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1. Introduction. Let M be a compact connected boundaryless surface and / : M —»
R3 a smooth immersion transverse to a straight line L. Thus there is an even number p of
points xeM such that f(x)eL. Under further transversality assumptions on / (see §3)
there is a finite number q of points x of M such that the plane containing f(x) and L
touches f(M) at /(x). These assumptions are mild in the sense that they hold for any / in
an open dense subset of the space of smooth immersions under consideration. Suppose
that the Gaussian curvature of f(M) is positive at q+ of these points and negative at q~,
with q=q+ + q~. Then

where e(M) denotes the Euler number of M.
The proof is an application of the Poincare-Hopf theorem (see [1], [2]). Our theorem

may be interpreted as a development of the theory of horizon immersions for surfaces. In
particular the main result of [3] is a consequence of our result.

We illustrate the relation (*) with a few examples. Take the standard embedding of
the torus T into R3, and let L be parallel to the axis of T. In Figure 1, we show three
positions of L viewed from above.

I am grateful to Stewart Robertson for suggesting this problem and I thank him and
David Chillingworth for many helpful discussions.

2. Notations. In what follows we shall be dealing with compact connected smooth
(= C°°) boundaryless manifolds. All the maps are smooth unless otherwise stated.

Given manifolds M and N and a map g:M—*N the derivative of g is denoted by
g* : TM —* TN, and g,,.x : TXM —* TgMN denotes the restriction of g* to the tangent space
to M at x. The critical set of g is denoted by C(g).

If f:M—»R"+1 (where dimM= n) is an immersion, then we denote by Tx the affine
tangent n-plane to f(M) at f(x). Such an immersion induces a map F:M—»R;;+1, where
RH+1 denotes the Grassmannian of affine n-planes in Rn+1. By the Gaussian curvature of
f(M) at f(m) we mean the Gaussian curvature of f(U) at /(m), where U is an oriented
open neighbourhood of m and /1U is an embedding.

We may assume that the line L in R3 is defined by xx = x2 = 0. The pencil L of
2-planes containing L, as a submanifold of R|, is diffeomorphic to the 1-dimensional real
projective space P1. For P1 we shall consider the two standard charts tfi:V-*U,
(£': V -*• R, where

V(resp. V) = {TTEP1 | IT is denned by (1, x)(resp.(x, 1))}

and iKir)= x, <A'(ir)= x.
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For any immersion f:M-
a, /3, y for M where

p=q + = q =0 p=q~ = 2,q+ = 0

Figure 1

R3, with dim M = 2, we shall use three types of chart

'a~\x, y) = (x, y, g(x, y)),

f°y 1(x,y) = (k{x,y),x,y).

Finally I2(F, L) will denote the intersection number mod(2) of F with L.

3. The main result. The proof of the relation stated in §1 will occupy the whole of
this section. We start with two elementary observations.

3.1. Suppose f~\L)J* 0 . Then ffaL at mef~\L) iff Tm intersects L in a point.
3.2. Suppose F"1(L)^=0. Then FfoL at m&F-^L) iff
(a) f{m)iL,
(b) f(M) has non-zero Gaussian curvature at f(m).

Bearing in mind 3.2, we suppose, from now on, that F&L. Thus the condition
follows automatically (see §1).

Let A = /~1(L). Define a map $:M\A—»PX by associating to meM\A the 2-plane
containing /(m) and L. The map <f> is smooth and m e C(<£) iff Tm 6 L. Since F/F\L, the set
C(<£)UA is finite.

Consider the vector fields grad(t/f °4>) and grad(^' °< )̂. We use these to obtain a well-
defined vector field Z on M\{AUC(4>)} as follows:

Z{m) =
fgrad(.J»°<f>)(m)/||grad(i/r°<f>)(m)|| if

if m e

Take a smooth function y':M—*-U, such that

7f(x) = 0 if xeAUC(4>),

7'(x)>0 if xeM\{AUC(<f>)}.
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Using y' we define another vector field Y by

/(m)Z(m) if
) if meAUC(4>).

It is not hard to show that Y is continuous. If <(>(m) is a regular value of <|>, then Y(m) is
orthogonal to the contour of <t> passing through m.

As we see, we are now in a position which allows us to use the Poincare-Hopf
theorem. To calculate the indices at the zeros of Y we shall distinguish two cases:

(a) m0 is a zero of Y and moe C(<j>);
(b) m0 is a zero of Y and m0 6 A.
Case (a). Due to the transversality condition we have imposed, both iff ° </> and $' ° <f>

are Morse functions. Then the index of m0 as a zero of Y can be calculated by looking at
the index of m0 as a critical point of either \\i ° <f) or -(»/>' ° <£). It follows from standard
calculations that the index is 1 or - 1 according as the Gaussian curvature at /(m0) is
positive or negative.

Case (b). Let moe A. As f(mo)eL and f4\L it is possible to find a chart a : U—* U'
such that f\U is an embedding, /°a~1(x, y) = (x, y, g(x, y)) and no other point of
A U C(<f>), other than m0, is in U. The restriction /1U is transversal to any TT e L. For any
m e U\{m0}, we have that Y(m) is orthogonal to the contour of <f> \ U\{m0} through m,
and this contour is (f | t/)~1(7r)\{m0}, where <f>(m) = ir. Moreover (f | L0~1('"') is a 1-
dimensional submanifold of M.

Figure 2
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If IT is as shown in Figure 2, (/ | U)~l{ir) is diffeomorphic to U'C\l, where 1 =
(R2x{0}) n jr. Using the chart a we get the "pullback" Y of Y, denned on U'. This vector
field is never zero except at the origin. The important remark to make about Y is that
because Y(m) is orthogonal to i*m(Tm((f\ [7)~1(TT))) then

for any m such that a(m) = x¥z(0,0). Here we have denoted the obvious inclusions by i,
and x = (x, y).

Let Sr be a small sphere round the origin such that Sr <=• U'. We define a vector field X
of unit norm on Sr and tangent to Sr such that at a particular point x, X(x) and Y(x) form
an acute angle. Looking at the vector fields as maps into U2,

X-.Sr-^S^R2, Y\Sr:Sr^U2,

we see that they are homotopic, a homotopy H:Srx [0,1] -*• U2 being defined by

The map H is never zero and therefore induces a homotopy between X and Yl: Sr—>S1,
where Yt(x) = Y(x)/||Y(x)||. Consequently the maps X and Yt have the same degree and
the degree of X is 1. Hence the index of Y at m0 is 1.

Having calculated the indices, we can deduce the relation (*) in §1 immediately.

4. Consequences of the main result. The theorem we have just proved yields the
following two corollaries.

COROLLARY 4.1. Assume FJb-L. Then I2(F, L) = e(M)(mod 2).

Proof. By intersection theory, I2(f,L) = 0. The result follows now from (*) in §1.

The next corollary is just the theorem on the existence of horizon maps for surfaces
[3].

COROLLARY 4.2. If f is a horizon immersion then M is diffeomorphic to S2, S1xS1 or
the Klein bottle. If M is diffeomorphic to S2 then #f'\L) = 2; otherwise, #f~\L) = 0.

Proof. If / is a horizon immersion then FfoL and F~1(L)= 0 . Because #f~\L) is
even it follows from (*) in §1 that e(M) is even and greater than or equal to zero.

This paper was prepared while the author held a scholarship from INIC-LISBON.
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