
Immersive Panoramic Video 
Thomas Pintaric, Ulrich Neumann & Albert Rizzo  

Integrated Media Systems Center 
University of Southern California 

Los Angeles CA 90089 
tpintari@usc.edu, uneumann@usc.edu, arizzo@usc.edu 

 
A user navigates a panoramic video environment using a head-mounted display and tracker. 

 

Introduction 
Television and video images pervade our professional and home environments.  For over fifty 
years video images have provided a “virtual eye" into distant times and locations.  Over the same 
period, video technology has matured from gray-scale images to big-screen color and digitally 
processed imagery.  One aspect of both the delivery technology and the content creation has 
remained largely unchanged however — the view is controlled at the source and identical for all 
observers.  Panoramic video overcomes the passive and structured limitations of how video 
imagery is presented and perceived.  The recent convergence of camera, processing, and display 
technologies make it possible to consider providing each viewer with individual control of their 
viewing direction.  Viewers of panoramic video become virtual participants immersed in the 
observed scene, creating a new interactive dimension in the way people perceive video imagery 
within a “virtual environment”. 
 
Panoramic image acquisition is based on mosaic approaches developed in the context of still 
imagery [1, 2].  Mosaics are created from multiple overlapping sub-images pieced together to 
form a high-resolution, panoramic or wide field-of-view image.  While still image mosaics and 
panoramas are common, we produce high-resolution panoramic video by employing an array of 
five video cameras viewing the scene over a combined 360-degrees of horizontal arc.  
Neighboring camera images share the exact same “virtual” viewpoint [3] and they overlap 
slightly to facilitate their merger [4, 5].  The five camera video streams feed into a digital 
recording and playback system developed for maintaining precise frame synchronization.  The 
delivery of panoramic video is possible with both real time and post-processed video.  The user 
experiences the video by wearing a head-tracked display (Fig. 3).  The portion of the video in the 
direction of view is dynamically extracted and presented to the display in response to the user’s 
head orientation.  The challenges encountered in this process span issues in camera calibration, 



image processing, compression, networking, computer graphics, and high-performance 
computing.   
 

Camera Subsystem 
Our approach is based on an array of multiple image sensors or cameras (Fig. 1).  We make three 
observations about the advantages of multiple-sensor panoramic imaging systems over single 
sensor systems producing equivalent image quality.  Firstly, at 
any point in time, the technology for a single high-resolution 
video image sensor is more expensive than multiple 
commodity sensors (e.g., the price of HDTV video cameras is 
currently more than an order of magnitude that of standard 
video cameras).  Secondly, a single rectangular image sensor 
is inefficient for use in panoramic imaging since planar 
projections from curved mirrors or fish-eye lenses do not 
evenly or fully cover the pixel array (Fig. 2).  Lastly, the use 
of multiple image sensors easily supports parallel approaches 
to managing the bandwidth and computation requirements in 
the system. 
 
The disadvantages of multiple sensors include the need for 
calibration and optics that produce a single shared viewpoint.  The shared viewpoint is often only 
approximated in systems used with far-field scenes [6].  Another disadvantage that often occurs 
with multiple sensor designs is their limited vertical field of view (FOV).  

 
While our methods are not restricted to any 
particular camera array, we describe our 
system in the context of a commercially 
available five-camera array [5].  Other 
camera arrays have been built using seven 
cameras [6] and as many as sixteen (to our 
knowledge).  Our array produces five 
NTSC-format color images.  Each camera 
is genlocked to ensure consistent video 
timing and it has a controller that sets 
parameters such as gain, hue, and shutter 
speed.  In its final optical configuration, the 
camera array is statically calibrated, 
producing a mapping from a cylindrical 

panoramic projection to each camera image.  This mapping takes into account the camera 
positions and orientations as well as lens distortions and mirror effects.  These calibrations can 
be produced using methods employed for static image mosaics [1, 2, 7].  The end result is a 
camera system that logically produces a cylindrical projection of a scene with about 3520x480 
pixels at 30Hz.  The output format is a set of five S-Video signals and the reference video signal.   
 

 
Fig 1 - Our five sensor panoramic 

camera system. 

 
Fig 2 - A panoramic projection from a parabolic 

mirror leaves many sensor pixels unused. 



Recording Subsystem / Hardware 
Our camera output is fed through a custom videotape system comprising of five SONY DSR-70 
DVCam recorders and one GrassValley VPE 351 edit controller.  The tape system is inline with 
the video signals so that recording or playback is transparent to the downstream portion of the 
system.  The difficulties in developing this system lie primarily in identifying an edit controller 
that has sufficient inputs and dealing with the pragmatics of frame-accurate synchronization.  
Reference video is fed to the edit controller.  Tapes are pre-striped with SMPT timecode and the 
recorders are kept in strict synchronization by the edit controller.  Although this is standard 
video-industry methodology, in practice we find the timecode technology prone to failures 
whose frequency increase with tape use and recorder wear.  We also note that synchronization of 
audio recordings with the timecode signal is problematic due to dropouts.  In practice we record 
audio on a separate set of synchronized multi-track recorders and establish video/audio 
synchronization during post processing. 
 

 
Fig. 3 - A panoramic image from our camera array taken at the USC Homecoming game at the LA Coliseum. 

 
System Overview 
Utilizing the expanding capabilities of new-generation 3D graphics hardware, we have created a 
framework for panoramic video production and playback.  Among the main advantages of our 

approach over proprietary panoramic video playback 
systems (of which there exist only very few, e.g. the 
IPIX Video plug-in for Real Player) stands its ability 
to adapt to a variety of recording/playback 
configurations through an inherently modular 
architecture based on Microsoft’s DirectShow SDK 
[8]. Additionally, our API enables programmers to 
easily implement panoramic video into any 3D 
environment.  In our reference system, a user wears a 
head-mounted display with an orientation tracker (Fig 
4).  The video image presented in the display is 
extracted from the complete cylindrical projection as a 
function of the view direction.  The footage shown 
here was recorded at the USC Homecoming game at 
the L.A. Coliseum in October 2000 (Fig 3). 

 
Fig. 4 - A user wearing a head-mounted 

display with an orientation tracker. 



Recording/Production Process 
We allow for two main scenarios of panoramic video production: 

 
• Offline Production. Fully edited on-demand panoramic movies/environments that can be 

distributed and played back using one of the standard media-formats (such as AVI files). 
• Live broadcasts. Transmission of events over broadband networks as they happen. 

 

 
Fig 5 - The upper and lower paths describe the offline process and the live broadcast, respectively. 

 

Offline Production 
Our camera captures a 360ºx76º FOV scene, using five frame-synchronized NTSC cameras.  We 
record the five streams and their timecode on Sony DSR-70 DVCam recorders.  The post-
production step involves digitizing the video using a Pinnacle DC2000 MPEG-2 encoder [10] at 
704x480 pixels @ 25Mbit/sec.; aligning and un-distorting the streams in a compositing 
application (Adobe After Effects [11]), using our custom distortion correction plug-in with 
bilinear interpolation resulting in a seamlessly stitched 3520x480 video file.  This large video file 
is then segmented into an arbitrary number of smaller region (e.g. 55 regions of 64x480 pixels 
each) streams that are separately compressed, interleaved and written back to a file (or streamed 
over a network, etc.), which can be opened by our player application. 
 

Real-time video stitching with pre-computed UV lookup tables 

Uncorrected (on-to-one): u(x)=x/width, v(y)=y/height Corrected: u(x)=calib_table(x), v(y)=calib_table(y) 

Fig. 6 - Image stitching makes use of texture coordinate tables 
 
 
 



Live Broadcasts 
This procedure varies from the previously discussed method insofar as there exists no 
intermediate compression/recompression and un-distortion steps.  The video is acquired in an 
uncompressed “raw” format and sent directly to the player application.  As shown, this requires a 
very high-bandwidth medium and so far we have only implemented this approach with the player 
running on the same machine reading the video through memory-to-memory transfers.  
Compression/decompression would have to be added to allow remote player applications over 
broadband networks.  In this live scenario the player application is responsible for correcting the 
camera’s lens distortion and stitching by adjusting the video texture’s UV coordinate mapping to 
reflect the camera calibration mapping described earlier (Fig.6). 
 
The various tasks and how they are handled in the offline and live scenarios are summarized in 
figure 7. 
 
 Step Off-line Production Live Broadcast 

Recording Frame-sync’d Sony DSR-70 DVCam 
recorders (one per camera) 

n/a 
(directly digitising from source) 

Digitising Pinnacle DC2000 MPEG-2 encoder at 
25Mbit/sec (communicating with Sony 
recorders through serial link) 

Imagenation PXC200 frame grabbers, 
capturing uncompressed 640x480 frames 
at 30Hz (one per camera) 

Editing Adobe After Effects (seamless stitching 
using pre-computed calibration tables)

Limited ability to manipulate frame-
buffer contents 

Processing Segmentation into multiple tiles 
(120x480 pixels), interleaving with audio

No re-segmentation (video tiles remain 
640x480 pixels), interleaving at frame-
level 

R
EC

O
R

D
IN

G
 a

nd
 P

R
O

C
ES

SI
N

G
 

Transfer Bitstream is written to a file or streamed 
over a network 

In-memory or broadband-network 
transfer of bitstream to playback 
machine 

Receiver Reads bitstream from arbitrary source with matching input filter and dynamically 
extracts visible and partially-visible video tiles 

PL
A

YE
R

 

Display Texture-maps video on 3D cylinder 
using one-to-one UV mapping 

Texture-maps video on 3D cylinder 
using pre-computed calibration tables 
(Fig 6) 

Fig. 7 - Differences in recording/playback procedure for off-line production and live broadcasts. 
 
Playback Applications 
Fig 8 shows the player structure.  We use the real time video texture capabilities found in current 
PC and gaming graphics systems.  The cylindrical video projection produced by the camera is 
textured onto a matching 3D cylindrical model and the viewing is controlled by the tracker data 
[11] and a real-time adjustable scale parameter.  Rather than updating the texture for the 
complete cylinder every frame, we decode and update only the regions of the texture that can be 
seen during any given frame.  Each region of the complete texture is encoded as an independent 
video stream.  Multiple regions are interleaved (with audio) to create the complete panoramic 
data stream. 



A playback application typically instantiates a DirectShow filter graph, which itself starts its 
single modules, called “filters”, as separate threads, and a thread for rendering and window 
management.  Based on the transport mechanism, we choose an appropriate source filter such as 
an asynchronous file reader for AVI files or a network interface for streaming video. 
 

 
Fig. 8 - The player is built upon real time video texturing available in PC and game graphics systems. 

 
A splitter filter separates the interleaved (binary) data read from the source filter into its single 
audio/video streams and passes them on in (compressed) single-frame packets.  According to the 
currently selected viewing angle, not all of the streams are actually visible, so a demultiplexer 
forwards only those streams that are at least partially visible while discarding all others. 
 
Decoding the video segments is done in parallel with the resulting uncompressed RGB frame 
being copied into the graphics card’s texture memory.  (Unfortunately this is an additional step 
incurred since commonly used commercial video codecs do not support an interface for directly 
decoding into video memory).  The rendering thread synchronizes its access to texture memory 
with the filter graph and only updates the displayed textures after all regions belonging to the 
current display-frame have been updated. 
 
Key Advantages of Our API 

• Video stream(s) can be compressed and played back using any available video VfW 
(Video for Windows) codec. 

• Various transportation mechanisms (such as network streaming) can be implemented by 
adding custom source filters in front of the playback graph. 

• Since the rendering is done in hardware, an arbitrary projection format (planar, 
cylindrical, spherical) can be used at no additional (performance-)cost. 

• The rendering thread (which may be implemented with any possible API that supports 
texture mapping, e.g. Direct3D, OpenGL, etc.) can be used to enhance the scene by 
drawing “true” 3D objects on top of the video environment. 

• All “low-level” synchronization and timing tasks are handled by DirectShow. 
• Our architecture performs its most computationally intense tasks (video decoding) in 

parallel threads, thus profiting from multiprocessor systems. 
 
Practical considerations 
 
We have made several additional observations concerning the practical use of our video-
playback architecture. 
 



Since the player’s demux-filter can only switch between streams at synch-points (without 
corrupting the image), it is advised to choose key-frame only compression methods (e.g. Motion-
JPEG). Otherwise, the system will be unable to decode frames belonging to a currently inactive 
video stream on a rapid change of the user’s viewing angle until the next synch-point (e.g. an I-
frame for an MPEG-encoded stream). 
 
On re-segmenting the combined wide-angle video into smaller tiles we seek to minimize the 
CPU time “wasted” on decoding invisible parts (if frames are too large) while avoiding an 
excessive context switching overhead occurring between parallel decoding threads (if frames are 
too small). We have found that frame sizes between 64x480 and 352x480 pixels are an ideal 
choice. 
 
Applications  
Our initial exploratory field-testing examined performance characteristics of panoramic video 
recordings under a variety of conditions.  The following targeted test environments were chosen 
that allowed for assessment across a range of lighting, external activity and camera movement 
conditions. These environments included: 

 
1. An outdoor mall with the camera in a static position in daytime lighting with background 

structures and moderate human foot traffic, both close-up and at a distance. (3rd St 
Promenade in Santa Monica, CA.) 

2. An outdoor ocean pier with the camera in a static position in extremely intense lighting 
conditions (direct intense late afternoon sunlight with high reflectance off of the ocean) with 
both long shots of activity on a beach and close-up activity of human foot traffic and 
amusement park structures on the pier.  

3. Inside of an outside facing glass elevator with the camera in a static position and the elevator 
smoothly rising 15 floors from a low light (street level shielded) position to more intense 
lighting as the elevator ascended. 

4. The camera mounted at the front of a pickup truck bed near the back of the cab (Fig. 9), 
traveling on a canyon road for 30 minutes at speeds ranging from 0-40 mph under all 
daylight ranges of lighting (low shaded light to intense direct sun). 

5. Same as #4, except at night on a busy well lit street (Sunset Blvd. In L.A. CA.), and on a 
freeway traveling at speeds from 0-60 mph. 

6. A University of Southern California Football game within the Los Angeles Coliseum from 
both static and moving positions in daytime lighting, with extreme close-ups of moving 
people and massive crowd scenes (40-60 thousand people). 

7. An indoor rock concert (Duran Duran at the Anaheim, CA. House of Blues venue) from a 
static position under a variety of extreme lighting conditions in the midst of an active crowd, 
slightly above average head level with 3D immersive audio recording. 

8. A Virtual “Mock-Party” with the camera in a static position in the center of a room with 
approximately 16 participants. This was a “scripted” scenario designed to address social 
phobia that was shot while systematically directing and controlling the gradual introduction 
of participants into the scene and orchestrating their proximity and “pseudo-interaction” with 
the camera [12]. 

 



 
Fig. 9 – A mobile panoramic video recording setup. 

 

References  
[1] S. E. Chen, "QuickTime VR: An Image-Based Approach to Virtual Environment 

Navigation,” Computer Graphics (SIGGRAPH 95), pp 29-38, August 1995. 
[2] R. Szeliski, H.-Y. Shum, "Creating Full View Panoramic Mosaics and Environment Maps,” 

Computer Graphics (SIGGRAPH 97), pp 251-258, August 1997. 
[3] “Panoramic Viewing System with offset virtual optical centers”, US Patent 6111702 
[4] Panoram Technologies Inc.   www.panoramtech.com 
[5] FullView.com Inc.   www.fullview.com 
[6] D. Kotake, T. Endo, F. Pighin, A. Katayama, H. Tamura, and M. Hirose. "Cybercity Walker 

2001: Walking Through and Looking Around a Realistic Cyberspace Reconstructed from the 
Physical World," Proceedings of ISMR'01, Yokahama, Japan. March, 2001. 

[7] S. K. Nayar, "Catadioptric Omnidirectional Camera," Proc. of IEEE Computer Vision and 
Pattern Recognition (CVPR), June 1997. 

[8] Microsoft DirectX SDK   msdn.microsoft.com/directx 
[9] Pinnacle Systems   www.pinnaclesys.com 
[10] Adobe Systems Inc.   www.adobe.com 
[11] Intersense Inc.    www.isense.com 
[12] Rothbaum, B.O., & Hodges, L.F.  “The use of Virtual Reality Exposure in the Treatment of 

Anxiety Disorders.”  Behavior Modification, 23(4), 507-525 (1999). 


