

Immersive Authoring of Tangible Augmented Reality Applications

Gun A. Lee
 α

 Claudia Nelles
 β
 Mark Billinghurst

 β
 Gerard Jounghyun Kim

 α

α
 Virtual Reality Laboratory, Pohang University of Science and Technology

β
 Human Interface Technology Laboratory New Zealand, University of Canterbury

α
 {endovert, gkim}@postech.ac.kr

β
 {claudia.nelles, mark.billinghurst}@hitlabnz.org

Abstract
In this paper we suggest a new approach for

authoring tangible augmented reality applications,

called ‘immersive authoring.’ The approach allows

the user to carry out the authoring tasks within the AR

application being built, so that the development and

testing of the application can be done concurrently

throughout the development process. We describe the

functionalities and the interaction design for the

proposed authoring system that are specifically

targeted for intuitive specification of scenes and

various object behaviors. Several cases of applications

developed using the authoring system are presented. A

small pilot user study was conducted to compare the

proposed method to a non-immersive approach, and

the results have shown that the users generally found it

easier and faster to carry out authoring tasks in the

immersive environment.

1. Introduction

In recent years augmented reality (AR) has

emerged as an important medium for education and

entertainment. As the number of people building AR

applications grows, it becomes increasingly apparent

that a need exists for more efficient development tools.

Most current AR applications are built using low level

programming with dedicated tracking and graphics

libraries, rather than from concrete “components” that

content developers or artists are more used to. In this

paper we describe a high level toolkit that enables

rapid development of AR applications with no

programming.

Our toolkit is based on the Tangible AR input

metaphor. Tangible AR [8] is an approach that

combines tangible user interface [9] input methods

with AR display and output. In this way the virtual

content in the AR interfaces can be manipulated using

physical objects, making these interfaces extremely

intuitive. For example, in the VOMAR interface [7] a

real paddle is used to pick up and place virtual

furniture in a simple scene assembly program. Even

complete novices were able to use the VOMAR

application with ease.

Tangible AR interfaces rely on accurate tracking of

real objects. To achieve this we use the ARToolKit [1]

computer vision tracking library which can calculate

the position and orientation of a camera relative to

square fiducial markers. ARToolKit makes the

development of Tangible AR applications easier, yet it

is still a software library that requires programming

skills to be used. In contrast, desktop interactive

multimedia contents can be easily built using various

authoring tools, such as the Microsoft PowerPoint, or

the Macromedia Director and Flash. These tools do not

require the user to be an experienced programmer.

Programs such as PowerPoint are relatively easy to

use because they incorporate direct manipulation input

with WYSIWYG (What You See Is What You Get)

output. First used for desktop publishing, WYSIWYG

editing is incorporated into most 2D authoring systems,

providing fast, concurrent evaluation of the layout.

The aim of our research is to develop an AR

authoring interface that is as easy to use as desktop

WYSIWYG interfaces. Our authoring tool uses

Tangible AR interaction techniques and an authoring

method called ‘immersive authoring’. Immersive

authoring is an authoring method that allows the direct

specification and testing of the content within the

execution environment. Thus the development

environment and the execution environments are the

same, and the authoring environment provides the full

experience of the building contents by itself.

In the rest of the paper, we review previous work

on authoring tangible augmented reality applications

and interfaces that supported immersive authoring

within immersive virtual reality environments. As a

first step in developing the authoring environment, we

analyzed the target application domain to define a

Tangible AR application model to be used later in our

authoring system. Based on this application model, we

designed interaction methods for the authoring tasks

and developed a prototype immersive authoring system.

To illustrate the usability of this type of interface, we

present several examples of Tangible AR applications

built with our authoring system. In addition we

compare our approach to a non-immersive authoring

system in terms of the ease of use and task

performance.

2. Related work

Creating an interactive virtual world consists of

two major tasks. One is modeling the geometry (or

form) of the virtual objects, and the other is describing

the virtual object behaviors and interactions.

Since it is a straightforward approach to use 3D

interactions for modeling 3D geometries, there have

been various attempts to construct (or model) a virtual

world geometry within immersive virtual environments

[4][13][15][20].

In contrast, there have been few attempts to define

the behaviors while immersed in the virtual

environment. Stiles and Pontecorvo [19] suggested a

conceptual virtual reality system called ‘Lingua

Graphica’ that uses visual languages to program the

virtual environment itself. However, the system

remained as a concept and was never implemented.

Steed and Slater [18] developed a system that

visualized the links of data flow between the virtual

objects, making users able to manipulate them directly.

Lee et al. [11] pointed out that behavior authoring

tasks could also benefit from direct 3D interactions and

proposed to use a programming by demonstration

approach for authoring virtual object behaviors.

There have also been some attempts to construct

virtual worlds from within AR environments.

Poupyrev et al. [17] suggested a rapid prototyping tool

for modeling virtual aircraft cockpits. The system

provided a set of virtual gauges and instruments that

can be copied over physical tiles. The users were able

to test the layout using an AR interface. Kato et al. [7]

suggested a generic interaction method for

manipulating virtual objects within AR environments.

They also showed their interaction method working in

an AR modeling system for arranging furniture in a

virtual room. Piekarski and Thomas [16] suggested 3D

geometry modeling techniques for outdoor AR systems.

The modeling system was for constructing virtual

representations of physical landmarks while

investigating the outdoor scenery. However, all of this

work focused on modeling forms (or geometry) of

virtual worlds within AR environments, and did not

address authoring behaviors and interactions.

In contrast with previous researches that have

focused on 2D desktop authoring and then testing in

AR environment [5][6][14], our research is focused on

developing an AR tool that enables users to author AR

contents (especially, the behaviors and interactions)

from ‘within’ the AR interface. One particularly

valuable approach for such a tool is to base it on the

Tangible AR design principles. We describe this

further in the next section.

3. Application domain analysis

Tangible AR interfaces [8] are those in which 1)

each virtual object is registered to a physical object

and 2) the user interacts with virtual objects by

manipulating the corresponding physical object. As the

definition implies, there are mainly two kinds of

entities in Tangible AR applications: virtual objects

and physical objects.

Virtual objects are the main entities that the users

are interested in and want to interact with. They are

visualized in various forms, such as 2D images or text

and, of course, 3D geometries. On the other hand,

physical objects serve as tangible interaction points on

which the visualization of virtual objects are overlaid,

and where the user inputs are sensed. Tangible AR

applications typically use real physical objects as input

devices.

Since the interaction between virtual objects and

the user is mediated by physical objects, there should

be logical connections between the physical and virtual

objects; physical objects that the user physically

interacts with and virtual objects that the user virtually

interacts with. In order to draw a virtual object

registered on a physical object, the position and

orientation data of physical objects are needed to be

fed to the corresponding virtual objects.

However, the connection between physical and

virtual objects can be more than a direct mapping

between their property values. For example, suppose

that we want to change the size of a virtual object

according to the proximity of the physical object to the

user’s view. The distance should be obtained by

calculating the norm of the relative position vector

between them, and this requires a couple of arithmetic

operations. To represent these logical (or arithmetic)

operations, we introduce another type of entity named

‘logic box.’ A logic box might represent a single

logical (or arithmetic) operator, or even a complex

behavior such as controlling joint angles of a virtual

character.

Putting all these features together, we suggest a

component based application model for Tangible AR

applications. In our model, a Tangible AR application

is described with a number of components and

connections between their properties. Using the data

flow model to describe the user interface for virtual

environments traces back to an early virtual reality

program named Body Electric [10] from VPL. And it

also agrees with the previous work of Steed and Slater

[18] that investigated on the immersive authoring in a

virtual environment.

There are three types of components in our

application model: the physical object, the virtual

object and the logic box. Each component has a set of

properties that represents the state of the component,

and each of these properties differs between different

component types. Each property has a specific data

type and read/write attribute according to the features

of the component it represents. For instance, the

position property of a physical object has a vector type

value that represents a three-dimensional coordinate.

Its value can be read but can’t be modified freely,

since it is determined by the physical location of the

physical object. Table 1 summarizes the properties of

each type of components. Properties of physical

objects are mainly related to their tracking results. The

visibility of the physical object represents whether the

object is successfully tracked, and the transformation,

position and orientation properties represent the

physical pose of it. Virtual objects have similar

properties with physical objects, while they have

writable attributes, meaning they can be freely

modified. Some virtual objects representing sound

sources also have boolean properties for playing the

sound, in addition. Properties of logic boxes vary from

one another. They are determined by the logical

functions that the logic box represents. For instance, a

vector addition logic box might have two input and

one output vector properties, while a logic box

representing a motor like behavior might have only a

single property that gives the rotation value as the time

flows.

Table 1. Properties of each type of component

component

type
property name

data

type
attribute

visible boolean r

transformation matrix r

position vector r

physical

object

orientation vector r

visible boolean r/w

base

transformation
matrix r/w

transformation matrix r/w

position vector r/w

orientation vector r/w

scale scalar r/w

virtual

object

play (optional) boolean r/w

logic box - - -

AR applications can be developed by connecting

the components together. Properties of components

can be connected to each other when they have

compatible data types and attributes. For example,

properties with scalar data types can be linked to those

with scalar or boolean values, but cannot be linked to

those with vectors, unless they are modified to a scalar

value using a logic box. A property used as a target

must be writable, while the readable attribute is

sufficient for source properties.

Once a property is linked to another, its value is

updated according to the source property. For instance,

a virtual object can be registered to a physical object

simply by connecting the transformation attribute of

the virtual object to that of the physical object.

Typically, we introduce another property named ‘base

transformation’ to virtual objects to represent the

parent reference frame of the object.

4. Immersive authoring design

Given the application model, we now analyze the

task requirements for authoring tangible augmented

reality applications. After specifying these

requirements, we describe our interaction design

chosen to fulfill the requirements.

4.1. Task analysis

The authoring task can be regarded as building an

application by describing it with the established

application model, i.e. defining entities and filling out

their property values declared in the model. Since our

application model is a component based one, the main

authoring task will be manipulating the components.

Table 2 summarizes the main tasks and their subtasks

for manipulating components.

Table 2. Main tasks of component manipulation

Main task Subtasks

Create Select type

Destroy Select a component to destroy

Modify Select a component to modify

Browse & select a property

Change the value of the property

Connect

(or Link)

Select components to connect

Browse & select properties

Connect/disconnect the properties

The most basic tasks are creating and destroying

the components. For creating a component, the user

needs a way to specify the type of the component s/he

wants to create. Users need to browse through a list

showing what kind of components they can define.

This requires a menu-like interface to a set of items

that users could browse through before choosing one

of them. Some vital components, such as pre-defined

physical objects, could exist without the need for being

explicitly created. These components will be provided

to the user from the beginning of the authoring process

and the users would be able to use them immediately.

Destroying a component requires the ability to select a

component. Users need to select a component which

they want to destroy, and this requires an interface for

pointing to or selecting a specific virtual object.

The created components may need to be modified

to complete the AR application. According to the

component model described in section 3, modifying a

component is simply changing its property values.

Prior to changing the component property value, a user

needs to select the component and its property that s/he

wants to change. This requires an interface for

browsing over the list of properties and their values.

After the property is selected, users need to specify a

new value for it. The interface for specifying a

component property value may vary according to the

data type of the property. For example, simple scalar

values are easy enough to modify with buttons or

keypads while 3D transformations may be more

conveniently modified with direct manipulation.

The last main task of component manipulation is to

connect their properties with each other. Similar to

changing the property values, users first need to select

components and the properties they want to connect or

disconnect. Hence, the same interface could be reused

for selecting properties, while a new interaction

method is needed for specifying the status of their

connection.

4.2. Design guidelines

Prior to designing the interaction methods for our

tangible authoring interface, we begin by presenting

design guidelines for immersive authoring systems.

First of all, the most important feature of an

immersive authoring system is the concept of ‘What

You Feel Is What You Get (WYFIWYG).’ This refers to

the ability to feel all the sensory elements (visual, aural,

and other elements if there are any) of the final content

as it is being constructed. The main point of immersive

authoring is to be able to experience the virtual worlds

while they are being built. Therefore, immersive

authoring systems are presumed to provide fast (or

even concurrent) evaluation of the resulting content,

a.k.a. WYFIWYG.

Taking advantage of direct 3D manipulation is the

next guideline for designing interactions for immersive

authoring. Since the augmented reality environment

implies interaction in three-dimensional real space,

direct 3D manipulation of virtual objects is easy and

efficient within immersive authoring AR environments.

The third guideline is to maintain the application

model transparency. Although direct manipulations are

efficient for three-dimensional object manipulations,

they might hide the details of the underlying

application model. Users may need to explicitly assign

specific values, such as the X coordinate of the object

position, as well as to grab and drop it directly in the

position and orientation they want to place it.

Therefore, the system must provide transparent

interfaces (or interaction methods) that show the

details of the underlying application model, so that the

users will have the ability to directly manipulate them.

Finally, the interaction methods and interfaces for

immersive authoring must be as similar as possible to

the ones used in the target application domain being

authored. We refer to this property as consistency.

Adding different interfaces to the authoring

environment implies context switching of the

developers’ mental activity, and might distract their

attention, delaying the development process.

Distracting the user’s attentions might not only cause

temporal delays to the development process, but also

degrade the quality of the authoring virtual world. For

instance, the presence, one of the most important

quality measures of virtual (or augmented)

environments, is degraded by distractions and makes it

hard for developers to fully experience the authored

virtual world and correctly evaluate it. Therefore, it is

highly recommended to use similar (or at least non-

conflicting) interfaces with the target application

domain.

4.3. Interaction design

In this section we illustrate our suggested

interaction designs for each of the subtasks from Table

2. In order to maintain the consistency between the

authoring environment and the final application, we

avoided introducing new environmental setups. Instead,

we only introduced props for the authoring task that

can be used in the same environment with general

Tangible AR applications. The physical props are

simple pads and cubes that are commonly used in

Tangible AR applications. Figure 1 shows three basic

props used for the authoring task: a component

browser, a manipulator and a disposer. Since only

these props are added to the tangible AR application

being built, the users are guaranteed to concurrently

experience the final application without any

disturbance throughout the development task, and this

meets the ‘WYFIWYG’ design guideline.

For creating a new virtual object component (or

logic box components), users need to select the type of

virtual object they want to create. The component

browser provides a physical interface for browsing

over available 3D virtual objects and selecting the

desired one. Users can browse over the models one by

one, by pressing (pointing) [12] the arrow buttons on

the both sides of the browser. To create a new virtual

object, users point at the target 3D model for a second

with the cube manipulator (shown in Figure 2).

Figure 1. The props for authoring task: component

browser, manipulator and disposer

Figure 2. Creating a new virtual object

After a virtual object is selected with the

manipulator prop, it moves according to the movement

of the manipulator. The selected virtual object is kept

in a fixed position relative to the manipulator when it

is selected, and rotates according to the pose of the

manipulator. To release (or unselect) the virtual object,

the user simply needs to hide the manipulator for a

couple of seconds. The virtual object will remain in the

last position and orientation where it was placed. This

interaction was designed following the notion of the

‘drag and drop’ metaphor, which is one of the most

well known direct manipulation methods in 2D

desktop graphical user interfaces.

The picking up and dropping interaction method is

used for destroying objects, as well as for placing (or

modifying) them. The upper row of the Figure 3 shows

moving a virtual object from one physical object to

another, while the lower row shows destroying it by

dropping on the disposer prop.

Figure 3. Pick & drop interaction for moving and

destroying virtual objects

Although picking up an object and dropping it on a

desired position and orientation takes advantage of the

direct 3D manipulation, it hides the details of how the

underlying application model is affected: the base

transformation and visible properties of the moved

virtual object are connected to the transformation and

the visible properties of the physical object where the

object is dropped, and the position and the orientation

properties of the virtual object are changed in order to

place the virtual object in an appropriate position

relative to the physical object. Therefore to provide the

model transparency, two more types of interfaces,

inspector pads and keypads, were added. These

elements provide detailed information about the

selected components and let the users tweak them (see

Figure 4).

Figure 4. Inspector pad and keypad

The interaction for selecting and deselecting a

component with an inspector pad is similar to that of

manipulators: pointing at a component for a second

with the probe and hiding the interface. While the

manipulators are only allowed to select virtual object

components, users can also select physical objects with

the inspector pads.

Once a component is selected, the inspector pad

shows the properties and their values of the selected

component (see Figure 5). The users can browse

through the properties by holding and manipulating the

inspector pad. The list of properties shows up when the

inspector pad is close enough to the users’ view, and

the list can be scrolled up and down by tilting the

inspector pad up and down. The property displayed on

the middle of the inspector pad is selected when the

inspector pad is moved away, and the inspector pad

shows the value of the selected property. The display

format of the value is changed according to its data

type, and the read/write attributes are represented by

the green arrows on each side of the inspector pad.

Figure 5. Browsing through the properties and their

values of a component with an inspector pad

To change the value of the selected property, users

can use a keypad together with the inspector pad. Since

most of the properties can be represented by numeric

values, keypads are used for providing an input

method for these. We designed a keypad using

occlusion based interaction [12], the same interaction

method applied to the model browser. A number of

visual markers used for tracking the prop are also used

for the button pressing interaction. Figure 4 shows an

instance of the keypads that has ‘+/-’ buttons together

with a unit selection button on the middle. Users can

select the unit between 0.1, 1 and 10, and by pressing

the ‘+/-’ buttons, the value is raised or lowered by the

selected unit. To change the value of the property

selected on the inspector pad, the user connects the

keypad to the inspector pad, and operates the keypad to

modify the value. Figure 6 shows an example of using

an inspector pad and a keypad to change the scaling

property of a cube virtual object component.

Figure 6. Changing scale property value with an

inspector pad and a keypad

Connecting object properties implies selection of

multiple properties. Instead of introducing another

selection method, here we simply duplicated the

inspector pad to select two object properties being

connected.

The interaction method for connecting two selected

properties can be designed in a various ways. We’ve

first tried to directly map the logical connection

between properties to the physical connection between

inspector pads with puzzle cut edges. Although the

physical connection worked as an easy and intuitive

input method, it was not feasible to use it for

displaying the current connection status, since they

were not controllable in an automatic manner. In

addition, direct mapping of physical and logical

connections was poor to prevent incompatible

connections, e.g. connecting properties with

incompatible data types or attributes. To solve these

problems, we’ve altered the interaction design to

toggle between connected and disconnected states

when two edges of inspector pads were contacted.

Each vertical edge of the inspector pads were used as

an input and output port of the selected property. And

by contacting these edges together, a link was made (or

destroyed) between them if the selected properties

were compatible. The same method was used for

connecting keypads and inspector pads (see Figure 6).

Figure 7 shows an example of connecting

properties of two components. The visibility property

of a virtual fish is connected to the same property of a

physical paddle, making the fish disappear when the

paddle is hidden by the user’s hand.

Figure 7. Connecting properties

5. Implementation

The authoring system described in this paper was

developed on a consumer level personal computer. The

computer was running Windows XP operating system

on a Pentium 4 processor with 1GB main memory. A

GeForce4 3D graphics card from NVIDIA was used to

accelerate the OpenGL graphics processing.

For tracking physical objects, we used a vision

based tracking method. The ARToolKit [1] software

library was used for calculating the 3D position and

orientation of the visual markers, and a plain USB web

camera from Logitech was used to acquire video

images for the tracking. The capturing resolution was

set to 320x240 and the shutter speed was 30 frames per

second. The camera was mounted on a head mounted

display to provide a real world view to the user,

forming a video see-through AR configuration.

We used our custom 3D model loader, based on the

OpenGL library, to visualize the 3D graphics contents

and the virtual authoring tools. To make the interaction

easier for selecting components with the manipulator

and inspector pads, bounding boxes are visualized

around the component objects, and their colors are

changed according to their status: normal, pointed and

selected. These bounding boxes are only shown when

there are authoring props within the user’s view.

6. Case studies and discussion

6.1. Development cases

To show the efficiency and feasibility of using our

immersive authoring method, we have constructed

several example Tangible AR applications.

The first example is a simple scene with a windmill

(see Figure 8). The scene consists of three virtual

objects: the ground, a tower and a vane. It took about a

minute to place the virtual objects and check that every

thing was placed in the right place. A logic box

representing a rotation behavior was used to specify

the vane to spin around. The logic box was set

invisible for viewing. It totally took less than 3 minutes

total to construct the whole scene, connect the

properties to define the behavior, and to validate the

final product.

Figure 8. An example application with animation

In addition to passive animations of virtual objects,

interactive features can also be added. Figure 9 shows

a sequence of images, constructing an interactive

Tangible AR application similar to the Shared Space

application [2]. The application shows two tiles with a

virtual object on each, a hare and a tortoise for

example. The user can examine the virtual objects by

manipulating the tiles on which they are anchored.

When two tiles are brought close together, different

models are shown, such as the hare and the tortoise

greeting each other (see the last row of Figure 9).

Figure 9. An interactive Tangible AR application

To build this application, four virtual objects were

needed: the normal and greeting posed models for the

hare and tortoise. First, the virtual objects were placed

on two physical tiles, one for the hare and another for

the tortoise. The visibilities of the virtual objects were

controlled by the proximity value of the physical tiles.

In order to check the distance and to control the

visibilities, we used a logic box with a special function.

The logic box had two input properties of position, and

output properties with a boolean value that represented

whether the two input positions were close enough or

not. By connecting position properties of the two tiles

to the logic box input, and connecting ‘near’ and ‘far’

boolean output properties of the logic box to four

virtual objects’ visibility, properly, the application was

completed. About 5 minutes were needed for building

and testing the whole application.

The last example application is an interactive

storytelling book application, similar to the

MagicBook [3] (see Figure 10). We used one of the

popular stories of Aesop, ‘The race between a hare and

a tortoise.’ The story consists of three main scenes:

starting the race, the hare taking a nap and the tortoise

winning. To add interactivity to the story line, we

made a decision point on the second scene to let the

users choose whether the hare should sleep or not.

According to the user’s decision, the winner on the last

scene would be determined differently.

Thirteen pre-modeled 3D objects were brought in

and three sheets of paper with printed markers were

used as the book pages. To implement the interactive

feature, special properties for occlusion based

interaction were added to the physical object

component: a set of boolean valued properties

indicating which button (i.e. marker) was pressed (for

the last). These properties were connected to the

visibility of the characters placed on the final scene,

selecting different endings of the story according to the

user’s decision. It took about 15 minutes to construct

the scenes and to connect object properties for

implementing the interaction.

Figure 10. An interactive storytelling application

6.2. User Study

We have conducted a pilot usability test of our

authoring interface. The test has been held at the end

of a series of workshops in which participants learned

3D modeling. Each of these workshops ran for 3-4

days, and the participants were children (9-14 years

old) and their parents. In these workshops, the

participants created virtual contents and then used our

authoring tool to add these contents to an AR scene. It

should be noted that the participants were not experts

in programming or 3D modeling, and had not

experienced augmented reality before. Despite this,

they were all able to create an AR scene by the end of

the workshop. The participants responded they

couldn’t believe that it could be so easy to create AR

scenes and they particularly enjoyed using the

immersive authoring interface to manipulate their

models.

The user study was to compare the usability of our

immersive authoring tool with another desktop AR

authoring tool, CATOMIR [21]. The main aims of the

study were to find out how these authoring tools would

be accepted by the users, how efficient each of them

would be for the participants to use, and where both of

them were showing usability faults and how to get rid

of them.

Similar to our immersive authoring tool,

CATOMIR is also aimed to allow non-programmers to

create AR applications. It is also based on a similar

component based model to represent the AR contents.

However, it uses more traditional mouse, keyboard and

desktop screen-based interfaces. Users can create

components by selecting them from a list in 2D

graphical user interface. The property values of a

component can be investigated and modified with a

dialog box styled interface. Users can also link the

properties by dragging between the two properties they

want to connect, e.g. visibility properties of the

tracking marker component and the 3D geometry

component. Positioning and rotating the virtual objects

can be achieved with a dialog box interfaces where the

user types in the numeric values or pushes +/- buttons

to change the transformation values. In addition, it also

provides a simple assistant tangible prop for translating

and rotating task. However, users still need the mouse

to set the mode (translation or rotation) and the axis

while using the assistant prop. After constructing a

compound of components in a 2D desktop authoring

environment, users can run and test their application

with the AR interface.

There were 24 participants (16 male and 8 female),

ranging in age from 9 to 50 years who were novices in

3D graphics and programming. The participants had a

training phase before the test, where they trained on

each authoring tool until they were confident in using

it. During the training phase the participants learnt to

create an AR scene by loading 3D models, placing

them on a specific marker and bringing it into a

specific position. Each participant tried the authoring

tools in a different sequence to prevent the study being

influenced by their previous experiences. After they

were comfortable with using the tools, the task for the

main test was given.

Each participant used both tools and was given the

same test task with each, although with different

contents (3D models). The task was to load a specific

model, to put it onto a specific marker and to bring it

into a specific position, which they’ve practiced during

the training phase.

The time for the task completion was measured and

the number of errors was counted. After performing

the tasks the participants were asked to fill in a

questionnaire and answer interview questions. The

questions were to gather further information about

where problems with the programs occurred, which

tool they preferred and how they felt about using each

tool.

The average speed for the whole task participants

who used our immersive authoring tool were on

average 25% faster than with the CATOMIR (see

Figure 11). A t-test for dependent samples for iaTAR

(M=3:53, SD=2.24) and CATOMIR (M=5:05,

SD=2.97) turned out significantly different (t(23)=2.84,

p=0.00094).

Figure 11. Duration of tasks for each tools

The number of mistakes while using the immersive

authoring tool was 21, of which none required any

help from the observer to correct them. In comparison,

with the desktop authoring interface, the total was 36

mistakes, 21 of which couldn’t be solved by the

participants themselves. We consider this result shows

that the immersive authoring tool is more intuitive for

the users that it is easy to learn and use.

When asked about the users’ preference, 42% of

subjects (10 users) said they preferred using the

immersive interface, while 33 % (8 users) said they

would appreciate a mixture of both types, which

allows the user to swap between different modes

(traditional mouse-keyboard input and new Tangible

AR interface). Only 25 % (6 users) said they would

want to keep the mouse-keyboard interaction.

Although the test showed the efficiency and

easiness of using immersive authoring interfaces for

overall layout tasks, in the user interview, precise

controls requiring numeric inputs still appeared to be

more convenient with the 2D desktop user interfaces.

However, the Tangible AR interfaces were much

preferred for the tasks that include 3D spatial

understandings, such as 3D rotations.

Convinced with the pilot user study, we are

planning to conduct more specific user studies to

investigate more detailed features of the immersive

authoring approach.

6.3. Discussion

Through the cases of example application

development and the user study, the proposed

immersive authoring system appeared to be efficient

and easy to use, yet feasible enough to create various

Tangible AR applications. The concurrent testing with

implementation throughout the development process

appeared to be helping the developers on reducing the

time for switching between implementation and testing

phase.

However, currently provided logic boxes by the

authoring system were not comprehensive enough for

building applications with complex behaviors. In order

to build applications with more complicated behaviors

(or interactions), various logic box components would

be necessary. A library of various logical entities is

expected to be added to the authoring tool. In addition,

we are also investigating interaction techniques in

which users build their own custom logic boxes within

the authoring environment and add them to the library

for the later use.

7. Conclusion and future works

In this paper, we suggested an immersive authoring

method for Tangible AR applications and described

our implementation of a prototype authoring system to

show its feasibility. The system used a component

based application model and interaction methods,

designed through analyzing the application domain. A

number of development cases were described to show

that our authoring system provides an efficient and

easy way for constructing Tangible AR applications.

Although the data flow model between components

covered the basic functions of Tangible AR

applications, we also plan to investigate other behavior

models such as event driven models for future support.

We are also investigating inclusion of motion capture

functions, so that the users could describe complicated

animations by demonstration.

Other interaction methods for authoring tasks are

also in need of testing. For instance, we are expecting

natural gestures for controlling and authoring virtual

object behaviors. Using keyboards and other

conventional user interfaces within AR systems for

programming tasks is another interesting topic.

With additional research on application models and

interactions, the authors are convinced that immersive

authoring has a bright future as a development method

for augmented reality applications.

8. References

[1] ARToolKit.

http://www.hitl.washington.edu/artoolkit

[2] M. Billinghurst, I. Poupyrev, H. Kato and R. May,

“Mixing Realities in Shared Space: An Augmented

Reality Interface for Collaborative Computing”,

Proceedings of IEEE International Conference on

Multimedia and Expo (ICME 2000), New York,

U.S.A., Jul.30-Aug.2, 2000, pp. 1641-1644.

[3] M. Billinghurst, H. Kato and I. Poupyrev, “The

MagicBook – Moving Seamlessly between Reality and

Virtuality”, IEEE Computer Graphics and

Applications, 21(3), May, 2001, pp. 6-8.

[4] J. Butterworth, A. Davidson, S. Hench and T. M.

Olano, “3DM: A Three Dimensional Modeler Using a

Head-Mounted Display”, Proceedings of Symposium

on Interactive 3D Graphics, Cambridge,

Massachusetts, U.S.A., 1992, pp. 135-138.

[5] S. Güven and S. Feiner, “Authoring 3D

Hypermedia for Wearable Augmented and Virtual

Reality”, Proceedings of IEEE International

Symposium on Wearable Computers (ISWC’03), New

York, U.S.A., Oct.21-23, 2003, pp. 118-126.

[6] M. Haringer and H. T. Regenbrecht, “A Pragmatic

Approach to Augmented Reality Authoring”,

Proceedings of the International Symposium on Mixed

and Augmented Reality (ISMAR’02), Darmstadt,

Germany, Sept.30-Oct.1, 2002, pp. 237-245.

[7] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto

and K. Tachibana, “Virtual Object Manipulation on a

Table-Top AR Environment”, Proceedings of the

International Symposium on Augmented Reality (ISAR

2000), Munich, Germany, Oct.5-6, 2000, pp. 111-119.

[8] H. Kato, M. Billinghurst, I. Poupyrev, N.

Tetsutani and K. Tachibana, “Tangible Augmented

Reality for Human Computer Interaction”,

Proceedings of Nicograph 2001, Nagoya, Japan, 2001.

[9] H. Ishii and B. Ullmer, “Tangible Bits: Towards

Seamless Interfaces between People, Bits and Atoms”,

Proceedings of the SIGCHI conference on Human

Factors in Computing Systems, Atlanta, Georgia,

U.S.A., Mar.22-27, 1997, pp. 234-241.

[10] R. S. Kalawsky, The Science of Virtual Reality

and Virtual Environments, Addison-Wesley, 1993, pp.

212-219.

[11] G. A. Lee, G. J. Kim and C. M. Park, “Modeling

Virtual Object Behavior within Virtual Environment”,

Proceedings of ACM Symposium on Virtual Reality

Software and Technology (VRST 2002), Hong Kong,

China, Nov. 11-13, 2002, pp. 41-48.

[12] G. A. Lee, M. Billinghurst, G. J. Kim, “Occlusion

based Interaction Methods for Tangible Augmented

Reality Environments”, Proceedings of ACM

SIGGRAPH International Conference on Virtual-

Reality Continuum and its Applications in Industry

(VRCAI 2004), NTU, Singapore, Jun.16-18, 2004, pp.

419-426.

[13] J. Liang and M. Green, “JDCAD: A Highly

Interactive 3D Modeling System”, Computer &

Graphics, 18(4), 1994, pp. 499-506.

[14] B. MacIntyre, M. Gandy, J. Bolter, S. Dow and B.

Hannigan, “DART: The Designer’s Augmented

Reality Toolkit”, Proceedings of the International

Symposium on Mixed and Augmented Reality

(ISMAR’03), Tokyo, Japan, Oct.7-10, 2003, pp.329-

330.

[15] M. R. Mine, “ISSAC: A Meta-CAD System for

Virtual Environments”, Computer-Aided Design, 29(8),

August, 1997, pp. 547-553.

[16] W. Piekarski and Bruce H. Thomas, “Interactive

Augmented Reality Techniques for Construction at a

Distance of 3D Geometry”, Proceedings of Immersive

Projection Technology / Eurographics Virtual

Environments Conference (IPT/EGVE 2003), Zurich,

Switzerland, May 22-23, 2003.

[17] I. Poupyrev, D. S. Tan, M. Billinghurst, H. Kato,

H. Regenbrecht and N. Tetsutani, “Developing a

Generic Augmented Reality Interface”, IEEE

Computer, 35(3), March, 2002, pp. 44-50.

[18] A. Steed and M. Slater, “Dataflow Representation

for Defining Behaviours within Virtual Environments”,

Proceedings of Virtual Reality Annual International

Symposium (VRAIS’96), Mar.30–Apr.3, 1996, pp. 163-

167.

[19] R. Stiles and M. Pontecorvo, “Lingua Graphica: A

Visual Language for Virtual Environments”,

Proceedings of IEEE Workshop on Visual Languages,

Sept.15-18, 1992, pp. 225-227.

[20] G. Wesche and H. Seidel, “FreeDrawer – A Free-

Form Sketching System on the Responsive

Workbench”, Proceedings of ACM Symposium on

Virtual Reality Software and Technology (VRST 2001),

Alberta, Canada, Nov.15-17, 2001, pp. 167-174.

[21] J. Zauner, M. Haller, “Authoring of Mixed Reality

Applications including Multi-Marker Calibration for

Mobile Devices”, Proceedings of 10th Eurographics

Symposium on Virtual Environments (EGVE 2004),

Grenoble, France, Jun.8-9, 2004, pp. 87-90.

