
Immersive Algorithmic Design

Live Coding in Virtual Reality

Renata Castelo-Branco1, António Leitão2, Guilherme Santos3

1,2,3INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
1,2,3{renata.castelo.branco|antonio.menezes.leitao|guilherme.j.santos}@tecnico.
ulisboa.pt

As many other areas of human activity, the architectural design process has been
recently shaken by Virtual Reality (VR), as it offers new ways to experience and
communicate architectural space. In this paper we propose Live Coding in
Virtual Reality (LCVR), a design approach that allows architects to benefit from
the advantages of VR within an algorithmic design workflow. LCVR integrates a
live coding solution, where the architect programs his design intent and
immediately receives feedback on the changes applied to the program; and VR,
which means this workflow takes place inside the virtual environment, where the
architect is immersed in the model that results from the program he is
concurrently updating from inside VR. In this paper we discuss the possible
impacts of such an approach, as well as the most pressing implementation issues.
We offer a critical analysis and comparison of the various solutions available in
the context of two different programming paradigms: visual and textual.

Keywords: Virtual Reality, Algorithmic Design, Live Coding

VIRTUAL REALITY IN ARCHITECTURE
Virtual Reality (VR) has come a long way from the
moment Ivan Sutherland, one of the godfathers of
computer graphics, created the first Head Mounted
Display (HMD) (Steinicke 2016). In 1965, he envi-
sioned the ultimate display (Sutherland 1965), a real-
ity within which the computer controls the existence
of matter itself. Although we are still far from achiev-
ing this radical vision, VR technologies can already
provide enough realism and immersiveness to make
it an appealing tool for various professions, namely
architecture.

Architects currently use a variety of instruments
and tools to represent their designs. The choice of

representation used not only has a great influence on
the design process itself but is also one of the deci-
sive factors for clients’ approval. Furthermore, with
the emergence of the Building InformationModeling
(BIM) paradigm, the Architecture, Engineering and
Construction (AEC) industry tends to integrate more
information into the digital models and engage in
more collaborative interactions around these mod-
els (Wang and Schnabel 2008; Yan et al. 2011). Such
workflows have an imperative need for adequate and
efficient representationmechanisms for bothexperts
and non-experts. Whyte (2003) identified threemain
strategies for the application of VR in the AEC indus-
try, which we unroll in the following paragraphs.

Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2 - eCAADe 37 / SIGraDi 23 | 455

The first strategy, designing in a Virtual Environ-
ment (VE), allows the architect to interact with his
creation in a deeply involved manner. The three-
dimensional medium can shape itself around the au-
thor in any scale, facilitating essential perceptions of
solid, void, navigation, and function (WangandSchn-
abel 2008; Portman et al. 2015), as well as motivat-
ing designers to engage in more creative (Schnabel
2011) and exploratory design actions (Gu et al. 2011).

Communicating a design to a client has for long
been a challenging step, since both the funding and
the general course of the project typically depend
on these moments. For that matter, VR offers new
possibilities for customer interface, as it allows users
to walk inside the constructions as if they were al-
ready built. In fact, there are now tools and compa-
nies offering this sort of services, such as Sentio VR,
Enscape, REinVR, and IrisVR. Studies have also been
made onhow to use VR technology for user-centered
design and analysis, (Moloney et al. 2018; Heydarian
et al. 2017). However, most of this research involves
showcasing final ormockupmodelswithwhich users
can interact for occupancy or behavior-related stud-
ies and validation (Paes et al. 2017; Kuliga et al. 2015),
which means VR is being used as a communication
medium only.

Regarding newmarket opportunities, we high-
light the new collaboration methods allowed by VR
technologies (Koutsabasis et al. 2012). More engag-
ing experiences are now possible for remote partici-
pants in the same VE (Dorta et al. 2010), e.g., multiple
collaborators can be inside a virtual model of a build-
ing simultaneously interacting with the building and
with each other.

ALGORITHMIC DESIGN
The issue with the approaches presented so far is the
fact thatmost revolve around navigating static build-
ing models and allow only small, localized, manual
changes to those models (de Klerk et al. 2019).

To overcome these limitations, we propose the
integration of VR with Algorithmic Design (AD)
strategies. AD entails the creation of algorithmic de-

scriptions of the architects’ design intent. These de-
scriptions, shaped in the form of a computer pro-
gram, instruct the machine to perform specific mod-
eling operations, which will culminate in a digital
model of the design.

This approach to design allows architects to rele-
gate the modeling task to the computer, thus saving
time and money through the automation of repeti-
tive, time-consuming, and error-prone tasks. For the
exact same reasons, AD also enables the creation of
more diverse and complex design solutions.

Given these advantages, the goal, then, is to sup-
port AD in the VE. In VR, the use of algorithmic ap-
proachesmeanswecan transform thedesignprocess
in the VE into a real-time and interactive one, instead
of a concept assessment period only, after which the
architect must remove the HMD and get back to the
modeling tool in order to change the model in due
time. Furthermore, for designer-client interaction, it
represents considerable time gains: if the architect
can make the required changes to the model in real
time, while inside it with the client, he can accelerate
the typical client/architect ideation process.

LIVE PROGRAMMING & LIVE CODING
From the panoply of AD tools available in themarket,
wehighlight two that offer Live Programming (LP) ca-
pabilities (Rein et al. 2018): Grasshopper, a visual pro-
gramming environment, and Luna Moth (Alfaiate et
al. 2017), a web-based textual programming tool. LP
requires real-time interaction between program and
model, which means that changes to the algorith-
mic description must have immediate repercussions
in the generated geometry. Both tools offer this live-
liness aspect that intends to make the programming
task easier to understand. In fact, the intuitiveness of
LP is at the core of Grasshopper’s success in the field.

However, besides the real-time interactiveness
and immediate feedback of LP, in order to change
the algorithmic description of the model we are im-
mersed in, we require a Live Coding (LC) solution.
Unlike LP, whose focus is the very activity of pro-
gramming in an attempt to make it more compre-

456 | eCAADe 37 / SIGraDi 23 - Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2

hensible, LC is a creativity technique centered upon
the writing of interactive programs on the fly. It is
commonly used to create and showcase sound and
image-based digital media (Rein et al. 2018). The
Fluxus project [1] is a good example: a programming
environment that allows users to code 3Danimations
that react to external input in real time.

LC can, nevertheless, beusedas adesignmethod
for architects as well. In fact, the idea is already
in place in some AD tools. Dynamo, for instance,
presents the algorithmic components right along-
side the generated model. This means users can
modify their program in the same environment
where the model is concurrently being updated,
which is the particular LC strategy we are interested
in as well.

PROGRAMMING IN VIRTUAL REALITY
The creation of a workflow for programming in VR
has been attempted by Elliot et al. (2015) with
the RiftSketch project, and by Robert Krahn with
CodeChisel3D [2]. Both tools offer a LC environment
built for VR, with text editors floating in the scene for
users to code in. Nevertheless, both solutions were
only tested with simple graphical models and they
were not applied in an architectural context.

In the architectural context, having the code dis-
played alongside the model in the VE allows profes-
sionals to change their models at will without taking
their HMD off or leaving the VE. By transporting the
programming environment to the VEwe can have ar-
chitects, and clients for that matter, inside the virtual
representation of the projects, developing the algo-
rithmic descriptions of themodels, applying changes
and visualizing them, in real time.

LIVE CODING IN VIRTUAL REALITY
Live Coding in Virtual Reality (LCVR) entails the inte-
gration of LC in VR and its application to AD. AD al-
lows the architect to code his design intent in a flex-
ible and parametric way, which means the resulting
algorithmic description represents not one, but mul-
tiple variants of the same model according to the

chosen parameters. With LCVR, we take advantage
of AD’s flexibility in order to live code our models.

Using a HMD, the architect is transported to the
VE, where both the algorithmic description and the
generated model are present. From the VE, the ar-
chitect can then apply modifications to the AD de-
scription, while the resulting model is concurrently
updated in accordance with the changes made. For
this workflow to take place, however, we require a
sufficiently performant connection between both an
AD and a VR tool.

Integrated Approach
In the past, an integrated approach to AD (Castelo-
Branco and Leitão 2017) was proposed, which en-
tailed the creation of a single algorithmic description
capable of generating equivalent models in various
tools, depending on which paradigm the architect
may find most beneficial at any given stage of the
process.

LCVR in one such paradigm, whose place in the
design process is yet to be figured out. As we saw
before, the advantages VR brings to the design pro-
cess seem to be widespread throughout the various
design stages (Whyte 2003). Hence, we believe archi-
tects should be free to determine at which stage ei-
ther paradigm best fits his design process.

Figure 1 presents a scheme of the integrated ap-
proach extended to accommodate the LCVR work-
flow. On the left, we notice the typical AD work-
flow, with the architect interacting directly with the
AD tool from the desktop of his PC, coding in the In-
tegrated Development Environment (IDE), the code
editor, to which the tool is coupled.

For the implementation of an integrated solu-
tion, we require an AD tool capable of translating the
given instructions intooperations recognizedbya se-
ries of different backends, whose use may vary along
the development process, depending on the more
pressing needs at that stage. We can have, for in-
stance, Computer-Aided Design (CAD) tools for con-
cept and form experimentation; BIM tools for more
detailed stages where construction information is re-

Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2 - eCAADe 37 / SIGraDi 23 | 457

Figure 1
Integrated AD and
LCVR workflow

quired; analysis tools to evaluate the design’s perfor-
mance; optimization tool to optimize designs based
on the performance analysis; and, finally, Game En-
gines (GE) for fast visualization of the models in near
real-time render quality, interaction with themodels,
and VR integration.

Live CodingWorkflow
GEs, in particular, are optimized visualization tools
that allow for faster generation of models and low
latency in live model manipulation and navigation.
This makes them good candidates for a solution that
relies on real-time code-model interactiveness.

Thus, on the right of figure 1, we can see a differ-
entmodeof interactingwith theAD tool, from theVE:
LCVR. Anchored primarily on GE backends, this work-
flow allows the architect to continue developing the
algorithmic description of his design, with all the ad-
vantages of typical AD processes, namely the gener-
ation of the geometry in alternative backends, how-
ever, whilst inside his creation, or at least the version
of it offered by the GE backend. Furthermore, LCVR
implies a live process, meaning the building changes
around the user as he codes it on site.

There is, nonetheless, a setback to consider in
this scenario. Despite the fast response guaranteed
by GE tools, the capacity for real-time feedback will
always be conditioned by the model’s complexity.

Architectural 3D models tend to rapidly escalate in
complexity, which means large scale projects will al-
ways cause short time lapses betweengenerations of
model iterations.

IMPLEMENTATION
There are several tools that allow for the sort of porta-
bility required in an integrated approach, within both
the visual and textual programming paradigms. For
the evaluation of our proposal, we will focus on
two of them: Grasshopper representing visual pro-
gramming and Khepri for textual programming. The
Khepri AD tool, currently available for use within the
Atom IDE and with the Julia language, offers a di-
rect connection to a GE backend: Unity (Leitão et al.
2019). In order to compare both paradigms, visual
and textual in the context of LCVR, we developed a
Khepri-based Grasshopper plug-in capable of com-
municatingwith any of Khepri’s backends aswell, but
most importantly, Unity.

In order to implement the proposed workflow,
three main features must first be considered: (1) the
programming paradigm; (2) the projection of the
programming environment onto the VE; and (3) the
code manipulation mechanism. This section con-
tains an overview of currently available solutions for
the presented issues, grounded on the experimenta-
tions we made for each of them.

458 | eCAADe 37 / SIGraDi 23 - Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2

We offer a critical analysis and comparison of the
various options in the light of a case study, a random
pagoda city. An equivalent representation of the city
was programmed in both a Visual Programming Lan-
guage (VPL) - Grasshopper, and a Textual Program-
ming Language (TPL) - Julia. However, and since a lot
of this work is exploratory, many of the futuristic so-
lutions we discuss regarding IDE projection onto the
VE are presented as mockups only, all of which are
properly identified as such.

Programming Language
VPLs are generally more appealing to the architec-
tural community, given their user-friendliness and
smooth learning curve. However, they also lack scal-
ability: as programs grow in complexity, they be-
come harder to understand and change (Leitão et al.
2012). TPLs, on the other hand, offermore expressive
power, flexibility, and efficiency, when compared to
VPLs (Sammer et al. 2019). Model size and com-
plexity are a non-issue for TPLs, which makes them a
more appealing option when developing larger AD
projects. However, TPLs usually require more ex-
tensive programming knowledge, and not all profes-
sionals find the required learning investment worth-
while.

Regarding LCVR, it matters not only the expres-
sive and scalability power of the paradigm but also
the codemanipulationmechanisms available in each
case. With LCVR, users will be coding in a VE, where
the interaction with the programming environment
will necessarily be different from the one they have
coding in their PCs.

In this aspect, we argue that programming in
VPLs is likely to render better results in live VR cod-
ing, as they require less textual input. While VPLs typ-
ically rely on draggingmechanisms for manipulating
components, TPLs depend on textual input typically
provided via keyboard. LCVR with TPLs will thus re-
quire the use of extra equipment for the typing task.
We will delve deeper into this topic in the following
sections.

Integrated Development Environment
In order to LC in VR, the architect requires a plat-
form in which to program from the VE. For this prob-
lem, we considered four possible solutions: (1) mir-
roring the user’s desktop in the VE, (2) having tex-
tual programs available formanipulation in a tailored
textbox (3) having visual components projected onto
the VE, and (4) having selected parts of textual pro-
grams projected onto the VE as 3D entities.

The first approach (1)mirroring theuser’s desk-
top in the VE, couldwork for any of the programming
paradigms discussed (visual or textual). Since we are
viewing, inside the VE, what we would outside it, we
can essentially rely on the same IDE’s wewould use in
a normal coding workflow. Besides being the easiest
to implement, this solution also offers the user entire
control over his program in the VE, meaning he can
see and access anything he would if he were coding
on his desktop. However, it presents a high level of
intrusiveness, in the sense that the mirrored screen
constitutes a partial visual blocker to the scene. Fig-
ure 2 presents the LCVR scenario for case (1) in both
a visual and textual programming context.

Figure 2
IDE option (1):
mirroring the user’s
desktop.
Grasshopper
environment on top
and the Atom IDE
showcasing a
program in Julia on
the bottom

Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2 - eCAADe 37 / SIGraDi 23 | 459

This solution also brings about concerns regard-
ing the limited screen resolution offered by most of
the current HMD, which greatly affects the sharp-
ness of the text displayed in VR. This issue is a more
immediate concern for TPLs, as these must display
larger amounts of characters when compared to
VPLs. The immediate solution implies increasing font
sizes. However, this means less text can be shown at
a time. The alternative would be to use higher res-
olution HMDs, which are becoming available as we
speak.

Another possible solution entails taking advan-
tage of the (2) tailored textboxes offered by Unity’s
Application Program Interface (API). This solution is
most fit for TPLs and would imply having the code
showcased in the textbox on screen. The user could
then edit the code directly in the textbox. In this
case, unlike the previous solutionwhere themirrored
desktop is a 3D entity placed statically in the scene,
the text moves along with the user’s gaze, as it be-
longs not to the scene but to the user’s own view-
port. This means the user does not need to allocate
the workstation each time he moves in the VE (fig-
ure3).

There are several disadvantages, however. With
the first approach, the architect could use an IDE
of his choosing to code live in VR, which represents
great gains in coding efficiency since current IDEs of-
fers debugging, syntax highlight, and other features
that considerably help the coding task. Having the
code transcribed onto a textbox, while less intrusive,
offers even less aid to non-expert programmers.

Solution (3), havingVPLcomponentsprojected
onto the VE, has two possible development paths:
the first option would be, much like the previous so-
lutions, to showcase the visual program in front of the
scene, moving along with the user’s viewport (figure
4 up); the second option would be to have the visual
components generated as 3D elements, which could
be manipulated like any other object in the scene
(figure 4 down).

The first option would most likely be more in-
trusive, although the user might choose to turn the

programming layer on and off. On the other hand,
the second one suffers from similar issues to the mir-
rored desktop solution: the code does not accom-
pany the user automatically as he moves around the
VE. Furthermore, having 3D components floating in
the scene along with the generated geometry might
lead to confusing situations where code and result-
ing geometry intercept, thus becoming even harder
to understand and manipulate.

Figure 3
IDE option (2)
mockup: Unity’s
scripting API

Figure 4
IDE option (3)
mockup: Visual
components as 2D
or 3D entities in the
VE

The last approach, (4) having selected parts of TPL
programs projected onto the VE as 3D entities, ex-
pects the user to select an object he wishes to mod-
ify. The program must then recognize the parcel of
code that generated this object, or set of objects, and
project it onto the VE, next to the referred objects.

460 | eCAADe 37 / SIGraDi 23 - Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2

Within the VE, the user can hence perform modifica-
tions to that parcel of code. Figure 5 presents the cor-
responding Mockup for this solution.

Figure 5
IDE option (4)
mockup: selected
text parts projected
onto the VE

This approach, as opposed to having the entire pro-
gram showcased in the scene, is considerably more
interesting in terms of exploration of the 3D space,
since we can distribute the selected parts of the pro-
gram on the scene along with the corresponding ge-
ometry. It is also more synthetic, which might help
less experienced programmers orient themselves in
the code.

Nevertheless, this solution requires substantial
investment in finding intelligent ways of manag-
ing program traceability and showcasing the control
flow of the program. The main problem lies in the
fact that the features the user wants to changemight
be located deeper in the control flow of the program,
andnot specifically in the top-level function thatgen-
erates the geometry. This means that a functional
manner in which to navigate the various program
parts in VR must be thought of. It also implies good
traceability mechanisms on the part of the editor it-
self to allow users to jump from function to function
as they climb down the abstraction ladder.

Finally, although the selected parts of the pro-
gram would ideally appear and disappear automat-
ically as the user selects or deselects geometry, we
can also foresee geometry intersection issues in this
case. In this scenario, the code would be popping up
arbitrarily next to the selected part of the model, un-
less we can devise an algorithm capable of calculat-
ing the ideal code position according to both user’s
sight cone and neighboring geometry.

CodeManipulation
In order to code in VR, one must be able to type in
commands. This is a more notorious necessity when
coding in TPLs, since VPLs mostly rely on dragging
anddropping components andwires - aworkflowas-
sured by the gripping mechanisms provided by VR
technology. However, even using VPLs, we have to
input numbers for parameters, variables, etc., not to
mention the search for components, which also re-
quires text input.

To deal with textual input, we considered four
currently availablemarket solutions: (1) handwriting,
(2) voice input, (3) typing on a virtual keyboard, and
(4) typing on a physical keyboard.

(1) Hand-written code recognition presumes
the existence of large enough databases of hand-
written code and the corresponding typed code for
any given tool to be trained with accuracy. For this
solution to be implemented, the scale of the writ-
ten characters in VR must also be considered. Hu-
mans are considerably faster when writing symbols
in smaller scales, for instance when writing on paper,
as opposed to writing on a whiteboard. Handwrit-
ing code in VR, however, as hardware stands today,
would have to rely on larger displacements of the
writing instruments for the sensors to detect themo-
tion. Hence, thiswould likely becomeabig scalewrit-
ing experience, which might ultimately defeat the
performance purpose.

(2) Voice input is a bold approach, but proba-
bly the most comfortable for the user. Since Tavis
Rudd presented his system to dictate code to his lap-
top in 2013 [3], a wave of vocal programming has
been flooding the market with better voice coding
solutions. In the context of VR, vocal programming
would allow users to code hands-free, thus requiring
no additional equipment other than a microphone,
which in most cases is already built-in the HMD. Nev-
ertheless, we can foresee a series of obstacles in
this solution as well. Primarily, current technology
has low voice recognition accuracy in loud environ-
ments, which means expensive equipment might be
requiredwhenworking collaboratively inVRor show-

Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2 - eCAADe 37 / SIGraDi 23 | 461

Figure 6
Tested typing
options, with
corresponding
visual feedback in
VR below: (3) virtual
keyboard - wearing
the VR controllers
using (a) laser tags,
(b) index fingers
only, or (f) leap
motion technology;
and (4) using an
occluded physical
keyboard to type in,
with a
corresponding
virtual keyboard
with highlighted
keys

casing projects to clients. Finally, and more specific
to the problem at hand, dictating coding commands
is not a trivial task and, thus, requires training[3].

The last two approaches are the more conserva-
tive ones, trying to mimic the user’s workflow when
codingAD traditionally, that is, using keyboards. Cur-
rently available solutions for the use of (3) virtual
keyboards include using regular VR controllers to (a)
point at keyswith laser tags, (b) touch the virtual key-
board with the index fingers only, or (c) drum the
keys. Our ownexperimentation (visible in figure 6) in-
cluded the use of solutions (a) and (b), which proved
to be very slow typing approaches. Solution (c) is
considered amore efficient technique, yet it entails a
steeper learning curve. For lack of available software,
we did not include it in the experiment.

Still on virtual keyboards, it is also possible to
type via (d) gaze input, which is also slow, (e) using
wearable finger tracking hardware, and (f) leap mo-
tion technology to track the movement of multiple
fingers. Option (e) is rather intrusive, on account of
the wearables required, which not only take time to
mount anddismountbutmayalsobe aburden. From
this group,weonly tested (f) leapmotion technology,
which proved to have good precision levels for ges-
ture recognition but largely failed in tracking themo-
tion of each finger over a keyboard, since they tend

to occlude each other within the range of the sensor.
Because of this, we rejected this option prior to im-
plementation in the LCVRworkflow. Image (3f) in fig-
ure6 corresponds to aprototypeof the ideal solution,
to be implemented if/when this technology achieves
higher levels of accuracy.

Regarding (4) physical keyboards, which have
already proven to beat the typing performance of vir-
tual keyboards (Grubert et al. 2018a), it has been
shown that occluded keyboards cause significantly
more typing errors and speed reduction (Walker et
al. 2017). Our findings concur with the literature re-
view: the occluded physical keyboard yielded good
results with experienced typographers, but not as
good with less trained typographers, who consis-
tently mistyped commands and frequently lost their
track on the keyboard. We also tried showcasing a
responsive virtual keyboard in the scene, which high-
lighted the pressed keys to provide the userwith key-
striking feedback. This slightly improved the per-
formance of the second test group. Surprisingly,
though, we found most of them simply preferred to
peek the real keyboard through the nose hole of the
HMD, a workflow made possible by the characteris-
tics of the one used in our experiments.

462 | eCAADe 37 / SIGraDi 23 - Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2

Finally, it is also possible to provide users with
hand-position feedback using suggestions (e) and (f)
described above, or an inlay webcam recording the
user’s hands on the physical keyboard and project-
ing the image in VR. The inlay webcam approach has
proven to guarantee the least error rates (Grubert
et al. 2018b), although the time delay on the pro-
jected image is substantial in most cases and cannot
be overlooked.

In conclusion, either of the presented solutions is
far from ideal. Typing on a normal keyboard outside
the VE beats the performance of any of these meth-
ods by a largemargin. This does notmean they are of
no hope; we can always count on technological evo-
lution to provide innovative solutions and constant
improvement to existing ones. Naturally, this topic
is more concerning in the context of TPLs. Although
typing is also required in VPLs, the amount of it is
not even comparable to that required to code in TPLs.
This leads us to conclude that for LCVR in VPLs there
is barely any need for extra equipment, as the typing
solutions allowed by the VR controllers suffice for the
task at hand.

CONCLUSION
In this paper we proposed Live Coding in Virtual
Reality (LCVR), a design approach that allows archi-
tects to benefit from the advantages of Virtual Re-
ality (VR) within an Algorithmic Design (AD) work-
flow. LCVR offers a differentmode of interaction with
the AD tool: by having the code displayed along-
side the generatedmodel in the Virtual Environment
(VE), the architects can change themodel atwill with-
out leaving the VE. The proposal is anchored primar-
ily on Game Engine’s (GE) ability to efficiently gener-
ate, navigate, andprocess geometry, which allows for
the live codingperformance to guarantee a near real-
time update of the model.

We performed several informal user studies us-
ing the first IDE option presented: mirroring the
user’s desktop onto the VE, with both a Textual Pro-
gramming Language (TPL) and Visual Programming
Language (VPL). Regarding TPLs, we concluded that

experienced typographers found no immediate set-
back to LCVR: using a physical keyboard to input text,
they were able to program with the same ease they
would outside the VE, with the added benefit of see-
ing the building change around them as they code it
on site. Less experienced typographers, on the other
hand, which constituted the majority of our sample
group, found it hard to type with the same efficiency
theywouldhaveoutside theVE. Nevertheless, the ex-
perienceproved tobe very rewarding in termsof spa-
tial awareness and live coding feedback.

Our VPL experiences were more limited. How-
ever, we could already conclude that the interaction
mechanisms required, which are essentially limited
to dragging and dropping components, facilitated
the coding task in VR. This suggests they could be
a stronger candidate for LCVR. Nevertheless, we also
verified an aggravated scalability issue in the context.
The pagoda exercise used as case study to test the
LCVR approach was simple, but with a scalability pa-
rameter that proved to kill the VPLworkflow, longbe-
fore the TPL one started lagging, even outside VR.

VR technology alone is heavy on the hardware.
Having an AD tool running that exhausts the ma-
chine aswell, will lead to increased lags and struggles
in this workflow. Furthermore, the LCVR approach
best fits complex models, whose experience inside
VR is most rewarding.

In the future, we plan ondeveloping possible im-
plementations for the mockup solutions presented,
as well as conducting more formal user tests with
studiedmetrics to infer the true potential and the ad-
versities brought about by LCVR.

ACKNOWLEDGMENTS
This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT)
with referencesUID/CEC/50021/2019 andPTDC/ART-
DAQ/31061/2017.

REFERENCES
Alfaiate, P, I, Caetano and Leitão, A 2017 ’Luna Moth:

Supporting Creativity in the Cloud’, Proceedings of

Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2 - eCAADe 37 / SIGraDi 23 | 463

the 37th ACADIA, Cambridge, pp. 72-81
Castelo-Branco, R and Leitão, A 2017 ’Integrated Algo-

rithmic Design - A single-script approach for mul-
tiple design tasks’, Proceedings of the 35th eCAADe,
Rome, pp. 729-738

Dorta, T, Lesage, A, Pérez, E and Bastien, J 2010, ’Signs
of Collaborative Ideation and the Hybrid Ideation
Space’, in Taura, T and Nagai, Y (eds) 2010, Design
Creativity, Springer, London, pp. 199-206

Elliott, A, Peiris, B and Parnin, C 2015 ’Virtual Reality
in Software Engineering: Affordances, Applications,
and Challenges’, Proceedings of the 37th ICSE, Flo-
rence, pp. 547-550

Grubert, J, Witzani, L, Ofek, E, Pahud, M, Kranz, M
and Kristensson, PO 2018a ’Text entry in immer-
sive head-mounted display-based virtual reality us-
ing standard keyboards’, Proceedings of the 25th IEEE,
Reutlingen, p. 159–166

Grubert, J, Witzani, L, Ofek, E, Pahud, M, Kranz, M and
Kristensson, PO 2018b ’Effects of hand representa-
tions for typing in virtual reality’, In Proceedingsof the
25th IEEE, Reutlingen, p. 151–158

Gu, N, Kim, MJ and Maher, ML 2011, ’Technological ad-
vancements in synchronous collaboration: The ef-
fect of 3D virtual worlds and tangible user interfaces
on architectural design’, Automation in Construction,
20(3), pp. 270-278

Heydarian, A, Pantazis, E,Wang, A, Gerber, D andBecerik-
Gerber, B 2017, ’Towards user centered building de-
sign: Identifying end-user lighting preferences via
immersive virtual environments’, Automation inCon-
struction, 81, pp. 56-66

de Klerk, R, Duarte, A, Medeiros, D, Duarte, JP, Jorge,
J and Lopes, D 2019, ’Usability studies on building
early stagearchitecturalmodels in virtual reality’,Au-
tomation in Construction, 103, pp. 104-116

Koutsabasis, P, Vosinakis, S, Malisova, K and Paparounas,
N 2012, ’On the value of Virtual Worlds for collabo-
rative design’, Design Studies, 33(4), pp. 357-390

Kuliga, S, Thrash, T, Daltonc, RC and Hölscher, C 2015,
’Virtual reality as an empirical research tool — Ex-
ploring user experience in a real building and a cor-
responding virtual model’, Computers, Environment
and Urban Systems, 54, pp. 363-375

Leitão, A, Castelo-Branco, R and Santos, G 2019 ’Game
of Renders: The Use of Game Engines for Architec-
tural Visualization’, Proceedings of the 24th CAADRIA,
Wellington, pp. 655-664

Leitão, A, Santos, L and Lopes, J 2012, ’Programming
Languages For Generative Design: A Comparative
Study’, International Journal of Architectural Comput-

ing, 10(1), pp. 139-162
Moloney, J, Globa, A, Wang, R and Khoo, CK 2018 ’Pre-

Occupancy Evaluation Tools (P-OET) for early feasi-
bility design stages using virtual and augmented re-
ality technology’, Proceedings of the 52th ASA, Mel-
bourne, pp. 717-725

Paes, D, Arantes, E and Irizarry, J 2017, ’Immersive envi-
ronment for improving the understanding of archi-
tectural 3Dmodels: Comparing user spatial percep-
tion between immersive and traditional virtual real-
ity systems’, Automation in Construction, 84, pp. 292-
303

Portman, ME, Natapov, A and Fisher-Gewirtzman, D
2015, ’To go where no man has gone before: Vir-
tual reality in architecture, landscape architecture
and environmental planning’, Computers, Environ-
ment and Urban Systems, 54, pp. 376-384

Rein, P, Ramson, S, Lincke, J, Hirschfeld, R and Pape, T
2018, ’Exploratory and Live, Programming and Cod-
ing - A Literature Study Comparing Perspectives on
Liveness’, Programming Journal, 3(1), p. 3

Sammer, MJ, Leitão, A and Caetano, I 2019 ’From Visual
Input to Visual Output in Textual Programming’, Pro-
ceedingsof the24thCAADRIA,Welligton, pp. 645-654

Schnabel, MA 2011, ’The Immersive Virtual Environment
Design Studio’, in Wang, X and Tsai, J (eds) 2011, Col-
laborative Design in Virtual Environments, Springer
Science + Business Media B.V., p. 177–191

Steinicke, F 2016, Being Really Virtual: Immersive Natives
and the Future of Virtual Reality, Springer, Switzer-
land

Sutherland, IE 1965 ’TheUltimateDisplay’, Proceedings of
the IFIP Congress

Walker, J, Li, B, Vertanen, K andKuhl, S 2017 ’Efficient Typ-
ing on a Visually Occluded Physical Keyboard’, Pro-
ceedings of CHI, Denver, pp. 5457-5461

Wang, X and Schnabel, MA 2008, Mixed Reality In Archi-
tecture, Design, And Construction, Springer, Nether-
lands

Whyte, J 2003, ’Industrial Applications of Virtual Real-
ity in Architecture and Construction’, ITcon Special is-
sueVirtualRealityTechnology inArchitectureandCon-
struction, 8, pp. 43-50

Yan, W, Culp, C and Graf, R 2011, ’Integrating BIM and
gaming for real-time interactive architectural visual-
ization’, Automation in Construction, 20(4), pp. 446-
458

[1] http://www.pawfal.org/fluxus/
[2] https://github.com/cdglabs/CodeChisel3D
[3] https://www.youtube.com/watch?v=8SkdfdXWYaI

464 | eCAADe 37 / SIGraDi 23 - Simulation - VIRTUAL AND AUGMENTED REALITY 1 - Volume 2

