

Re Cd C pb St

LES with an IB method 3700 0.355 −0.194 0.208
(Yun et al. 2003) 104 0.393 −0.274 0.167

Experiment 3700 0.22
(Kim & Durbin 1988) 4200 −0.23

104 0.16

Experiment 3700 0.21
(Sakamoto & Haniu 1990) 104 0.18

Detached eddy simulation 104 0.393 −0.275 0.195
(Constantinescu & Squires 2004)
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Figure 9 Simulation of plate in free fall carried out by using a cut-cell method (Mittal
et al. 2004). These plots show a sequence of plate positions over time along with span-
wise vorticity contours corresponding to one time instance. Simulations predict (a) flut-
ter as well as (b) tumble-type motion, depending on the particular choice of parameters.

plate aspect ratio, the terminal velocity–based Reynolds numbers, and the nondi-
mensional moment of inertia. In particular, depending on the particular values of
these parameters, the plate can either undergo a flutter (side-to-side) or a “tumble”
(end-over-end rotation) motion as it floats down (Lugt 1983), and the effect of
plate-aspect ratio and Reynolds numbers on this flutter-to-tumble transition was
examined (Mittal et al. 2004). Figure 9a,b shows the tracks of a plate exhibiting
flutter and tumble motion respectively. These simulations have been carried out
on a 982 × 982 Cartesian grid. Also shown in these plots are contours of spanwise
vorticity at one time instant, which clearly show the presence of Karman-type
vortex shedding, which, the simulations indicate, plays a key role in driving the
flutter and tumble motion. The power of the Cartesian grid based IB method is aptly
demonstrated by Figure 10, which shows results from a simulation that contains five
blocks falling freely in a fluid (Mittal et al. 2002a). This simulation employed a uni-
form 900×1200 Cartesian grid and took approximately 50 CPU hours on a single-
processor 733 MHz Alpha workstation. Such a flow is certainly amenable to con-
ventional, body-conformal unstructured grid methods (see, for example, Tezduyar
2001), but the presence of multiple moving bodies would require a high level of
sophistication in the grid generation and numerical solution algorithm. In contrast,
this increase in complexity poses no particular difficulty for the IB method.

7. CONCLUSIONS

The last decade has seen a tremendous rise in the popularity of IB methods. The
primary factor driving this is the relative ease with which this methodology allows
researchers to develop computational models of flows with extremely complex
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Figure 10 Sequence of plots showing results from simulation of five trapezoidal
blocks in free fall carried out on a stationary Cartesian grid using a cut-cell method
(Mittal et al. 2003). Plots show three time instances in the simulation and instantaneous
pressure contours.

geometries and/or moving boundaries. Our own experience is that a rudimentary
IB capability can be incorporated into a Navier-Stokes solver in a matter of a few
weeks! In addition, by eliminating the need for complex grids, these methods also
significantly reduce the time and effort required to set up and initiate a simulation.
A number of variants of these methods currently exist and not all are covered in this

Figure 11 Simulation of the flow around a pickup truck using a ghost-cell method on
a locally refined grid by Iaccarino et al. (2004). (a) Grid-employed (b) surface pressure
distribution on the symmetry plane.
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review. Instead, we have attempted to systematically categorize selected methods
and provide a framework that a CFD researcher can use to critically assess any IB
method.

Current research in these methods is focused toward improving their accuracy
and efficiency. Using adaptive grid refinement with IB methods is promising (Roma
et al. 1999), especially for high Reynolds number flows (Iaccarino et al. 2004).
An example of the application of this technique is shown in Figure 11 for the
flow around the truck presented in section 6.2. This simulation employs a smaller
computational grid with about 3 million cells shown in Figure 11a, and the results
are compared to those obtained on a 30 million point grid without local refine-
ment in Figure 11b. Predicting the pressure distribution on the vehicle symmetry
plane is considerably improved in the regions where pressure peaks are observed
experimentally through the use of adaptive grids. However, using local refinement
increases the complexity of the algorithm and also begins to blur the line between
these and unstructured grid methods.

The few applications highlighted here do not even begin to scratch the surface of
the many different flows that have already been simulated using these methods. The
largest number of applications of these methods are currently found in biological
and multiphase flows. In addition to these, IB methods will see increased appli-
cation in complex turbulent flows, fluid-structure interaction, and multimaterial
(Tran & Udaykumar 2004) and multiphysics simulations.
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