Pub. Mat. UAB Vol. 26 № 3 Des. 1982

IMMERSING HOMOGENEOUS SPACES IN EUCLIDEAN SPACE Howard Hiller *

In [4], Lam proves, among other things, an immersion result for the real flag manifold

 $G_{\mathbb{R}}(n_1, \dots, n_s) = 0(n_1^+, \dots^+ n_s)/0(n_1) \times \dots \times 0(n_s)$

where 0(n) is the real orthogonal group. His result is a special case of the following more general observation.

Proposition 1. Let G be a compact, connected semisimple Lie group and H a closed subgroup. Then either G/H is a π -manifold (and so immerses in codimension one) or G/H immer ses in $\mathbb{R}^{\dim^{c}(9)}$, where g is the Lie algebra of G.

Remark 2. The dimension of the ambient Euclidean space is , independent of the subgroup H, so one expects the strongest results for small H. But if H is a maximal torus (all $n_i = 1$ in above example) then G/H is a π -manifold [1]. See Remark 4 below.

Proof. A real vector bundle over G/H is determined by an action of H on a real vector space. The tangent bundle T(G/H) comes from the adjoint action of H on g/\mathfrak{H} , \mathfrak{H} = Lie H. Let η denote the bundle over G/H coming from the adjoint action of H on g. Crearly η is trivial since the action extends to all of G. There is a bundle epimorphism $\eta \rightarrow T(G/H)$

* Supported by the Alexander von Humboldt-Stiftung.

43

which necessarily splits (see for example [5, p.46]). Since $\dim(\eta) = \dim(9)$, the theorem of Hirsch [3] yields the desired immersion.

Corollary 3. (Lam) The manifold $G_{IR}(n_1, ..., n_s)$ inmerses in R⁽ⁿ⁾; where $n = n_1^+ ... + n_s$.

Proof. Observe dim $O(n) = \binom{n}{2}$.

Remark 4. That these immersions are really interesting follows from [2] where it was shown that if s = 2, $n_1 = n_2$, one obtains a best possible immersion for the real Grassmannian.

Similarly, one obtains in the complex and quaternionic cases.

Corollary 5. (a) $G_{\sharp}(n_1, \dots, n_s)$ immerses in \mathbb{R}^{n^2} (b) $G_{H}(n_1, \dots, n_s)$ immerses in $\mathbb{R}^{2n^2 + n}$

These results are not as strong as those of Lam [4].

REFERENCES

- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, III, Amer. J. Math. 82(1960)491-504.
- H. Hiller and R. Stong. Immersion dimension for real Grassmannians, Math. Ann. 255(1981), 361-367.
- M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93(1959), 242-276.
- K.Y. Lam, A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213(1975)305-314.
- P. Löffler and L. Smith, Line bundles over framed manifolds, Math. Z. 138(1974), 35-52.

Mathematisches Institut der Georg-August-Universität Bunsenstr. 3-5

3400 Göttingen