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Abstract 
In this paper we suggest a new approach for 

authoring tangible augmented reality applications, 

called ‘immersive authoring.’  The approach allows 

the user to carry out the authoring tasks within the AR 

application being built, so that the development and 

testing of the application can be done concurrently 

throughout the development process. We describe the 

functionalities and the interaction design for the 

proposed authoring system that are specifically 

targeted for intuitive specification of scenes and 

various object behaviors. Several cases of applications 

developed using the authoring system are presented. A 

small pilot user study was conducted to compare the 

proposed method to a non-immersive approach, and 

the results have shown that the users generally found it 

easier and faster to carry out authoring tasks in the 

immersive environment. 

 

 

1. Introduction 
 

In recent years augmented reality (AR) has 

emerged as an important medium for education and 

entertainment. As the number of people building AR 

applications grows, it becomes increasingly apparent 

that a need exists for more efficient development tools. 

Most current AR applications are built using low level 

programming with dedicated tracking and graphics 

libraries, rather than from concrete “components” that 

content developers or artists are more used to. In this 

paper we describe a high level toolkit that enables 

rapid development of AR applications with no 

programming. 

Our toolkit is based on the Tangible AR input 

metaphor. Tangible AR [8] is an approach that 

combines tangible user interface [9] input methods 

with AR display and output. In this way the virtual 

content in the AR interfaces can be manipulated using 

physical objects, making these interfaces extremely 

intuitive. For example, in the VOMAR interface [7] a 

real paddle is used to pick up and place virtual 

furniture in a simple scene assembly program. Even 

complete novices were able to use the VOMAR 

application with ease. 

Tangible AR interfaces rely on accurate tracking of 

real objects. To achieve this we use the ARToolKit [1] 

computer vision tracking library which can calculate 

the position and orientation of a camera relative to 

square fiducial markers. ARToolKit makes the 

development of Tangible AR applications easier, yet it 

is still a software library that requires programming 

skills to be used. In contrast, desktop interactive 

multimedia contents can be easily built using various 

authoring tools, such as the Microsoft PowerPoint, or 

the Macromedia Director and Flash. These tools do not 

require the user to be an experienced programmer. 

Programs such as PowerPoint are relatively easy to 

use because they incorporate direct manipulation input 

with WYSIWYG (What You See Is What You Get) 

output. First used for desktop publishing, WYSIWYG 

editing is incorporated into most 2D authoring systems, 

providing fast, concurrent evaluation of the layout. 

The aim of our research is to develop an AR 

authoring interface that is as easy to use as desktop 

WYSIWYG interfaces. Our authoring tool uses 

Tangible AR interaction techniques and an authoring 

method called ‘immersive authoring’. Immersive 

authoring is an authoring method that allows the direct 

specification and testing of the content within the 

execution environment. Thus the development 

environment and the execution environments are the 

same, and the authoring environment provides the full 

experience of the building contents by itself. 

In the rest of the paper, we review previous work 

on authoring tangible augmented reality applications 

and interfaces that supported immersive authoring 

within immersive virtual reality environments. As a 

first step in developing the authoring environment, we 

analyzed the target application domain to define a 

Tangible AR application model to be used later in our 

authoring system. Based on this application model, we 

designed interaction methods for the authoring tasks 

and developed a prototype immersive authoring system. 

To illustrate the usability of this type of interface, we 



 

 

present several examples of Tangible AR applications 

built with our authoring system. In addition we 

compare our approach to a non-immersive authoring 

system in terms of the ease of use and task 

performance. 

 

2. Related work 
 

Creating an interactive virtual world consists of 

two major tasks. One is modeling the geometry (or 

form) of the virtual objects, and the other is describing 

the virtual object behaviors and interactions. 

Since it is a straightforward approach to use 3D 

interactions for modeling 3D geometries, there have 

been various attempts to construct (or model) a virtual 

world geometry within immersive virtual environments 

[4][13][15][20]. 

In contrast, there have been few attempts to define 

the behaviors while immersed in the virtual 

environment. Stiles and Pontecorvo [19] suggested a 

conceptual virtual reality system called ‘Lingua 

Graphica’ that uses visual languages to program the 

virtual environment itself. However, the system 

remained as a concept and was never implemented. 

Steed and Slater [18] developed a system that 

visualized the links of data flow between the virtual 

objects, making users able to manipulate them directly. 

Lee et al. [11] pointed out that behavior authoring 

tasks could also benefit from direct 3D interactions and 

proposed to use a programming by demonstration 

approach for authoring virtual object behaviors. 

There have also been some attempts to construct 

virtual worlds from within AR environments. 

Poupyrev et al. [17] suggested a rapid prototyping tool 

for modeling virtual aircraft cockpits. The system 

provided a set of virtual gauges and instruments that 

can be copied over physical tiles. The users were able 

to test the layout using an AR interface. Kato et al. [7] 

suggested a generic interaction method for 

manipulating virtual objects within AR environments. 

They also showed their interaction method working in 

an AR modeling system for arranging furniture in a 

virtual room. Piekarski and Thomas [16] suggested 3D 

geometry modeling techniques for outdoor AR systems. 

The modeling system was for constructing virtual 

representations of physical landmarks while 

investigating the outdoor scenery. However, all of this 

work focused on modeling forms (or geometry) of 

virtual worlds within AR environments, and did not 

address authoring behaviors and interactions. 

In contrast with previous researches that have 

focused on 2D desktop authoring and then testing in 

AR environment [5][6][14], our research is focused on 

developing an AR tool that enables users to author AR 

contents (especially, the behaviors and interactions) 

from ‘within’ the AR interface. One particularly 

valuable approach for such a tool is to base it on the 

Tangible AR design principles. We describe this 

further in the next section. 

 

3. Application domain analysis 
 

Tangible AR interfaces [8] are those in which 1) 

each virtual object is registered to a physical object 

and 2) the user interacts with virtual objects by 

manipulating the corresponding physical object. As the 

definition implies, there are mainly two kinds of 

entities in Tangible AR applications: virtual objects 

and physical objects. 

Virtual objects are the main entities that the users 

are interested in and want to interact with. They are 

visualized in various forms, such as 2D images or text 

and, of course, 3D geometries. On the other hand, 

physical objects serve as tangible interaction points on 

which the visualization of virtual objects are overlaid, 

and where the user inputs are sensed. Tangible AR 

applications typically use real physical objects as input 

devices. 

Since the interaction between virtual objects and 

the user is mediated by physical objects, there should 

be logical connections between the physical and virtual 

objects; physical objects that the user physically 

interacts with and virtual objects that the user virtually 

interacts with. In order to draw a virtual object 

registered on a physical object, the position and 

orientation data of physical objects are needed to be 

fed to the corresponding virtual objects. 

However, the connection between physical and 

virtual objects can be more than a direct mapping 

between their property values. For example, suppose 

that we want to change the size of a virtual object 

according to the proximity of the physical object to the 

user’s view. The distance should be obtained by 

calculating the norm of the relative position vector 

between them, and this requires a couple of arithmetic 

operations. To represent these logical (or arithmetic) 

operations, we introduce another type of entity named 

‘logic box.’ A logic box might represent a single 

logical (or arithmetic) operator, or even a complex 

behavior such as controlling joint angles of a virtual 

character. 

Putting all these features together, we suggest a 

component based application model for Tangible AR 

applications. In our model, a Tangible AR application 

is described with a number of components and 

connections between their properties. Using the data 

flow model to describe the user interface for virtual 

environments traces back to an early virtual reality 



 

 

program named Body Electric [10] from VPL. And it 

also agrees with the previous work of Steed and Slater 

[18] that investigated on the immersive authoring in a 

virtual environment. 

There are three types of components in our 

application model: the physical object, the virtual 

object and the logic box. Each component has a set of 

properties that represents the state of the component, 

and each of these properties differs between different 

component types. Each property has a specific data 

type and read/write attribute according to the features 

of the component it represents. For instance, the 

position property of a physical object has a vector type 

value that represents a three-dimensional coordinate. 

Its value can be read but can’t be modified freely, 

since it is determined by the physical location of the 

physical object. Table 1 summarizes the properties of 

each type of components. Properties of physical 

objects are mainly related to their tracking results. The 

visibility of the physical object represents whether the 

object is successfully tracked, and the transformation, 

position and orientation properties represent the 

physical pose of it. Virtual objects have similar 

properties with physical objects, while they have 

writable attributes, meaning they can be freely 

modified. Some virtual objects representing sound 

sources also have boolean properties for playing the 

sound, in addition. Properties of logic boxes vary from 

one another. They are determined by the logical 

functions that the logic box represents. For instance, a 

vector addition logic box might have two input and 

one output vector properties, while a logic box 

representing a motor like behavior might have only a 

single property that gives the rotation value as the time 

flows. 

Table 1. Properties of each type of component 

component 

type 
property name 

data 

type 
attribute

visible boolean r 

transformation matrix r 

position vector r 

physical 

object 

orientation vector r 

visible boolean r/w 

base 

transformation 
matrix r/w 

transformation matrix r/w 

position vector r/w 

orientation vector r/w 

scale scalar r/w 

virtual 

object 

play (optional) boolean r/w 

logic box - - - 

 

AR applications can be developed by connecting 

the components together. Properties of components 

can be connected to each other when they have 

compatible data types and attributes. For example, 

properties with scalar data types can be linked to those 

with scalar or boolean values, but cannot be linked to 

those with vectors, unless they are modified to a scalar 

value using a logic box. A property used as a target 

must be writable, while the readable attribute is 

sufficient for source properties. 

Once a property is linked to another, its value is 

updated according to the source property. For instance, 

a virtual object can be registered to a physical object 

simply by connecting the transformation attribute of 

the virtual object to that of the physical object. 

Typically, we introduce another property named ‘base 

transformation’ to virtual objects to represent the 

parent reference frame of the object. 

 

4. Immersive authoring design 
 

Given the application model, we now analyze the 

task requirements for authoring tangible augmented 

reality applications. After specifying these 

requirements, we describe our interaction design 

chosen to fulfill the requirements. 

 

4.1. Task analysis 
 

The authoring task can be regarded as building an 

application by describing it with the established 

application model, i.e. defining entities and filling out 

their property values declared in the model. Since our 

application model is a component based one, the main 

authoring task will be manipulating the components. 

Table 2 summarizes the main tasks and their subtasks 

for manipulating components. 

Table 2. Main tasks of component manipulation 

Main task Subtasks 

Create Select type 

Destroy Select a component to destroy 

Modify Select a component to modify 

Browse & select a property 

Change the value of the property 

Connect 

(or Link) 

Select components to connect 

Browse & select properties 

Connect/disconnect the properties 

 

The most basic tasks are creating and destroying 

the components. For creating a component, the user 

needs a way to specify the type of the component s/he 

wants to create. Users need to browse through a list 

showing what kind of components they can define. 



 

 

This requires a menu-like interface to a set of items 

that users could browse through before choosing one 

of them. Some vital components, such as pre-defined 

physical objects, could exist without the need for being 

explicitly created. These components will be provided 

to the user from the beginning of the authoring process 

and the users would be able to use them immediately. 

Destroying a component requires the ability to select a 

component. Users need to select a component which 

they want to destroy, and this requires an interface for 

pointing to or selecting a specific virtual object. 

The created components may need to be modified 

to complete the AR application. According to the 

component model described in section 3, modifying a 

component is simply changing its property values. 

Prior to changing the component property value, a user 

needs to select the component and its property that s/he 

wants to change. This requires an interface for 

browsing over the list of properties and their values. 

After the property is selected, users need to specify a 

new value for it. The interface for specifying a 

component property value may vary according to the 

data type of the property. For example, simple scalar 

values are easy enough to modify with buttons or 

keypads while 3D transformations may be more 

conveniently modified with direct manipulation. 

The last main task of component manipulation is to 

connect their properties with each other. Similar to 

changing the property values, users first need to select 

components and the properties they want to connect or 

disconnect. Hence, the same interface could be reused 

for selecting properties, while a new interaction 

method is needed for specifying the status of their 

connection. 

 

4.2. Design guidelines 
 

Prior to designing the interaction methods for our 

tangible authoring interface, we begin by presenting 

design guidelines for immersive authoring systems. 

First of all, the most important feature of an 

immersive authoring system is the concept of ‘What 

You Feel Is What You Get (WYFIWYG).’ This refers to 

the ability to feel all the sensory elements (visual, aural, 

and other elements if there are any) of the final content 

as it is being constructed. The main point of immersive 

authoring is to be able to experience the virtual worlds 

while they are being built. Therefore, immersive 

authoring systems are presumed to provide fast (or 

even concurrent) evaluation of the resulting content, 

a.k.a. WYFIWYG. 

Taking advantage of direct 3D manipulation is the 

next guideline for designing interactions for immersive 

authoring. Since the augmented reality environment 

implies interaction in three-dimensional real space, 

direct 3D manipulation of virtual objects is easy and 

efficient within immersive authoring AR environments. 

The third guideline is to maintain the application 

model transparency. Although direct manipulations are 

efficient for three-dimensional object manipulations, 

they might hide the details of the underlying 

application model. Users may need to explicitly assign 

specific values, such as the X coordinate of the object 

position, as well as to grab and drop it directly in the 

position and orientation they want to place it. 

Therefore, the system must provide transparent 

interfaces (or interaction methods) that show the 

details of the underlying application model, so that the 

users will have the ability to directly manipulate them. 

Finally, the interaction methods and interfaces for 

immersive authoring must be as similar as possible to 

the ones used in the target application domain being 

authored. We refer to this property as consistency. 

Adding different interfaces to the authoring 

environment implies context switching of the 

developers’ mental activity, and might distract their 

attention, delaying the development process. 

Distracting the user’s attentions might not only cause 

temporal delays to the development process, but also 

degrade the quality of the authoring virtual world. For 

instance, the presence, one of the most important 

quality measures of virtual (or augmented) 

environments, is degraded by distractions and makes it 

hard for developers to fully experience the authored 

virtual world and correctly evaluate it. Therefore, it is 

highly recommended to use similar (or at least non-

conflicting) interfaces with the target application 

domain. 

 

4.3. Interaction design 
 

In this section we illustrate our suggested 

interaction designs for each of the subtasks from Table 

2. In order to maintain the consistency between the 

authoring environment and the final application, we 

avoided introducing new environmental setups. Instead, 

we only introduced props for the authoring task that 

can be used in the same environment with general 

Tangible AR applications. The physical props are 

simple pads and cubes that are commonly used in 

Tangible AR applications. Figure 1 shows three basic 

props used for the authoring task: a component 

browser, a manipulator and a disposer. Since only 

these props are added to the tangible AR application 

being built, the users are guaranteed to concurrently 

experience the final application without any 

disturbance throughout the development task, and this 

meets the ‘WYFIWYG’ design guideline. 



 

 

For creating a new virtual object component (or 

logic box components), users need to select the type of 

virtual object they want to create. The component 

browser provides a physical interface for browsing 

over available 3D virtual objects and selecting the 

desired one. Users can browse over the models one by 

one, by pressing (pointing) [12] the arrow buttons on 

the both sides of the browser. To create a new virtual 

object, users point at the target 3D model for a second 

with the cube manipulator (shown in Figure 2). 

 

Figure 1. The props for authoring task: component 

browser, manipulator and disposer 

 

Figure 2. Creating a new virtual object 

After a virtual object is selected with the 

manipulator prop, it moves according to the movement 

of the manipulator. The selected virtual object is kept 

in a fixed position relative to the manipulator when it 

is selected, and rotates according to the pose of the 

manipulator. To release (or unselect) the virtual object, 

the user simply needs to hide the manipulator for a 

couple of seconds. The virtual object will remain in the 

last position and orientation where it was placed. This 

interaction was designed following the notion of the 

‘drag and drop’ metaphor, which is one of the most 

well known direct manipulation methods in 2D 

desktop graphical user interfaces. 

The picking up and dropping interaction method is 

used for destroying objects, as well as for placing (or 

modifying) them. The upper row of the Figure 3 shows 

moving a virtual object from one physical object to 

another, while the lower row shows destroying it by 

dropping on the disposer prop. 

 

Figure 3. Pick & drop interaction for moving and 

destroying virtual objects 

Although picking up an object and dropping it on a 

desired position and orientation takes advantage of the 

direct 3D manipulation, it hides the details of how the 

underlying application model is affected: the base 

transformation and visible properties of the moved 

virtual object are connected to the transformation and 

the visible properties of the physical object where the 

object is dropped, and the position and the orientation 

properties of the virtual object are changed in order to 

place the virtual object in an appropriate position 

relative to the physical object. Therefore to provide the 

model transparency, two more types of interfaces, 

inspector pads and keypads, were added. These 

elements provide detailed information about the 

selected components and let the users tweak them (see 

Figure 4). 

 

Figure 4. Inspector pad and keypad 



 

 

The interaction for selecting and deselecting a 

component with an inspector pad is similar to that of 

manipulators: pointing at a component for a second 

with the probe and hiding the interface. While the 

manipulators are only allowed to select virtual object 

components, users can also select physical objects with 

the inspector pads. 

Once a component is selected, the inspector pad 

shows the properties and their values of the selected 

component (see Figure 5). The users can browse 

through the properties by holding and manipulating the 

inspector pad. The list of properties shows up when the 

inspector pad is close enough to the users’ view, and 

the list can be scrolled up and down by tilting the 

inspector pad up and down. The property displayed on 

the middle of the inspector pad is selected when the 

inspector pad is moved away, and the inspector pad 

shows the value of the selected property. The display 

format of the value is changed according to its data 

type, and the read/write attributes are represented by 

the green arrows on each side of the inspector pad. 

 

 

Figure 5. Browsing through the properties and their 

values of a component with an inspector pad 

To change the value of the selected property, users 

can use a keypad together with the inspector pad. Since 

most of the properties can be represented by numeric 

values, keypads are used for providing an input 

method for these. We designed a keypad using 

occlusion based interaction [12], the same interaction 

method applied to the model browser. A number of 

visual markers used for tracking the prop are also used 

for the button pressing interaction. Figure 4 shows an 

instance of the keypads that has ‘+/-’ buttons together 

with a unit selection button on the middle. Users can 

select the unit between 0.1, 1 and 10, and by pressing 

the ‘+/-’ buttons, the value is raised or lowered by the 

selected unit. To change the value of the property 

selected on the inspector pad, the user connects the 

keypad to the inspector pad, and operates the keypad to 

modify the value. Figure 6 shows an example of using 

an inspector pad and a keypad to change the scaling 

property of a cube virtual object component. 

 

 

Figure 6. Changing scale property value with an 

inspector pad and a keypad 

Connecting object properties implies selection of 

multiple properties. Instead of introducing another 

selection method, here we simply duplicated the 

inspector pad to select two object properties being 

connected. 

The interaction method for connecting two selected 

properties can be designed in a various ways. We’ve 

first tried to directly map the logical connection 

between properties to the physical connection between 

inspector pads with puzzle cut edges. Although the 

physical connection worked as an easy and intuitive 

input method, it was not feasible to use it for 

displaying the current connection status, since they 

were not controllable in an automatic manner. In 

addition, direct mapping of physical and logical 

connections was poor to prevent incompatible 

connections, e.g. connecting properties with 

incompatible data types or attributes. To solve these 

problems, we’ve altered the interaction design to 

toggle between connected and disconnected states 

when two edges of inspector pads were contacted. 

Each vertical edge of the inspector pads were used as 

an input and output port of the selected property. And 

by contacting these edges together, a link was made (or 

destroyed) between them if the selected properties 

were compatible. The same method was used for 

connecting keypads and inspector pads (see Figure 6). 

Figure 7 shows an example of connecting 

properties of two components. The visibility property 

of a virtual fish is connected to the same property of a 

physical paddle, making the fish disappear when the 

paddle is hidden by the user’s hand. 



 

 

 

Figure 7. Connecting properties 

 

5. Implementation 
 

The authoring system described in this paper was 

developed on a consumer level personal computer. The 

computer was running Windows XP operating system 

on a Pentium 4 processor with 1GB main memory. A 

GeForce4 3D graphics card from NVIDIA was used to 

accelerate the OpenGL graphics processing. 

For tracking physical objects, we used a vision 

based tracking method. The ARToolKit [1] software 

library was used for calculating the 3D position and 

orientation of the visual markers, and a plain USB web 

camera from Logitech was used to acquire video 

images for the tracking. The capturing resolution was 

set to 320x240 and the shutter speed was 30 frames per 

second. The camera was mounted on a head mounted 

display to provide a real world view to the user, 

forming a video see-through AR configuration. 

We used our custom 3D model loader, based on the 

OpenGL library, to visualize the 3D graphics contents 

and the virtual authoring tools. To make the interaction 

easier for selecting components with the manipulator 

and inspector pads, bounding boxes are visualized 

around the component objects, and their colors are 

changed according to their status: normal, pointed and 

selected. These bounding boxes are only shown when 

there are authoring props within the user’s view. 

 

6. Case studies and discussion 
 

6.1. Development cases 
 

To show the efficiency and feasibility of using our 

immersive authoring method, we have constructed 

several example Tangible AR applications. 

The first example is a simple scene with a windmill 

(see Figure 8). The scene consists of three virtual 

objects: the ground, a tower and a vane. It took about a 

minute to place the virtual objects and check that every 

thing was placed in the right place. A logic box 

representing a rotation behavior was used to specify 

the vane to spin around. The logic box was set 

invisible for viewing. It totally took less than 3 minutes 

total to construct the whole scene, connect the 

properties to define the behavior, and to validate the 

final product. 

 

Figure 8. An example application with animation 

In addition to passive animations of virtual objects, 

interactive features can also be added. Figure 9 shows 

a sequence of images, constructing an interactive 

Tangible AR application similar to the Shared Space 

application [2]. The application shows two tiles with a 

virtual object on each, a hare and a tortoise for 

example. The user can examine the virtual objects by 

manipulating the tiles on which they are anchored. 

When two tiles are brought close together, different 

models are shown, such as the hare and the tortoise 

greeting each other (see the last row of Figure 9). 

 

Figure 9. An interactive Tangible AR application 

To build this application, four virtual objects were 

needed: the normal and greeting posed models for the 

hare and tortoise. First, the virtual objects were placed 

on two physical tiles, one for the hare and another for 

the tortoise. The visibilities of the virtual objects were 

controlled by the proximity value of the physical tiles. 

In order to check the distance and to control the 

visibilities, we used a logic box with a special function. 

The logic box had two input properties of position, and 

output properties with a boolean value that represented 

whether the two input positions were close enough or 

not. By connecting position properties of the two tiles 

to the logic box input, and connecting ‘near’ and ‘far’ 

boolean output properties of the logic box to four 

virtual objects’ visibility, properly, the application was 

completed. About 5 minutes were needed for building 

and testing the whole application. 



 

 

The last example application is an interactive 

storytelling book application, similar to the 

MagicBook [3] (see Figure 10). We used one of the 

popular stories of Aesop, ‘The race between a hare and 

a tortoise.’ The story consists of three main scenes: 

starting the race, the hare taking a nap and the tortoise 

winning. To add interactivity to the story line, we 

made a decision point on the second scene to let the 

users choose whether the hare should sleep or not. 

According to the user’s decision, the winner on the last 

scene would be determined differently. 

Thirteen pre-modeled 3D objects were brought in 

and three sheets of paper with printed markers were 

used as the book pages. To implement the interactive 

feature, special properties for occlusion based 

interaction were added to the physical object 

component: a set of boolean valued properties 

indicating which button (i.e. marker) was pressed (for 

the last). These properties were connected to the 

visibility of the characters placed on the final scene, 

selecting different endings of the story according to the 

user’s decision. It took about 15 minutes to construct 

the scenes and to connect object properties for 

implementing the interaction. 

 

Figure 10. An interactive storytelling application 

 

6.2. User Study 
 

We have conducted a pilot usability test of our 

authoring interface. The test has been held at the end 

of a series of workshops in which participants learned 

3D modeling. Each of these workshops ran for 3-4 

days, and the participants were children (9-14 years 

old) and their parents. In these workshops, the 

participants created virtual contents and then used our 

authoring tool to add these contents to an AR scene. It 

should be noted that the participants were not experts 

in programming or 3D modeling, and had not 

experienced augmented reality before. Despite this, 

they were all able to create an AR scene by the end of 

the workshop. The participants responded they 

couldn’t believe that it could be so easy to create AR 

scenes and they particularly enjoyed using the 

immersive authoring interface to manipulate their 

models. 

The user study was to compare the usability of our 

immersive authoring tool with another desktop AR 

authoring tool, CATOMIR [21]. The main aims of the 

study were to find out how these authoring tools would 

be accepted by the users, how efficient each of them 

would be for the participants to use, and where both of 

them were showing usability faults and how to get rid 

of them. 

Similar to our immersive authoring tool, 

CATOMIR is also aimed to allow non-programmers to 

create AR applications. It is also based on a similar 

component based model to represent the AR contents. 

However, it uses more traditional mouse, keyboard and 

desktop screen-based interfaces. Users can create 

components by selecting them from a list in 2D 

graphical user interface. The property values of a 

component can be investigated and modified with a 

dialog box styled interface. Users can also link the 

properties by dragging between the two properties they 

want to connect, e.g. visibility properties of the 

tracking marker component and the 3D geometry 

component. Positioning and rotating the virtual objects 

can be achieved with a dialog box interfaces where the 

user types in the numeric values or pushes +/- buttons 

to change the transformation values. In addition, it also 

provides a simple assistant tangible prop for translating 

and rotating task. However, users still need the mouse 

to set the mode (translation or rotation) and the axis 

while using the assistant prop. After constructing a 

compound of components in a 2D desktop authoring 

environment, users can run and test their application 

with the AR interface. 

There were 24 participants (16 male and 8 female), 

ranging in age from 9 to 50 years who were novices in 

3D graphics and programming. The participants had a 

training phase before the test, where they trained on 

each authoring tool until they were confident in using 

it. During the training phase the participants learnt to 

create an AR scene by loading 3D models, placing 

them on a specific marker and bringing it into a 

specific position. Each participant tried the authoring 

tools in a different sequence to prevent the study being 

influenced by their previous experiences. After they 

were comfortable with using the tools, the task for the 

main test was given. 



 

 

Each participant used both tools and was given the 

same test task with each, although with different 

contents (3D models). The task was to load a specific 

model, to put it onto a specific marker and to bring it 

into a specific position, which they’ve practiced during 

the training phase. 

The time for the task completion was measured and 

the number of errors was counted. After performing 

the tasks the participants were asked to fill in a 

questionnaire and answer interview questions. The 

questions were to gather further information about 

where problems with the programs occurred, which 

tool they preferred and how they felt about using each 

tool. 

The average speed for the whole task participants 

who used our immersive authoring tool were on 

average 25% faster than with the CATOMIR (see 

Figure 11). A t-test for dependent samples for iaTAR 

(M=3:53, SD=2.24) and CATOMIR (M=5:05, 

SD=2.97) turned out significantly different (t(23)=2.84, 

p=0.00094). 

 

Figure 11. Duration of tasks for each tools 

The number of mistakes while using the immersive 

authoring tool was 21, of which none required any 

help from the observer to correct them. In comparison, 

with the desktop authoring interface, the total was 36 

mistakes, 21 of which couldn’t be solved by the 

participants themselves. We consider this result shows 

that the immersive authoring tool is more intuitive for 

the users that it is easy to learn and use. 

When asked about the users’ preference, 42% of 

subjects (10 users) said they preferred using the 

immersive interface, while 33 % (8 users) said they 

would appreciate a mixture of both types, which 

allows the user to swap between different modes 

(traditional mouse-keyboard input and new Tangible 

AR interface). Only 25 % (6 users) said they would 

want to keep the mouse-keyboard interaction. 

Although the test showed the efficiency and 

easiness of using immersive authoring interfaces for 

overall layout tasks, in the user interview, precise 

controls requiring numeric inputs still appeared to be 

more convenient with the 2D desktop user interfaces. 

However, the Tangible AR interfaces were much 

preferred for the tasks that include 3D spatial 

understandings, such as 3D rotations. 

Convinced with the pilot user study, we are 

planning to conduct more specific user studies to 

investigate more detailed features of the immersive 

authoring approach. 

 

6.3. Discussion 
 

Through the cases of example application 

development and the user study, the proposed 

immersive authoring system appeared to be efficient 

and easy to use, yet feasible enough to create various 

Tangible AR applications. The concurrent testing with 

implementation throughout the development process 

appeared to be helping the developers on reducing the 

time for switching between implementation and testing 

phase. 

However, currently provided logic boxes by the 

authoring system were not comprehensive enough for 

building applications with complex behaviors. In order 

to build applications with more complicated behaviors 

(or interactions), various logic box components would 

be necessary. A library of various logical entities is 

expected to be added to the authoring tool. In addition, 

we are also investigating interaction techniques in 

which users build their own custom logic boxes within 

the authoring environment and add them to the library 

for the later use. 

 

7. Conclusion and future works 
 

In this paper, we suggested an immersive authoring 

method for Tangible AR applications and described 

our implementation of a prototype authoring system to 

show its feasibility. The system used a component 

based application model and interaction methods, 

designed through analyzing the application domain. A 

number of development cases were described to show 

that our authoring system provides an efficient and 

easy way for constructing Tangible AR applications. 

Although the data flow model between components 

covered the basic functions of Tangible AR 

applications, we also plan to investigate other behavior 

models such as event driven models for future support. 

We are also investigating inclusion of motion capture 

functions, so that the users could describe complicated 

animations by demonstration. 

Other interaction methods for authoring tasks are 

also in need of testing. For instance, we are expecting 

natural gestures for controlling and authoring virtual 

object behaviors. Using keyboards and other 



 

 

conventional user interfaces within AR systems for 

programming tasks is another interesting topic. 

With additional research on application models and 

interactions, the authors are convinced that immersive 

authoring has a bright future as a development method 

for augmented reality applications. 
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