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ABSTRACT 

Gas Injection is the second largest enhanced oil recovery process, next only to 

thermal processes used in heavy oil fields. To increase the extent of the reservoir 

contacted by the displacing fluids, the gas is generally injected intermittently with water 

and this mode of injection, called water-alternating-gas (WAG), is being widely practiced 

in the oil fields.  

This experimental study is aimed at evaluating the performance of the WAG 

process in short and long cores as a function of gas-oil miscibility and brine composition. 

This performance evaluation has been carried out by comparing oil recoveries from 

WAG injection with those from continuous gas injection (CGI). 

Miscible floods were conducted at 2500 psi and immiscible floods at 500 psi 

using Berea cores, n-Decane and two different brines, namely the commonly used 5% 

NaCl solution and another being the multicomponent reservoir brine from the Yates 

reservoir in West Texas. Each of the ten corefloods consisted of a series of steps 

including brine saturation, absolute permeability determination, flooding with oil 

(drainage) to initial oil saturation, end-point oil permeability determination, flooding with 

brine (imbibition) to residual oil saturation, end-point water permeability determination, 

and finally, tertiary gas injection to recover the waterflood residual oil.  

It was found that comparing the tertiary gas floods only on the basis of recovery 

yielded misleading conclusions. However, when oil recovery per unit volume of gas 

injection was used as a parameter to evaluate the floods, miscible gas floods were found 

to be more effective (recovering 60-70% more oil) than immiscible floods. The WAG 

mode of injection out-performed the CGI floods. At increased volumes of gas injection, 

 ix



 x

the performance of miscible CGI flood inspite of the high pressure of injection, 

approached that of the low-pressure immiscible floods. A change in brine composition 

from 5% NaCl to 9.26% multivalent brine from Yates reservoir showed a slight adverse 

effect on tertiary gas flood recovery due to increased solubility of CO2 in the latter. While 

immiscible WAG floods in short cores did not show appreciable improvement over CGI 

immiscible floods, the WAG flood recovery was about 31% higher than CGI floods in 6-

ft Berea cores. The results of this study prompted a new process by combining CGI and 

WAG modes of gas injection. Such a process was found to be patented and practiced in 

the industry.  

In addition to providing performance characteristics of the WAG process, this 

study has indicated directions for further research aimed at improving oil recovery from 

gas injection processes. 



CHAPTER 1 

 

INTRODUCTION  

 

1.1 Background 

 

About 377 million barrels of oil remains trapped in discovered reservoirs after 

primary and secondary recovery processes. This oil can be our energy source for years to 

come. However, as of date, this oil is deemed unproducible by current technology. Large 

research expenditure and efforts are being directed towards enhancing the recovery of 

this oil but with limited success. Although complete recovery of all the trapped oil is 

difficult, the target resource base is very large. Of the major contending processes for this 

trapped resource, gas injection appears to be an ideal choice.  

The National Petroleum Council (NPC) defines Improved Oil Recovery (EOR) as 

“…incremental oil that can be economically produced…over that which can be 

economically recoverable by conventional primary and secondary methods”. The main 

goals of any EOR method are increasing the capillary number and providing ‘favorable’ 

(M < 1.0) mobility ratios.  

The capillary number is defined as the ratio of viscous to capillary forces.        

θσ
νµ
cos

==
orcesCapillaryF

cesViscousFor
N ca ………………………………………………………(1)      

             

Where v and µ are the velocity and viscosity, respectively of the displacing fluid, σ is the 

oil-water interfacial tension and θ is the contact angle between the oil-water interface and 

the rock surface. 

The mobility ratio, M, is defined as the ratio of mobility of the displacing fluid to 

that of the displaced fluid. 
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M = 
Displaced

Displacing

k

k

)/(

)/(

µ
µ

……………………………………………………………………(2) 

Where k and µ are the relative or effective permeability and viscosity, respectively. 

The overall efficiency of any Enhanced Oil Recovery (EOR) process depends on 

both the microscopic and macroscopic sweep efficiencies. While the fluids density 

difference and rock heterogeneity affect the macroscopic efficiency, the microscopic 

displacement efficiency is influenced by the interfacial interactions involving interfacial 

tension and dynamic contact angles.  

Gas injection is the second largest process in enhanced oil recovery processes 

today
(1)

. The residual oil saturations in gas swept zones have been found to be quite low, 

however, the volumetric sweep of the flood has always been a cause of concern
(1)

. The 

mobility ratio, which controls the volumetric sweep, between the injected gas and 

displaced oil bank in gas processes, is typically highly unfavorable due to the relatively 

low viscosity of the injected phase. This difference makes mobility and consequently 

flood profile control the biggest concerns for the successful application of this process.  

These concerns led to the development of the Water-Alternating-Gas (WAG) 

process for flood profile control. The higher microscopic displacement efficiency of gas 

combined with the better macroscopic sweep efficiency of water significantly increases 

the incremental oil production over the plain waterflood. The WAG process, first 

proposed by Claudle and Dyes in 1958, has remained the industry default mobility 

control method for gas injection, mainly due to the lack of proven flood profile control 

alternatives. Reservoir specific parameters such as wettability, interfacial tension, connate 

water saturation and gravity segregation add complexity to the design of a successful 

WAG flood. Hence the current project was initiated with the following objectives. 
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The important contribution of this study would be to experimentally demonstrate 

the effects of reservoir rock-fluids interactions, effects of brine composition and the 

development of miscibility in both continuous and WAG mode floods. Thus, this work 

would form the basis for the development and optimization of the proposed new gas 

injection process that can be used as an effective alternative to the conventional WAG 

process.  

1.2 Objective 

 

This experimental study is directed towards the study of the WAG process, 

performance as a function of several variables including the effects of brine composition 

and the relative merits and demerits of the miscible process over the immiscible process 

in both continuous gas injection and WAG floods at selected reservoir conditions in both 

short (1-foot) and long (6-feet) Berea cores. 

1.3 Method  

In order to accomplish the proposed objectives, core-flooding experiments were 

conducted in both 1-ft and 6-ft long Berea sandstone cores, using n-Decane as “oleic” 

phase and brines of two different compositions (5% NaCl brine and Yates synthetic 

brine) as aqueous phases along with pure CO2 as the injectant gas. Both continuous gas 

injection and WAG floods were conducted. These experiments were conducted in both 

miscible as well as in immiscible modes.  

Oil recoveries were monitored in these floods to evaluate the effectiveness of 

WAG process against continuous gas injection in miscible and immiscible cases in both 

long and short cores. 
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CHAPTER 2 

        LITERATURE REVIEW 

 

The main aim of this project is to study the flooding characteristics of water-

alternating-gas (WAG) and continuous gas injection processes in relatively homogeneous 

Berea sandstone cores. The continuous injection EOR process is classified under the 

WAG processes as a WAG process with 0:1 WAG ratio. A comprehensive review of the 

literature on the WAG process is presented in this section. 

2.1 Mobility Control Process 

 

The overall efficiency of the EOR process depends on both, the microscopic as 

well as the macroscopic sweep efficiencies. Specifically, the mobility ratio controls the 

aerial sweep in the reservoir, and the vertical sweep is controlled by the difference in the 

densities of the injected and displaced fluids. The low residual oil saturations in swept 

zones, and overall poor volumetric reservoir sweep are the main concerns in a gas flood. 

The ‘unfavorable’ mobility ratio in gas floods being the main cause, flood profile control 

in gas floods is instrumental for a successful project.  

Continuous research efforts are being made to improve the flood profile control in 

gas floods
(2)(3)

. These include preparation of direct thickeners with gas-soluble chemicals 

like Telechelic Disulfate, Polyflouroacrylate and Flouroacrylate-Styrene copolymers, 

which can increase the viscosity of gases several folds (e.g. For CO2 viscosity increase 

from 2 – 100 fold). Other methods such as, modifications in the injected slug such as the 

use of Natural Gas Liquids (NGL) instead of water for highly viscous oils in low 

pressure, poorly producing and unconsolidated formations are also proposed
(4)

. Although 

they seem promising on the laboratory/simulator scale, important issues like feasibility, 

cost, applicability, safety and environmental impact still need to be addressed
(4)

.  
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Most of these process modifications are still at inception or experimental stage 

and are not accepted as part of the current commercial flooding technology. Moritis
(4)

, 

comments on the National Petroleum Council’s (NPC) survey conducted for about 27 

production, 16 deepwater development and 34 developmental technologies. He predicts 

that gas thickeners and combustion, thermal and microbial EOR processes will have 

lower impact in future Research, Development and Demonstration (RD&D). New 

directional drilling techniques, stimulation and re-completion techniques along with 

reservoir characterization will be the keys for cost-effective production in the oil and gas 

industry.  

2.2 WAG Process 

Almost all the commercial miscible gas floods today employ the WAG method
(1)

. 

The WAG process is shown schematically as Figure 1 below. Gas injection projects 

contribute about 40% of the total US-EOR production: most of which are WAG floods. 

Almost 80% of the WAG flood projects in the US are reported an economic success
(5)

. 

 

Figure 1: Schematic Of The Water-Alternating-Gas Process. (From Kinder Morgan Co.) 
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The WAG survey conducted by Hadlow
(5)

 reported an ultimate recovery of about 

8–14% OOIP, based on simulation and pilot tests. However, the more recent survey of 

2001 by Christensen et al.
(6)

 shows that the average increase in oil recovery was only 5 – 

10%. The survey encompassed 59 projects. The popularity of the WAG process is 

evident from the increasing number of projects and many successful field wide 

applications
(3)

.  

Process Type

Not-

Clasifd

3%

Miscible

79%

Immscibl

e

18%

 
Rock Types

Not-

Classified

5%

Carbontate

10%

Dolomite

20%

Limestn

8%

Sandstn

57%

 

Location

Onshore

88%

Offshore 

12%

 

Injection Gas 

Not-Clasfd

8%

N2/Flue

3%

HC

42%

CO2

47%

 
Figure 2: WAG survey – Distribution / Application of WAG (Data from Ref. 6). 

The survey
(6)

 also sheds light on the application scenario and distribution of the 

WAG process. US had the largest share of WAG applications of 62.7%, followed by 

Canada at 15.3%. The process was seen mostly applied to onshore reservoirs (88%), but 

applicable to a wide range of reservoir types, from chalk to fine sandstone. The 

popularity of the miscible flood was evident from the fact that 79% of the WAG projects 
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employed are miscible. The CO2 floods lead the WAG applications with a share of 47% 

of total projects, closely followed by hydrocarbon gas at 42%. 

2.3 WAG Process Classification 

The large-scale reservoir applications need a good classification system for better 

understanding and design of WAG process. Although Claudle and Dyes suggested 

simultaneous injection of oil and gas to improve mobility control, the field reviews show 

that they are injected separately
(6)

. The main reason for this injection pattern is the better 

injectivity when only one fluid is injected.  

Christensen et al.
(6)

 have attempted to systematically classify the WAG process. 

They grouped the process into four types: Miscible, Immiscible, Hybrid and Others based 

on injection pressures and method of injection. Many reservoir specific processes 

developed have been patented and are generally grouped under the ‘other’ WAG 

classification. Some of the examples are the ‘Hybrid-WAG’ process patented by 

UNOCAL
(7)

, and the ‘DUWAG’ process of Shell
(8)

. These patented processes namely; 

Hybrid-WAG and DUWAG were developed to optimize recoveries from gas injection 

processes wherein a large slug of CO2 is injected followed by 1:1 WAG. 

2.4 Design Parameters for the WAG Process 

The WAG review showed that this process has been applied to rocks from very 

low permeability chalk up to high permeability sandstone. Most of the applied processes 

were miscible. The miscibility issue is generally based on gas availability, but is mainly 

reported as an economic consideration and the extent of reservoir repressurization 

required for process application. The major design issues for WAG are reservoir 

characteristics and heterogeneity, rock and fluid characteristics, composition of injection 

gas, injection pattern, WAG ratio, three-phase relative permeability effects and flow 
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dispersion. It is important to note that plain gas injection is considered as a part of WAG 

process with a WAG ratio of 0:1, hence the design issues pertinent to WAG are 

applicable to plain gas injection as well. 

2.4.1 Reservoir Heterogeneity and Stratification 

Stratification and heterogeneities strongly influence the oil recovery process. 

Reservoirs with higher vertical permeability are influenced by cross flow perpendicular 

to the bulk flow direction. Viscous, capillary, gravity and dispersive forces generally 

influence this phenomenon
(9)

. Cross-flow may influence to increase the vertical sweep, 

but generally the effects are detrimental to oil recovery – mainly due to the gravity 

segregation and decreased flow velocity in the reservoir. This leads to reduced frontal 

advancement in lower permeability layer. WAG recoveries and continuous gas injections 

are more strongly affected by these phenomena.  Reservoir heterogeneity controls the 

injection and sweep patterns in the flood. The reservoir simulation studies
(10)

 for various 

kv/kh (vertical to horizontal permeability) ratios suggest that higher ratios adversely affect 

oil recovery in WAG process. 

Gorell
(11)

 reported that the vertical conformance of WAG displacements is 

strongly influenced by conformance between zones. In a non-communicating-layered 

system, vertical distribution of CO2 is dominated by permeability contrasts. Flow into 

each layer is essentially proportional to the fractional permeability of the overall system 

(average permeability * layer thickness (k*h)) and is independent of WAG ratio, 

although the tendency for CO2 to enter the high permeability zone with increasing WAG 

ratio cannot be avoided. Due to the cyclic nature of the WAG, the most permeable layer 

has the highest fluid contribution, but as water is injected it quickly displaces the highly 

mobile CO2 and all the layers attain an effective mobility nearly equal to the initial value. 
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These cause severe injection and profile control problems. The higher permeability 

layer(s) always respond first. WAG will reduce mobility not only in the high permeability 

layer but also in the low permeability layer, resulting in a larger amount of the CO2 

invading in the highest permeability layer.  

The ratio of viscous to gravity forces is the prime variable for determining the 

efficiency of WAG injection process and controls vertical conformance of the flood. 

Cross-flow or convective mixing can substantially increase reservoir sweep even in the 

presence of low vertical to horizontal permeability ratios. Heterogeneous stratification 

causes physical dispersion, reduces channeling of CO2 through the high permeability 

layer, and delays breakthrough. This is attributed to permeability and mobility ratio 

contrasts
(9)

. This is unfavorable and greatly influences the performance of the flood. 

However, the effects are reservoir specific and the overall effect is dependent on various 

parameters like permeability, porosity, reservoir pressure, capillary pressure and mobility 

ratio
 (9)(11-13)

. 

2.4.2 Rock and Fluid Characteristics 

Fluid characteristics are generally black-oil or compositional PVT properties 

obtained in the laboratory by standardized procedures
(9)

. Very accurate determination of 

fluid properties can be obtained with current techniques. 

However, rock-fluid interactions such as adhesion, spreading and wettability 

affect the displacement in the reservoir. In reservoir simulators all these rock-fluid 

interactions are generally lumped into one parameter – relative permeability. The relative 

permeability is the connecting link between the phase behavioral and transport properties 

of the system. Relative permeability is an important petrophysical parameter, as well as a 

critical input parameter in predictive simulation of miscible floods. Relative permeability 
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data are generally measured in the laboratory by standardized procedures with actual 

reservoir fluids and cores and at reservoir conditions
(9)

.  

2.4.3 Injection Gas Characteristics 

This issue is more related to the location than the applicability of the reservoir. 

The question of availability is most important as far as the design criteria are concerned. 

The CO2 design criteria suggest a minimum depth limitation as well as dictate the 

specific gravity and viscosity criteria of the oil to be produced from the concerned 

reservoir. In offshore fields, the availability of hydrocarbon gas directly from production 

makes hydrocarbon gas injection feasible. Good example of this issue is the Ekofisk field 

where miscible hydrocarbon WAG was suggested to be more suitable for Ekofisk, even 

though CO2 WAG yielded higher incremental production under laboratory conditions
(14)

. 

Christensen et al.
(6)

 suggest that all the offshore fields use hydrocarbon WAG, however 

the option to use CO2 is being tested for environmental concerns. 

2.4.4 Injection Pattern 

The WAG process review
(6)

 clearly shows the popularity of the 5-spot injection 

pattern with close well spacing on shore. In spite of higher costs, the 5-spot injection 

pattern with closed well spacing is still popular since it gives better control over the 

process. Inverted 9-spot patterns are also reported in DUWAG and the Hybrid WAG 

projects of Shell and Unocal respectively.  

2.4.5 Tapering 

Tapering is the decrease in gas-to-water ratio as the flood progresses. This is 

generally done to control the gas mobility and channeling as well as to prevent early 

breakthrough of the gas. This step is important especially when the injected gas is 
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expensive and needs recycling. Tapering is generally done in most of the CO2 and 

hydrocarbon floods and prevailed even in the earliest WAG flood trials
(5)(6)

. 

2.4.6 WAG Ratio 

The optimum WAG ratio is influenced by the wetting state of the rock
(10)

. WAG 

ratio of 1:1 is the most popular for field applications
(6)

. However, gravity forces dominate 

water-wet tertiary floods while viscous fingering controls oil-wet tertiary floods. High 

WAG ratios have a large effect on oil recovery in water-wet rocks resulting in lower oil 

recoveries. Tertiary CO2 floods controlled by viscous fingering had a maximum recovery 

at WAG ratio of about 1:1. Floods dominated by gravity tonguing showed maximum 

recovery with the continuous CO2 slug process. The optimum WAG ratio in secondary 

floods was a function of the total CO2 slug size. 

For water-wet rocks, 0:1 WAG ratio (continuous gas injection) is suggested for 

secondary as well as tertiary floods
(10)

. For a partially oil-wet rock, tertiary gas injection 

with 1:1 WAG ratio is suggested. The recovery depends on the slug size with larger slug 

size yielding better results. A 0.6 PV slug size gives maximum recovery, but 0.2 – 0.4 PV 

slug size is dictated by economics. Tertiary and secondary CO2 floods (in both oil-wet 

and water-wet reservoirs) are viscous (or finger) dominated
(10)

. In these cases, miscible 

CO2 floods would greatly enhance oil recovery since miscibility reduces fingering 

considerably.  

2.4.7 Flow Dispersion Effects 

The WAG injection results in a complex saturation pattern as both gas and water 

saturations increase and decrease alternatively. This results in special demands for the 

relative permeability description for the three phases (oil, gas and water). There are 

several correlations for calculating three-phase relative permeability in the literature
(15)

, 
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but these are in many cases not accurate for the WAG injection since the cycle (water / 

gas) dependant relative permeability modification and application in most models are not 

considered. Stone II model is the most common three-phase relative permeability model 

used in commercial reservoir simulators today; however, it is necessary to obtain 

experimental data for the process planned. 

2.4.8 Gravity Considerations in WAG 

Green and Willhite
(16)

 suggest that the same density difference, between injected 

gas and displaced oil, that causes problems of poor sweep efficiencies and gravity 

override in these types of processes can be used as an advantage in dipping reservoirs. 

Gravity determines the ‘gravity segregation’ of the reservoir fluids and hence controls the 

vertical sweep efficiency of the displacement process. Gravity-stable displacements of oil 

by plain gas injection or WAG in dipping reservoirs as secondary or tertiary process 

results in very high oil recovery. This has been confirmed by laboratory tests, pilot tests 

as well as field applications
(1)(17-24)

. Although the purpose of WAG injection is to mitigate 

the gravity segregation effects and provide a stable injection profile, WAG in downdip 

reservoirs have shown better profile control and higher recoveries. Hence the gravity 

considerations in WAG design are indispensable. 

2.4.9 Laboratory Studies and Simulation 

Detailed laboratory studies coupled with reservoir simulation are of paramount 

importance for successful WAG design
(25)

. The quality of data input to the simulator is 

the key to provide quality predictions
(26)

. For compositional simulations phase behavior 

and slim-tube experiments should be performed and used to tune the EOS model. This 

tuned model helps in accurate characterization of reservoir fluid. Also relative 

permeability and capillary pressure hysteresis modeling for three-phase flow is a 
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requirement when simulating miscible WAG floods. Although these compositional 

effects do not affect immiscible floods to the same extent as in miscible floods, a tuned 

EOS coupled with an accurate three-phase relative permeability model is required for 

reliable predictions from the simulation. Significant improvements are being made in 

three-phase relative permeability models
(27-32)

. As a result, accuracy of the simulation 

studies is improving. 

2.5 The Need for Miscibility Development 

Most of the gas injection processes could be segregated as miscible or immiscible. 

Gas injection processes are most effective when the injected gas is nearly or completely 

miscible with the oil in the reservoir
(33)

. The immiscible gas flood increases oil recovery 

by raising the capillary number due to the relatively low interfacial tension values 

between the oil and injected gas. In miscible flooding, the incremental oil recovery is 

obtained by one of the three mechanisms: oil displacement by solvent through the 

generation of miscibility (i.e. zero interfacial tension between oil and solvent – hence 

infinite capillary number), oil swelling and reduction in oil viscosity
(34)

. 

   Miscible flooding has been used with or without WAG for the control of viscous 

fingering and reduction in gas-oil interfacial tension of the system. Miscibility is 

achieved by repressurization in order to bring the reservoir pressure above the minimum 

miscibility pressure (MMP) of the fluids. Christensen et al.
(6)

 observed that it is difficult 

to distinguish between miscible and immiscible processes since in many cases a multi-

contact gas-oil miscibility may have been obtained. This leads to uncertainty about the 

actual displacement process. Loss of injectivity and/or failure of pressure maintenance in 

the actual reservoir, attributable to many factors, cause the process to fluctuate between 

miscible and immiscible during the life of the process. The authors
(5)

 also point out that 
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the earlier miscible processes used expensive solvents like propane, which are 

uneconomical in the present price context. The injectivity problems and pressure loss 

dictate closer well spacing – hence increased costs – although no severe impairments in 

the project economics have been reported because of these problems only
(5)

. 

There seems to be no consensus in the literature for the need for development of 

miscibility in gas floods
(33-35)

. Rogers and Grigg
(9)

 suggest that interfacial tension is the 

most sensitive and the most easily modified parameter in the capillary number, and 

suggest that considerable decrease in interfacial tension at relatively low cost is the 

benefit of miscible flooding. However, overlapping values of interfacial tension for 

immiscible, near-miscible and miscible floods have been reported
(6)(36)(37)

. Although 

Rogers and Grigg
(9)

 suggest a way to improve the capillary number, the issue of viscous 

forces still needs to be addressed. Viscous forces strongly depend on the reservoir 

heterogeneities, petrophysical properties and cross-flow in the reservoir, hence are 

strongly reservoir dependant. Rao
(36)

 suggests the use of chemicals to alter wettability in 

non-water wet reservoirs where miscibility achievement (for reduction in interfacial 

tension) may not be as important as the water-wet reservoirs where miscibility is useful to 

maximize pore-level displacement efficiency. 

2.6 Effect of Brine Composition  

The migration of small solid materials (‘fines’) within porous media has long 

been recognized as a source of potentially severe permeability impairment in 

reservoirs
(38)

. This impairment has a strong effect on the flow capability (relative 

permeability) of the reservoir rock. Fines migration occurs when loosely attached 

particles are mobilized by fluid drag forces caused by the motion of fluid within the pore 

space. One of the primary factors that determine the migration of clay particles is the 
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brine composition. Laboratory studies
(38)

 have shown that brine salinity, composition and 

pH can have a large effect on the microscopic displacement efficiency of oil recovery by 

waterflooding and imbibition.  

Gray and Rex
(39)

 in their study of the migration of mica needles and kaolinite, 

found that fines migration, consequently permeability reduction, could be induced by 

salinity changes or abrupt reductions in the ratio of divalent to monovalent ions present in 

the brines. Mungan
(40)

 studied the effects of permeability reduction (‘Core Damage’) due 

to changes in pH and salinity of the injected brine. He concluded that the permeability 

reduction occurs, regardless of the type of clay, due to changes in brine salinity.  

Capabilities of divalent cations like [Ca
2+

] and [Mg
2+

] to control permeability 

impairment of reservoir due to swelling of clays have been long recognized
(39)(41)(42)

. This 

phenomenon is attributable to the cation exchange properties of clays, which inherently 

favor the adsorption of [Ca
2+

] and [Mg
2+

] ions over [Na
+
]. The clays in their calcium-

form are less easily dispersed compared to the clays with sodium, and they are easily 

interchangeable by flowing a solution containing other cations
(41)

.  

Even though the literature is unison about the effects of brine composition on 

permeability reduction and fines migration, there seems to be little consensus about the 

effects of brine composition on oil recovery (either by waterflooding or imbibition). 

Kwan et al.
(43)

, in their study of permeability damage via fines migration in extracted core 

material, concluded that permeability and oil recovery were nearly independent of brine 

composition. Contrarily, other experimental studies
(41)(42)(44)(45)

, suggested that changes in 

brine composition could have a large effect on oil recovery.  

Waterflooding and core imbibition experiments conducted by Tang and 

Morrow
(44)

 with 1% solutions of NaCl, CaCl2 and AlCl3 showed increased waterflood 
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recoveries (forced displacement) and decreased (natural) imbibition rates with increase in 

cation valency. Generally, oil recovery increases with decrease in brine salinity
(44)

. 

In contrast to the observations of Tang and Morrow
(44)

, Sharma and Filoco
(45)

 

conducted centrifuge experiments on Berea cores and found that oil recovery via 

imbibition increases significantly with increasing salinity of connate brine.  

2.7 Importance of CO2 as Injectant Gas: U.S. Perspective 

CO2 injection remains an important method for improving oil recovery in the US in-spite 

of oil price swings and ownership realignments. The CO2 process leads the gas injection 

processes, with a contribution from Nitrogen and Hydrocarbon (HC) processes. This is 

especially true in the Permian basin of West Texas and New Mexico. Over 95% of the 

CO2 flooding activity, accounting for 4% of total EOR production, is in the United States, 

and mainly in the mature Permian Basin of the southwestern US and dominated by 

injection under miscible conditions
(4)(6)

.  

The EOR survey
(49)

 and Moritis
(50)

 observe that the CO2 miscible processes are on 

the rise while the other gas processes, like flue gas, Nitrogen etc., seem to have become 

practically extinct. The lower costs for implementing CO2 floods are due to gas 

processing facilities as well as large reserves of almost pure CO2 in Mississippi, West 

Texas, New Mexico, Oklahoma, North Dakota, Colorado and Wyoming. These are 

supported with extensive CO2 pipeline infrastructure, from CO2 source fields and gas 

processing facilities. The CO2 pipeline network is shown in Figure 3. 
 
Projected oil 

recoveries from these projects are in the order of 7-15% of OOIP
(6)(9)

. Computer 

simulation capability and reduction in development costs have made the CO2-based 

processes even more attractive in recent years.  
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The injectivity problems with CO2 are less severe compared to other gases due to 

the higher viscosity of CO2. Furthermore, the lower formation volume factor (FVF) of 

CO2 and lower mobility ratio make the volumetric efficiency higher for CO2 than other 

solvents and solvent mixtures. The CO2 density is much closer to typical light oil density 

than are most other solvent injectants, making CO2 less prone to gravity segregation 

compared to N2 and CH4. Another beneficial effect of CO2 is the likelihood of higher 

gravity segregation in the high water saturation zones of the reservoir than in the higher 

the oil saturation zones. This effect is also useful to target pockets and bypassed areas of 

oil and drain them effectively
(9)

.  

The use of CO2 emitted into the atmosphere for enhancing oil recovery has 

recently generated interest in both the environmental and petroleum researchers. The CO2 

sequestration has the benefit of reducing the emission of greenhouse gases and increasing 

oil recovery.  

 
Figure 3: Extensive Network of CO2 Pipelines in The U.S. (From Kinder Morgan Co.) 

 

 17



2.8 Problems Associated with the WAG Process 

Although laboratory models show very high sweep efficiencies, the complexity in 

operations and gravity override make WAG a difficult process in the field to minimize 

the mobility driven instabilities associated with the gas flood processes. Decrease in 

sweep efficiency farther from the injection well and gravity segregation of injected gas 

and water are illustrated in Figure 4.  

 

Figure 4: Schematic of The Gas-Water Gravity Segregation in Far-Wellbore Region
(25)

 

Literature review shows that gas injection is generally applied as a tertiary flood, 

after a secondary waterflood. High water saturations shield residual oil from injected 

solvent giving rise to severe water-shielding effect in tertiary gas floods. This effect is 

more prominent in water-wet reservoirs. Wettability affects the water-shielding effect, 

which is further discussed in the literature
(10)(36)

. 

Apart from these reservoir problems, there are many reported operational 

problems for WAG implementation like corrosion, asphaltene and hydrate formation, and 

early breakthrough. A complete and exhaustive list of operational problems have been 

described by Christensen et al.
(6)

. Good management and operational procedures are 

required to mitigate these operational problems, and “Negative effects with WAG 

injection are rarely seen, and most operational problems have been handled 
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successfully
(6)

”. Nevertheless, these procedures require close monitoring and constant 

update. The WAG recoveries rarely exceed 5 – 10% and major operational problems are 

a part of the daily routine for the operators. 

2.9 Literature Review Summary 

The gas injection EOR processes today contributes a substantial portion of the oil 

from light oil reservoirs, next only to thermal processes used in heavy oil reservoirs and 

their importance is continuing to rise.  

Nearly all the commercial gas injection projects today employ the WAG method. 

The WAG process has long been considered as a tertiary gas injection mobility control 

process after a secondary waterflood. Previous research and field applications have 

repeatedly proven the inadequacy of the WAG process, yet it has remained the default 

process due to absence of a viable alternative. The low recoveries from the WAG process 

lead to substantial research of the process and consequently some of its limitations are 

eliminated. In spite of these improvements, the field performance of WAG process is 

disappointing. Hence the full utilization of EOR potential in the U.S. requires the 

development of new and more efficient gas injection processes that overcome the 

limitations of the WAG process. 

In the United States, most of the WAG applications are onshore, employing a 

wide variety of injection gases for a wide range of reservoir characteristics in the miscible 

mode. Although many types of injectant gases have been used in the commercial WAG 

floods, CO2 and Hydrocarbon gases form the major share of injectant types (~ 90%).  

The main design parameters that need to be evaluated on a laboratory scale so as 

to evaluate the feasibility of the process are: Reservoir heterogeneity, rock type, fluid 

characteristics, injection gas, WAG ratio and gravity considerations. Other important 

 19



parameters that are important for gas injection and tertiary recovery in general are those 

of miscibility development and oil / brine composition (characteristics). 

  CO2 is ideally suited for the use as an EOR gas in the U.S. scenario. Abundance 

of reserves of almost pure CO2 and availability of technical know-how can be 

instrumental in the growth of CO2 injection process. Carbon sequestration is an added 

advantage of the CO2 injection projects. 
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CHAPTER 3 

 

EXPERIMENTAL APPARATUS AND PROCEDURE 

 

The research work is directed towards an evaluation of the Water-Alternating-Gas 

(WAG) process. Its design parameters and rock-fluid interactions in a laboratory. This 

project aims to study the flooding characteristics of WAG and continuous injection 

processes in short and long Berea sandstone cores and to determine the effects of gas-oil 

miscibility and brine composition.  

3.1 Tasks Identification 

Coreflood experiments to identify the multiphase flow characteristics of the fluids 

are central to this project. The corefloods of the project are of the dynamic displacement 

type. Identification and separation of parameters to effectively study their effects on the 

process is required. Pure CO2 gas has been used as an injectant in all the floods. n-Decane 

has been used as the ‘Oleic’ phase and two types of brine have been used as the aqueous 

phases to measure the effects of brine compositions (i.e. mono-valent vs. multi-valent 

brine). 

Initially, base case flooding experiments have been conducted using Berea cores, 

5% NaCl (mono-valent) brine and n-Decane. Because n-Decane is considered to be ‘non-

reactive’ in terms of wettability effects, the data generated served as the base case for 

comparing water-wet system data. The base case experiments have been conducted in 

WAG and continuous gas injection corefloods in both miscible and immiscible modes 

using a horizontal Berea core system set up. Similar experiments have been conducted 

using n-Decane and multi-valent (Yates reservoir) brine so as to examine the results of 

brine composition and stability of clays. These experiments have provided the data on 

 21



gas-oil displacements (both miscible and immiscible) in Berea sandstone cores for the 

‘non-reactive’ system.  

3.2 Experimental Fluids 

Analytic grade reagents were used in all the experiments. N-Decane and the salts 

that were used for synthetic Yates brine preparation were from Fisher Scientific with a 

purity of 99.9%.  To prepare the brines, deionized water from the Water Quality 

Laboratory at Louisiana State University was used. The compositions of the two brines 

used in the tests are shown in Table 1 below. The Berea sandstone (Liver Rock type) 

used in the experiments was from Cleveland Quarries, Ohio. 

Table 1: Brine Compositions Used in Various Experiments 

 

5% NaCl Brine Pure NaCl Salt (200 gm) in 4 Liters Deionized water.  

Salt Type Weight / 4 L (gm) 

Sodium Chloride (NaCl) 23.26  

Calcium Chloride (CaCl2.2H2O) 11.77  

Magnesium Chloride (MgCl2.6H2O) 8.13  

Strontium Chloride (SrCl2.6H2O) 0.26  

Barium Chloride (BaCl2.2H2O) 0.0071  

Sodium Sulfate (Na2SO4) 0.95  

Yates Synthetic 

Brine 

Ferrous Ammonium Sulfate 

(Fe. (NH4).(SO4)2.6H2O) 
0.028  

 

3.3 Experimental Design 

To following plan of experiments was implemented to accomplish the objectives 

of this study.  
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Core Flood Experiments 

 

 

 

 Immiscible (500 psi)    Miscible (2500 psi) 

 

 

 

 

CGI Floods  WAG Floods  CGI Floods  WAG Floods 

    

 

 

 

    
 

 

 

 

5% NaCl + N-Decane     Yates + N-Decane 5% NaCl + N-Decane      Yates + N-Decane 

 

Figure 5: Design of Coreflood Experiments  

Pure CO2 was used as the injection gas in all the floods. The minimum miscibility 

pressure (MMP) for the fluid-pair was estimated to be approximately 1880 psi. Hence, 

the immiscible floods were conducted at 500 psi and the miscible floods at 2500 psi. The 

experiments to be conducted are:  

Set A: Immiscible Floods (System Back Pressure < Minimum miscibility pressure)  

• 6-ft Berea + n-Decane + 5% NaCl brine System 

1. Horizontal mode immiscible continuous CO2 flood.  

2. Horizontal mode immiscible CO2 – WAG flood.  

• 1-ft Berea + n-Decane + 5% NaCl brine System  

3. Horizontal mode immiscible continuous CO2 flood.  

4. Horizontal mode immiscible CO2 – WAG flood.  
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• 1-ft Berea + n-Decane + Yates reservoir brine System 

5. Horizontal mode immiscible continuous CO2 flood.  

6. Horizontal mode immiscible CO2 – WAG flood.  

Set B: Miscible Floods (System Back Pressure > Minimum miscibility pressure)  

• 1-ft Berea + n-Decane + 5% NaCl brine System 

- Determination of MMP for n-Decane + CO2 system 

1. Horizontal mode miscible continuous CO2 flood.  

2. Horizontal mode miscible CO2 – WAG flood.  

• 1-ft Berea + n-Decane + Yates reservoir brine System 

3. Horizontal mode miscible continuous CO2 flood.  

4. Horizontal mode miscible CO2 – WAG flood.  

3.4 Experimental Setup 

The high-pressure coreflood apparatus was setup to conduct unsteady state 

coreflood experiments. The schematic of the apparatus is shown in Figure 6 below. It 

consists of a high-pressure Ruska pump injecting fresh (tap) water at desired flow rate 

and pressure to the bottom part of the floating piston transfer vessel. The transfer vessel is 

filled with the fluid to be injected into the core. High-pressure steel piping (1/8” ID) 

carries the fluid and is injected into the core with the assistance of a liquid re-distributor 

plate. The produced fluids were carried through the backpressure regulator into a 

measuring cylinder / electronic balance to determine fluids production as a function of 

run time. A parallel set of piping was constructed to facilitate the circulation of core 

clean-up fluids using a centrifugal pump. The inlet, outlet, differential, back and annulus 

pressures were measured using electronic pressure transducers (previously calibrated 

against a standard dead-weight tester) mounted on the coreflood apparatus.  
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Figure 6: Horizontal Core Flooding System Schematic  

Legend for the above schematic: 

  : Electrical Lines    

: 1/8” High Pressure Piping 

: Instrumentation Lines 

: Cleanup / Accessories Lines 

 

The vital components of the core-flooding apparatus are labeled from ‘A’ to ‘J’. 

Individual pictures of the equipment are shown in Figures 7 – 17. This experimental 

setup used a fresh 1-ft long Berea core as the porous medium for eight of total ten tests 

carried out. The cores have a single coating of epoxy on them to prevent damage during 

handling and processing of the core such as end facing, polishing and cutting. 
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Figure 7: Differential Pressure Transducer (A) 

 

Figure 8: 6-ft Berea Core with Epoxy Coating (B) 

 

Figure 9: 1-ft Core Holder (B) 
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Figure 10: Fluid Transfer Vessel (C) 

 

Figure 11: Ruska Positive Displacement Pump (D) 

 

Figure 12: Back Pressure Regulator (E) 
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Figure 13: Cleanup Centrifugal Pump (F) 

 

Figure 14: Electronic Balances (G) 

 

Figure 15: Field Point Data Acquisition Hardware (H) 
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Figure 16: Pressure Readout (I) 

 

Figure 17: Gas Chromatograph (J) 

3.5 Experimental Procedure 

There were two types of experiments performed. They were Continuous gas 

injection and WAG. All the experiments consisted of the following steps: Saturation with 

brine, determination of pore volume and absolute permeability, oil flood to connate water 

saturation, end point oil-permeability, waterflood to waterflood residual oil saturation, 

end point water-permeability and tertiary gas flood. The core filled with brine solution 

after core cleaning to determine pore volume and absolute permeability. It is brought to 

connate water saturation by flooding with n-Decane at high flow rates (160 cc/hr). The 
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core is then water flooded (60 cc/hr) using the brine of similar composition as the connate 

water to bring the core to water-flood residual oil saturation. This is the imbibition 

process (Berea generally being a water-wet rock), which represents the secondary 

recovery process. At the end of the imbibition process, significant residual oil remains in 

the core. WAG injection and continuous CO2 injection tests were then conducted after the 

secondary recovery process. 

When two-phase flow occurs in any porous medium, capillary pressure is usually 

present unless the flood is miscible. The capillary pressure depends on local curvatures of 

the fluid / fluid interfaces, which in turn depend on saturation, saturation history, 

wettability and pore geometry
(9)(37)

.  

Laboratory transient-state displacement processes are affected by viscous 

instabilities and discontinuities at the inlet and, more importantly, the outlet of the core, 

which is referred to as the ‘end effect’. End effects can be minimized by using large core 

lengths and pore volume. The scaling criterion of Leas and Rappaport
(52)

 has been used to 

remove the dependence of oil recovery on injection rate and core length. The use of this 

scaling criterion helps the capillary pressure gradient in the flow direction to be smaller 

than the imposed pressure gradient. The scaling criterion is given by, 

L.V.µ ≥ 1………………………………………………………..………………………(3) 

where L is the core length  (cm), µ is viscosity of displacing phase (cP) and V is fluid 

velocity (cm/min).  

The Leas and Rappaport scaling criterion calculations were repeated for each 

injection fluid to ensure stable floods. The Leas and Rappaport scaling criterion value of 

7.5 was used in all the corefloods conducted in this study. It is interesting to note that this 

 30



criterion is generally met in the reservoir scale floods due to the large distances between 

injector and producer.  

As stated earlier, every flood has its own unique procedure. However, common 

operations like cleaning and absolute permeability measurement are applicable to all 

floods. The final tertiary EOR process is experiment dependent. The procedure is as 

follows.  

3.5.1 Core Cleaning Procedure 

Typically at the end of any coreflood, oil, brine, and gas (CO2) exist in the core. 

To begin a new coreflood experiment, it needs to be cleaned. Prior to instigating a new 

coreflood, an extensive cleaning procedure was followed to restore the core to a known 

initially strongly water-wet state. In the procedure, cleaning fluids are flooded at high rate 

and low pressure to save time. This step requires accurate pressure and flow rate 

monitoring because errors in this process may lead to improper cleaning and 

consequently induce errors in the test following this operation.   

• At first, the core is flushed with 4 – 5 pore volumes (PV) of normal brine solution. 

This step is essential to completely eliminate the traces of residual gas in the core. 

This injection is initially conducted in one direction followed by equal amount of 

flushing in the normal direction.  

• The salt concentration in the core is decreased by flushing with 2 – 3 PV diluted 

brine solution in both directions. 

• The core is then flushed with 2 PV Methylene Chloride to act as a buffer between 

the injected brine and cleaning fluids. The buffer prevents possible contact of 

chemicals such as Toluene and Acetone with the brine that could cause possible 

precipitation of the salt and consequentially damage the core. 
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• This core is then flushed with 2 PV Toluene until a clear effluent is obtained and 

no more oil is solubilized. The high solubility of oil components of oil in toluene 

ensures complete removal of the residual oil in the core.  

• Another slug of Methylene Chloride (~ 2 PV) is injected as a buffer between 

Toluene and next cleaning chemical, which was Acetone. 

• About 2 PV of Acetone is injected to act as a dehydrating agent to remove traces 

of residual brine (if any). Acetone also helps dissolve traces of oil (N-Decane) 

that Toluene may have left. Now the core is free of all the fluids it contained at 

the start of the cleaning procedure. 

• The core is then re-flushed in both directions with 2 PV Methylene Chloride until 

a clear effluent is obtained. Now the core is ready to be injected with brine.  

• The Methylene Chloride is then dislodged from the core using a diluted brine 

solution in both forward and reverse directions.  

• Finally normal concentration brine solution is flushed in both directions into the 

core.  

Sufficient backpressure is maintained to ensure good core cleaning. Also the 

stepwise increase/decrease in brine concentration during the cleaning procedure is 

important to prevent any permeability impairment to the core, especially while using 

monovalent (5% NaCl) brine.  

3.5.2 Absolute Permeability Measurement 

The core is fully saturated with brine at the start of this step. The absolute 

permeability of the core is then measured, which also serves as a means to check the 

efficiency of the cleaning procedure. The procedure involves the following steps. 
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• Flood the core using field/synthetic brine (about 1 – 2 hrs for each flow rate) after 

the cleaning process is over. This step is required despite the fact the core was just 

flushed at the end of cleaning process with brine. This flood is performed at lower 

flow rates to establish pressure equilibrium and removal of any entrapped air.  

• Brine flooding is continued until a stable pressure drop is obtained.  

• The brine production and pressure drop are measured and tabulated. 

• The procedure is repeated for three different flow rates till consistent pressure 

drops and permeability are obtained.  

• The measured stable pressure drops and the corresponding flow rates are used to 

calculate absolute permeability of the core using Darcy’s law, 

    
PA

LQ
k

∆
=

.

..µ
………………………………………………………….…………..(4) 

Where, Q is flow rate in cc/sec; µ is the viscosity of injected fluid in cP; L is the 

length in cm; A is the cross-sectional area in cm
2
, and ∆P is pressure drop in psi. 

3.5.3 Oil Flood To Determine Connate Water Saturation  

The oleic phase (n-Decane) is first transferred to the oil transfer vessel and 

pumped into the core using the Ruska positive displacement pump. The oil must always 

be filtered before pumping it into the core. This is done using an in-line oil filter.  

• The core was flooded using n-Decane (or Crude oil) for 2 PV. 

• The volumes of brine and oil produced and pressure drop are measured and 

recorded as a function of time. 

• The oil flood is conducted at 160 cc/hr flood rate to satisfy the Leas and 

Rappaport criterion. 
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• After 2.0 PV oil injection or till no more water is produced, whichever is later, the 

flow rate was changed (100 cc and 60 cc) and the system was allowed to stabilize 

before measuring the stabilized pressure drops. 

• The measured stable pressure drop(s) and the corresponding flow rate(s) are then 

used to calculate end-point effective permeability of the core to oil using Darcy’s 

law. 

• The connate water saturation (SWC) was then determined through material 

balance.  

3.5.4 Secondary Brine Flood To Determine Residual Oil Saturation  

Now the core is at connate water and initial oil saturation. The brine flood can be 

directly started after step 3.4.3. The core was aged for 24 hours for wettability restoration 

or refinement of the oil – water distributions at the pore level. Because n-Decane was 

considered to be non-reactive with little or no wettability effects, the relatively short 

ageing time of 24 hours was considered to be adequate. 

• The core was flooded using synthetic / field brine (about 2 PV) after the oil flood. 

• The volumes of brine and oil produced and pressure drop are measured and 

recorded as a function of time. 

• The flood is conducted at 60 cc/hr flood rate to satisfy the Leas and Rappaport 

criterion. 

• After about 2.0 PV injection, the flow rate was changed (30 cc and 10 cc) and the 

system was allowed to stabilize before measuring the stable pressure drops.  

• The measured stable pressure drop(s) and the corresponding flow rate(s) are used 

to calculate end-point water permeability of the core using Darcy’s law. 
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• The material balance was used to calculate the SOR.  

3.5.5 Tertiary Carbon Dioxide Gas Floods 

The tertiary gas injection was carried out in two modes: continuous CO2 injection 

and Water-Alternating-Gas (WAG) injection using the following procedure.  

Continuous CO2 Injection  

• The core was flooded with CO2 gas (approximately 2 PV) after the brine flood. 

• The flood is usually carried out at very low flow rates to ensure stability of the 

floods. Flooding rate of 10 cc/hr is used to satisfy the Leas and Rappaport 

criterion. This being the slowest step in the overall experimental procedure, it 

needs careful planning and monitoring.  

• The brine, oil and gas volumes produced are measured using the separator readout 

and gasometer or wet gas meters and tabulated as a function of time  

• At the end of the CO2 flood, the injection is continued for three different flow 

rates. The system is allowed to stabilize at each flow rate and then the observed 

pressure drop is measured. This gives the end point permeability of gas at residual 

liquid saturation. 

• Material balance is used to calculate the SGC.  

Water-Alternating-Gas Injection  

• The core was flooded with CO2 and water alternately after the brine flood. 

• The flood is usually carried out at relatively low flow rates to ensure stable floods. 

Flooding rate of 10 cc/hr was used to satisfy the Leas and Rappaport criterion. 

This being the slowest step in the overall experimental procedure, it needs careful 

planning and monitoring.  
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• The slug size used was 20% of the pore volume (PV). Gas and water are injected 

alternately in 20% PV slugs.  

• It is important to have similar pressures in both the brine and gas cylinders to 

prevent instabilities and early breakthrough during the flood. For this brine and 

CO2 transfer vessels are connected to the pump and allowed to equilibrate for at 

least 24 hours. 

• After equilibration of pressure in both brine and gas cylinders, 20% PV slug of 

gas was injected into the core. An equal volume slug of brine was then injected.  

• This procedure was repeated till 2.0 PV volume injection (brine and gas volumes 

together) is completed. 

• The brine, oil and gas volumes produced are measured using the separator readout 

and gasometer (used in immiscible gas floods) or wet gas meters (used in miscible 

gas floods) and tabulated as a function of time  

• Material balance was used to calculate the SGC.  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

The main objective of this work is to determine the effects of miscibility and brine 

composition on three-phase displacements in Berea cores for tertiary mode gas floods. It 

has been experimentally shown that crude oil and other chemical additives to brine (to 

enhance recovery in secondary mode) have wettability effects
(53)

. n-Decane in this project 

along with two types of brine (viz. 5% NaCl brine and Yates synthetic brine) was used to 

isolate these wettability effects. The non-reactive (absence of wettability effects) nature 

of these systems has already been experimentally proven
(53)

. The design of experiments 

to achieve the proposed objectives is illustrated in section 3.2 of chapter 3.  

Literature review shows wettability alterations can be inferred from the observed 

changes in the relative permeability curve characteristics such as SWC (initial water 

saturation or crossover point of the curves). Craig’s rules of thumb
(54)

 were used to 

interpret wettability changes from the experimental results. The rules of thumb are 

summarized below in Table 2. 

Table 2: Craig’s Rules Of Thumb
(54)

 for Wettability Interpretation. 

 

Wettability Criterion Water-Wet Rock Oil-Wet Rock 

Connate Water Saturation (SWC) > 0.20 – 0.25 % < 0.15 

End Point Oil Permeability at Connate Water 

saturation (Kre (@ connate water))
(53)

 

> 0.80 – 0.95 < 0.7 

End Point Water Permeability at Waterflood 

residual oil saturation (Kre (@ waterflood residual oil)) 

< 0.30 > 0.50 

 

The results are grouped according to fluid systems and further subdivided 

between immiscible and miscible displacements. The comparison of WAG and 

continuous CO2 floods are included under their mode of displacements. To nullify the 
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effect of reservoir / core heterogeneity on displacement characteristics in a porous 

medium, all the core floods are conducted on the same 1-ft Berea rock sample. The P & 

T, flow rates, cleaning fluids and n-Decane used for the tests are similar for all the core 

floods conducted. These experimental controls ensure that the core has been exposed to 

the same history prior to the various tertiary mode recovery tests.  

4.1 Laboratory Procedural Changes 

In the course of this research, the need for some new laboratory procedural 

changes was realized. The most important change was to use fresh Berea cores rather 

than the ones with a previous history of exposure to crude oil. The crude oil causes 

changes in the wettability of the core rendering it non-water wet, indicating lower end 

point oil permeabilities.  

The core cleaning procedure used previously was found inefficient, and IPA 

(Isopropyl Alcohol) used for the water removal caused precipitation and consequential 

permeability reduction of the core, with 5% NaCl Brine solution. A review of literature 

suggested use of Toluene, Methylene Chloride, Chloroform-Methanol azeotrope and 

acetone for core cleaning. Chloroform-Methanol azeotrope was not considered for safety 

reasons and instead acetone (a strong dehydrator) was used. The core cleaning procedure 

was modified as toluene and acetone alternating with methylene chloride.  

For all the displacement tests, the Leas and Rappaport criterion was employed to 

ensure stability and repeatability of the experiments. Every immiscible core-displacement 

experiment was conducted using two sets of reservoir fluids: 5% NaCl Brine with n-

Decane and Yates Synthetic Brine with n-Decane. Continuous CO2 and CO2 WAG 

experiments were conducted using both sets of reservoir fluids. The pressure drop and 

recovery plots for all experiments are included as appendix A. 
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4.2 Minimum Miscibility Pressure (MMP) Of CO2 / n-Decane System 

The PVT simulation packages available today often do not yield predictions 

accurate enough to be used without any experimental verification. The volumetric and 

phase compositional data for various CO2 binary mixtures available from visual cell 

experiments is scattered and not as useful for phase property calculations
(55)

.  

4.2.1 From Literature  

Although, the utility of n-Decane and CO2 as a potential candidate for coreflood 

experiments was recognized as early as 1960’s, its ‘minimum miscibility’ data was not 

systematically studied. Individual researchers had their own estimates for the MMP and 

were used by them accordingly. This could be partially blamed on the non-

standardization of the slim tube and rest on the discrepancies in the definition of 

‘miscible flood’.  

The reservoir simulators require experimental verification and calibration to 

predict the phase properties with good accuracy. Orr and Silva
(55)

, conducted continuous 

miscible contact experiments using n-Decane and CO2 at 1260, 1510 and 1760 psia, 

however the aim of the experiment  being the study molecular interactions and phase 

solubility’s, the importance of MMP was not recognized. 

Further to these studies, Orr and Jensen
(56)

 presented and studied pressure – 

composition (P-X) diagrams for many CO2/Crude-oil systems. The results indicated for 

low-temperature systems (below 120 
o
F), the extrapolated vapor pressure (EVP) of CO2 

is a good estimate of pressure required to produce a dense, relatively incompressible 

CO2-rich phase that can extract hydrocarbons efficiently from a crude oil. Further to this, 

the authors report that in absence of any other experimental evidence, the EVP curve can 

be used as a rough estimate of the MMP for low temperature reservoirs. The phase 
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diagram for CO2/N-Decane (at 160 
o
F) shows that above ~ 1880 psia, single-phase 

mixture results. Therefore, the MMP cannot be any higher than 1880 psia for this system.  

 

Figure 18: Pressure – Composition Diagram For CO2 / n-Decane
(56)

 

Benmekki and Mansoori
(57)

 used pseudo-ternary diagrams for accurate 

visualization of miscibility for EOR purposes. They also tried to modify and use the 

Peng-Robinson (PR) EOS to accurately model the experimental P-X diagram of CO2/n-

Decane (at 160 
o
F). Although the modification is cumbersome to duplicate, the fit to the 

experimental data is good and predicts an MMP of 135 bars (1958 psi), which is in good 

agreement with the Orr and Jensen prediction. 

4.2.2 From Commercial PVT Simulation Package 

Due to non-availability of experimental facility or data at the desired temperature, 

the WINPROP
®

 PVT package was used to predict the MMP between CO2/n-Decane at 

82 
o
F. However, the predictions of the simulator need be evaluated against compositional 

systems with known MMP values. To achieve this, two systems: one simple and other 
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complex, with experimentally known values of MMP were used to calibrate the 

simulator. Then, this calibrated simulator was used to determine the MMP of CO2/n-

Decane (at 82 
o
F). 

Simple system (CO2/C4/C10)  

Orr et al.
(58)

 developed a rigorous tie line extension criterion for four components 

to determine MMP using a simple geometric construction. They cite Metcalfe and 

Yarborough (1970) as a base case for measurement of MMP. Metcalfe and Yarborough 

used a 60-40 mixture of n-Decane and butane to flood Berea sandstone cores, where they 

reported that the displacements at 1700 psia were Multiple Contact Miscible (MCM) and 

became First Contact Miscible (FCM) at 1900 psia. Because this is a simple system to 

test the effectiveness of MMP prediction for the WINPROP
®

 PVT package, simulation 

runs were conducted for this mixture. The Peng – Robinson Equation Of State (PR EOS) 

predicted higher MMP values (~ 20% higher than experimental) for this system for both 

the MCM and FCM type of displacements. However, the Soave – Redlich – Kwong 

Equation Of State (SRK EOS) had a better prediction for this system. The WINPROP
®

 

PVT package predicted MMP values were in good agreement with the experimental 

values reported for the simple system. 

Complex system (CO2/Complex Stock Tank Oil (STO)) 

To further validate this technique of MMP determination, a complex STO mixture 

(C7 to C28 fractions) was chosen from the literature
(59)

, and its MMP was evaluated 

against pure CO2. Excellent agreement with the correlation MMP and a fairly good match 

with experimental MMP values, as reported in the literature, were observed. The 

WINPROP
®

 PVT package predicted MMP values were conservative compared to other 

methods, a trend also seen in the simple component system. Further, the SRK equation 
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was found more to be agreeable to the experimental values, while maintaining its 

conservative nature. 

Extension of results to the system of interest (CO2/C10) 

The encouraging results for known systems from the WINPROP
®

 PVT package 

increased the confidence in the MMP prediction by this technique. To achieve maximum 

accuracy, the simple system (CO2/C4/C10) was re-run and MMP predictions re-checked. 

The amount of C4 in this mixture was decreased to 1.0%, 0.0000001% and finally 0.0%. 

The results expectantly show a steady increase in the MMP with the decrease in C4 

concentration. This is intuitive. Similar trends, as previously observed in simple and 

complex systems, regarding the MMP predictions were observed, and SRK gave a better 

fit than PR EOS.  

A comparison between the experimental values of MMP and the calculated values 

from the simulations is shown in Table 3. 

4.2.3 From empirical correlations 

The other popular method for MMP determination is the empirical correlations. 

Ahmed
(60)

 reviewed many of the popular empirical correlations used to determine MMP. 

Some of these empirical correlations were used to calculate the MMP of n-Decane with 

pure/impure CO2 injection gas. The methods and the formulas used are summarized 

below. 

Extrapolated Vapor Pressure (EVP) Method  

This equation is called the Newittelal’s equation, which states that, the EVP of 

any system is in good agreement with the MMP of the system. The equation is given 

below. 

 

 42



Table 3: Comparison between the experimental and calculated values of MMP. 
Oil Composition Inj. Gas P-R Equation Of State SRK Equation Of State Experimental Values Temp

    MCM FCM MCM FCM MCM FCM   

60% C10 + 40% C4 CO2 1800 psia 2360 psia 1720 psia 2120 psia 1700 psia 1900 psia 160 oF

Complex STO (C7 to C28) CO2 3160 psia 5000+ psia 3000 psia  5000+ psia IFT Method: 2400 psig 50 oC

            Slim Tube: 2300 psig 50 oC

1% C4 + 99% C10 CO2 3320 psia 3440 psia 2720 psia  2840 psia -- -- 160 oF

0.001% C4 + 99.999% C10 CO2 1840 psia 3000+ psia 1760 psia  3000+ psia -- -- 82 oF

0.001% C4 + 99.999% C10 CO2 3360 psia 3520 psia 2760 psia  2880 psia -- -- 160 oF

0.0% C4 + 100.0% C10 CO2 3360 psia 3520 psia 2760 psia  2880 psia Orr et al: 1800 psig 160 oF

            Benmekki: 1958 psig 160 oF

 







+
−=

T
EXPEVP

5556.0372.255

2015
91.10.7.14 ……………………………………….(4) 

Where, Temperature (T) is in 
o
F and EVP in psia            

Petroleum Recovery Institute (PRI) Method 

  This method was developed by the Petroleum Recovery Institute (PRI), Canada. 

The correlation is included below. 

[ ])/1519(772.2.................10*82893.1071 )( TbMMP b −== …………….……………(5) 

Where, Temperature (T) is in 
o
R     and MMP in psia                              

Yellig and Metcalfe Method  

Yellig and Metcalfe reported a simple equation to determine the MMP. However, 

the authors suggest that if the bubble point of the oil is greater than the predicted MMP, 

then the MMP be set equal to the bubble point pressure.  

TTTMMP /93.10394901800674.02518055.27217.1833 2 −++= ……..……….……(6) 

Where, Temperature (T) is in 
o
F and MMP is in psia            
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Croqist Method  

Croqist proposed another empirical correlation for determination of MMP of pure 

component systems. The correlation is included below. 

CLC

A YMATMMP 0015279.00011038.0744206.0..............988.15 5 ++== + ……….....(7) 

Where T is Reservoir temperature is in 
o
F and YCL is Mole percentage of methane and 

nitrogen.       

The MMP values for Newittelal’s equation and Yellig and Metcalfe method were 

experimentally determined by Orr et al
(56)

. Currently, there are no reported experimental 

MMP verifications for the other two equations. However, the calculated values should 

not exceed +/- 12.5%, the error margin of the slim tube
(59)

. The results at 82 
o
F and 160 

o
F using these correlations are summarized in Table 4. 

 

4.2.4 Discussion 

The WINPROP
®

 PVT package predicted MMP values are always conservative compared 

to any other method considered in this study. Furthermore, the SRK equation gave better 

results than PR equation for this system. Hence, we can safely use the MMP value 

predicted by WINPROP
®

 using the SRK without tuning and assumed to be the miscible 

zone. Conducting the experiment at ~ 10% higher pressure than the highest predicted 

MMP value can help to guarantee development of miscibility.   

4.3 Waterflood and Gas Displacement Results 

The recovery and pressure drop data plots for all the Berea core-displacement 

tests conducted in this study are included in this section.  
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Table 4: Summary of all the MMP values obtained from empirical correlation 

calculations and comparison with available experimental values. 
 

Empirical Correlation 82 
o
F 160 

o
F Experimental (160 

o
F) 

Newitteal 994.226 2309.6453 1880 psia 

PRI 998.947 2249.7045 -- 

Yelling & Metcalfe 871.765 2005.2961 1880 psia 

Croqist 814.961 1479.5276 -- 

 

4.3.1 1-ft Berea Core with 5% NaCl Brine Experiments 

Figure 19 below shows the data obtained from 1-ft Berea core displacement tests 

with 5% NaCl brine solution as brine phase. This displacement test was conducted at 500 

psi pressure where CO2 is immiscible with n-Decane. 

Part (a) provides the data for water recovery and pressure drop during the 

drainage cycle when n-Decane was injected into the brine saturated core. 

Part (b) provides the data for oil recovery and pressure drop during the imbibition 

cycle when 5% NaCl brine was injected into the core at connate water saturation. 

Part (c) provides the data for liquid and oil recoveries as well as pressure drop 

during the tertiary recovery process. The tertiary recovery process, in this case, is the 

continuous immiscible CO2 gas injection.  

Similar data for drainage, imbibition and tertiary gas injection for floods with 5% 

NaCl brine and 1-ft Berea cores are shown in figures 20 – 22. Part (c) of the figures 

presents the results for various modes of gas injection, viz. miscible versus immiscible, 

and continuous gas injection versus WAG injection. The results are discussed under 

section 4.4. 
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4.3.2  6-ft Berea Core with 5% NaCl Brine Experiments  

Figure 23 below shows the data obtained from 6-ft Berea core displacement tests 

with 5% NaCl brine solution as brine phase. This displacement test was conducted at 500 

psi pressure where CO2 is immiscible with n-Decane. 

Part (a) provides the data for water recovery and pressure drop during the 

drainage cycle when n-Decane was injected into the brine saturated core. 

Part (b) provides the data for oil recovery and pressure drop during the imbibition 

cycle when 5% NaCl brine was injected into the core at connate water saturation. 

Part (c) provides the data for liquid and oil recoveries as well as pressure drop 

during the tertiary recovery process. The tertiary recovery process, in this case, is the 

continuous immiscible CO2 gas injection.  

Similar data for drainage, imbibition and tertiary gas injection for floods with 5% 

NaCl brine and 1-ft Berea cores are shown in figure 24. Part (c) of the figures presents 

the results for various modes of gas injection, viz. continuous gas injection versus WAG 

injection. The results are discussed under section 4.4. 

4.3.3 1-ft Berea Core with Yates Reservoir Brine Experiments  

Figure 25 below shows the data obtained from 1-ft Berea core displacement tests 

with Yates reservoir synthetic brine solution as brine phase. This displacement test was 

conducted at 500 psi pressure where CO2 is immiscible with n-Decane. 

Part (a) provides the data for water recovery and pressure drop during the 

drainage cycle when n-Decane was injected into the brine saturated core. 

Part (b) provides the data for oil recovery and pressure drop during the imbibition 

cycle when Yates reservoir brine was injected into the core at connate water saturations. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 continuous immiscible injection. 

 

Figure 19: Data for experiment # 1: 1-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary continuous CO2 immiscible injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 alternating with water (WAG) immiscible injection. 

Figure 20: Data for experiment # 2: 1-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary immiscible CO2 WAG injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 continuous miscible injection. 

 

Figure 21: Data for experiment # 3: 1-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary  continuous CO2 miscible injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 alternating with water (WAG) miscible injection. 

 

Figure 22: Data for experiment # 4: 1-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary miscible CO2 WAG injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 continuous immiscible injection. 

Figure 23: Data for experiment # 5: 6-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary continuous immiscible CO2 injection.  
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with 5 % NaCl Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 alternating with water (WAG) immiscible injection. 

 

Figure 24: Data for experiment # 6: 6-ft Berea core + n-Decane + 5% NaCl brine with 

tertiary immiscible CO2 WAG injection. 
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Part (c) provides the data for liquid and oil recoveries as well as pressure drop 

during the tertiary recovery process. The tertiary recovery process, in this case, is the 

continuous immiscible CO2 gas injection.  

Similar data for drainage, imbibition and tertiary gas injection for floods with 

Yates reservoir brine and 1-ft Berea cores are shown in figures 26 - 28. Part (c) of the 

figures present the results for various modes of gas injection, viz. immiscible versus 

miscible, and continuous gas injection versus WAG injection. The results are discussed 

under section 4.4. 

4.4 Results from Core Tests 

The core tests were conducted in three steps. The preliminary oil flood was used 

to measure the connate water saturation of the core. Brine was injected into the core to 

determine the secondary recovery and residual oil saturation to a waterflood. Tertiary gas 

injection (Continuous gas injection or WAG injection) followed the secondary flood to 

evaluate the efficiency of this procedure. The results of the core tests conducted in this 

work are discussed below: 

The objective of the tests was to determine the effects of mode of tertiary gas 

injection (CGI or 1:1 WAG), miscibility, brine composition and core length, on dynamic 

displacement tests in Berea cores. 

These tests were conducted at 500 psi (immiscible) and 2500 psi (miscible). Two 

types of brines (viz. 5% NaCl and Yates) were used and tertiary CO2 floods were 

conducted in two modes (viz. Continuous Gas Injection (CGI) and WAG). The tests with 

5% NaCl brine were conducted on both, 1-ft and 6-ft Berea cores to determine the effect 

of core length on dynamic displacements. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with Yates synthetic Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 continuous immiscible injection. 

 

Figure 25: Data for experiment # 7: 1-ft Berea core + n-Decane + Yates synthetic brine 

with tertiary continuous CO2 immiscible injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane. 
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(b) Imbibition Cycle: Waterflood with Yates synthetic Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 alternating with water (WAG) immiscible injection. 

Figure 26: Data for experiment # 8: 1-ft Berea core + n-Decane + Yates synthetic brine 

with tertiary immiscible CO2 WAG injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with Yates synthetic Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 continuous miscible injection. 

Figure 27: Data for experiment # 9: 1-ft Berea core + n-Decane + Yates synthetic brine 

with tertiary continuous CO2 miscible injection. 
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with Yates synthetic Brine. 
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(c) Tertiary CO2 Flood: Pure CO2 alternating with water (WAG) miscible injection. 

Figure 28: Data for experiment # 10: 1-ft Berea core + n-Decane + Yates synthetic brine  

                 with tertiary miscible CO2 WAG injection. 
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The Berea sandstone cores used for the test were fresh, without any previous 

history of exposure to crude oil. This is important because exposure to crude oils could 

have wettability effects rendering erroneous measurements and non-representative 

displacement characteristics. In order to eliminate the effects of rock heterogeneity, all 

the core tests were conducted on the same 1-ft Berea sandstone core using a non-reactive 

n-Decane as the oil phase and adopting a through cleaning procedure in between the 

various displacements.  

4.4.1 Oil Flood 

This cycle constitutes the process of injection of n-Decane into the core that is 

initially saturated with brine to get connate water saturation. This is an important step that 

determines the original oil in place (OOIP). The relative permeability of the core to oil at 

the end of this cycle is an important wettability identification parameter. The Craig’s 

rules of thumb
(53)

 were used to infer wettability from relative permeability end points.  

5 % NaCl Brine + n-Decane + Berea Core 

The results for this system are given in Table 5. As can be seen in Table 5, high 

oil saturations consequently lower connate water saturations were characteristic of the 1-

ft Berea core system. However, 6-ft cores show higher connate water saturations when 

2.0 PV of oil were flooded through. This suggests higher pore-volume injection 

requirements for the 6-ft system. Especially low relative oil permeabilities at the end of 

the oil flood were observed in all the cases.  

Berea sandstone cores are known to be strongly water-wet in nature. The low end 

point oil relative permeabilities and lower connate water saturations indicate intermediate 

to oil-wet characteristics as suggested by Craig’s rules of thumb. The larger variations in 

the absolute permeability values, compared to the other system (Yates brine with n-
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Decane in a Berea core), suggest the unstable nature of the system, in spite of the 

consistent and rigorous cleaning procedure practiced.  

Berea cores are known to be highly sensitive and show wide variations in the 

displacement characteristics if the clays are not stabilized. Literature
(41)(42)(44)(45)

 suggests 

the use of brines containing divalent cations such as [Ca
++

] and [Mg
++

] and firing of the 

core to stabilize the clays in Berea sandstone. Experimental evidences have shown the 

process to be reversible
(62)

 and the ions attached to clay surfaces easily interchanged by 

flowing a solution of another salt through the core.  Hence, another series of experiments 

using the same core but with Yates reservoir brine, containing divalent cations, was 

designed to investigate this phenomenon.  

Yates reservoir Brine with n-Decane in Berea Core 

The monovalent brine used in the previous experiments was replaced with a 

multivalent (Yates reservoir) brine to investigate the phenomena of clay stabilization and 

its effects on dynamic displacement corefloods.  

Since the corefloods were conducted on the same core, the cleanup was done 

using the 5% brine initially and then this brine was miscibly displaced by Yates reservoir 

multivalent brine. This was done to ensure that the core was subjected to the same history 

as the other tests. To stabilize the clays in the core, 24 hours of ageing with multivalent 

brine after each cleanup was done. The 24-hour ageing period was found to be optimum 

from contact angle studies at LSU Rock-Fluid Interactions Laboratory
(61)

. The SWC, 

connate water saturations and the end-point oil relative permeabilities for the corefloods 

conducted are summarized in the Table 5 below. 

The oil cycles conducted with multivalent brine (experiment # 7 – 10) showed 

significant increase in the end point oil permeabilities as well as the connate water 
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saturations compared to those with 5% NaCl brine. Similar experiments conducted on 

Berea core by Thomas / Archer showed comparable oil saturations with these cycles after 

the oil flood. A significant reduction in the standard deviation of the absolute 

permeability indicates that stabilization of the core clays and shift of the system from 

intermediate to oil-wet (5% NaCl brine runs) to more water-wet characteristics has 

occured.  

Table 5: Summary of Oil Flood (Drainage) Cycles 

 

Expt 

No. 

Experiment Title PTEST

(psi) 

Abs. Perm 

(D) 

SWC SOI End Point 

Rel-Perms

5 % NaCl Brine + n-Decane + Berea Core 

1 1-ft Immiscible Continuous CO2 500 0.2526 12.5 87.5 34.5 % 

2 1-ft Immiscible CO2 WAG 500 0.3435 21.3 78.7 39.9 % 

3 1-ft Miscible Continuous CO2 2500 0.2895 13.3 86.7 42.0 % 

4 1-ft Miscible CO2 WAG 2500 0.1825 15.1 84.9 47.0 % 

5 6-ft Immiscible Continuous CO2 500 0.1844 44.7 55.3 44.2 % 

6 6-ft Immiscible CO2 WAG 500 0.2463 38.5 61.5 33.7 % 

Yates synthetic Brine + n-Decane + Berea Core 

7 1-ft Immiscible Continuous CO2 500 0.1311 21.3 78.7 65.5 % 

8 1-ft Immiscible CO2 WAG 500 0.1869 19.1 80.9 58.3 % 

9 1-ft Miscible Continuous CO2 2500 0.1443 18.4 81.6 59.1 % 

10 1-ft Miscible CO2 WAG 2500 0.1906 16.9 83.1 66.8 % 

4.4.2 Brine Floods 

This cycle constitutes the process of brine injection into the core, which is at 

connate water saturation, to get water-flood residual oil saturation in the core. Brine is 

injected at stable flow rates into the core after the drainage cycle. This step is an indicator 

of the extent of feasible secondary oil recovery. The end point permeability of the rock to 

brine at the end of this cycle can also be used to infer wettability. The recovery of 

residual oil saturations and end point water relative permeabilities for the waterflood 

conducted are summarized in the Table 6. 
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The imbibition results are typical of water-wet cases for both the brine systems 

(namely 5% NaCl brine and Yates reservoir brine) used for these tests. Excellent 

agreements of recoveries between all the imbibition (1-ft and 6-ft Berea core) 

displacements were found. Higher waterflooding recoveries, low end point water 

permeabilities, a sharp breakthrough with negligible oil production after breakthrough 

(seen in the plot of oil recovery vs. PV Injected), all the characteristics of a water-wet 

rock, were exhibited in the cycle.  

Table 6: Summary of Brine Flood (Imbibition) Cycles 

Expt 

No. 

Experiment Title PTEST 

(psi) 

SOR SW Recovery 

% OOIP 

End Pt 

Rel-Perms

5 % NaCl Brine + n-Decane + Berea Core 

1 1-ft Immiscible Continuous CO2 500 35.0 65.0 60.0 % 08.01 % 

2 1-ft Immiscible CO2 WAG 500 27.7 72.3 64.8 % 08.09 % 

3 1-ft Miscible Continuous CO2 2500 32.8 67.2 62.2 % 08.05 % 

4 1-ft Miscible CO2 WAG 2500 35.4 64.7 58.4 % 08.72 % 

5 6-ft Immiscible Continuous CO2 500 24.7 75.3 55.4 % 17.60 % 

6 6-ft Immiscible CO2 WAG 500 23.7 76.3 61.4 % 10.03 % 

Yates synthetic Brine + n-Decane + Berea Core 

7 1-ft Immiscible Continuous CO2 500 25.5 74.5 67.6 % 11.80 % 

8 1-ft Immiscible CO2 WAG 500 27.7 72.3 65.8 % 07.51 % 

9 1-ft Miscible Continuous CO2 2500 29.9 70.1 66.7 %  11.56 % 

10 1-ft Miscible CO2 WAG 2500 27.0 73.0 66.7 % 09.39 % 

 

4.4.3 Tertiary Gas Injection Floods 

Two types of experiments were conducted: Continuous Gas Injection (CGI) and 

Water-Alternating-Gas (WAG). Gas injection is a popular EOR process in light oil 

reservoirs. As the literature review suggests, almost 80% of the gas injection processes 

employ the WAG method. The continuous CO2 injection process and 1:1 WAG (with 0.2 

PV slug size) are the most popular gas injection EOR processes employed in the field 

today. Hence, investigation of the displacement characteristics for these tertiary processes 

was conducted.  
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The main objectives of this portion of the project are to determine the effects of 

miscibility, brine composition and core length. These effects are illustrated below after 

defining two parameters that enable valid comparisons of various experiments. 

The evaluation of all the corefloods conducted at various conditions and tertiary 

recovery modes, requires a common parameter for comparison. Two new factors were 

defined, ‘CO2 utilization factor (UFCO2)’ and ‘Tertiary Recovery Factor (TRF)’ as the 

Fraction of residual oil in place recovered per pore volume of CO2 injected (ROIP/PV-

CO2). These are used to compare the relative merits of all the corefloods conducted, and 

are defined below: 

CO2 utilization factor (UFCO2) is commonly used to evaluate field projects and is 

defined as the volume of CO2 gas injected under standard conditions, to produce a barrel 

of oil, and is calculated as: 

UFCO2 = 
)(

)(2

BblQ

MSCF

Oil

COV
…………………………………………………………….…….(8) 

Fraction of Residual oil In Place (ROIP) recovered per Pore Volume (PV) of CO2 

injected (ROIP/PV-CO2): The corefloods conducted were in CGI and WAG mode, which 

resulted in an unequal quantities of cumulative gas injection for each flood. To 

‘normalize’ the recoveries and avoid fallacious conclusions from the data, the ROIP/PV-

CO2 factor was defined as below, 

Dimensionless TRF = [(Oil recovered cc)/(SOR cc)]/[Cum. PV CO2 Injected]………....(9) 

This factor has been calculated for each experimental data point. The use of these 

two factors in the analysis was found to be more appropriate as shown in the flowing 

comparisons. However, the standard plots, such as recovery vs. PVI are also included for 

easy cross-reference. 
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All the results of the tertiary gas injection floods are summarized in Section 4.4 

below and individual objectives namely effect of miscibility, brine composition and core 

length are discussed. 

4.5 Discussion of Tertiary Gas Injection Floods 

 

4.5.1 Effect of Miscibility 

Miscibility affects the microscopic displacement efficiency in the gas injection 

EOR process. It influences the capillary number through interfacial tension. A zero 

interfacial tension value is necessary and sufficient for attainment of miscibility. Hence, 

miscible floods have relatively high capillary numbers that result in increased oil 

recovery.  

Miscible and immiscible floods were conducted using the two sets of fluid 

systems, namely 5% NaCl brine with n-Decane and Yates reservoir brine with n-Decane 

on 1-ft Berea core. The individual plots are included below as Figures 29 – 30 

respectively. 

5 % NaCl Brine + n-Decane + 1-ft Berea Core System 

Both WAG and continuous mode gas injection floods were conducted using 5% 

NaCl brine + n-Decane + 1-ft Berea core. The results are included in Figure 29 below.  

As suggested earlier, this increase is attributable to the significant reductions in 

interfacial tension between the displacing and displaced fluids by virtue of miscibility 

development. This results in very high capillary numbers and consequently near perfect 

microscopic displacement efficiency. Hence, the development of miscibility is beneficial 

from a recovery point of view.  
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Figure 29 (a): Recovery in % of ROIP 
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Figure 29 (b): Recovery As Fraction of Residual Oil In Place Per PV of CO2 Injected 

Figure 29: Effect of Miscibility and Mode of Injection in Tertiary Recovery in 5% NaCl 

Brine + n-Decane 
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Figure 29(a) also appears to indicate that there is minimal advantage to using the 

WAG in immiscible mode. Further, miscible CGI is desirable from the recovery point of 

view. These conclusions are misleading because, the amount of CO2 injected for these 

recoveries are significantly different for each floods. The total recovery obtained from 

1:1 WAG is from half the volume of CO2 gas injected for the CGI process. Hence, the 

analysis of the results on the basis of recovery only leads to erroneous comparisons. It is 

for this reason the recoveries were ‘normalized’ on the basis of waterflood residual oil 

recovered per pore volume (PV) of CO2 gas injected to arrive at the Tertiary Recovery 

Factor defined earlier. This factor is plotted in Figure 29(b). 

Figure 29 indicates significant increase in oil recovery in miscible floods, while 

the recoveries in immiscible floods (both CGI and WAG) were about 23%, the miscible 

floods yielded 93.7% recovery for the CGI floods and 84.5% for the WAG flood. This 

further indicates that in these 1-ft Berea core floods, the continuous injection of CO2 

appears to have performed better than WAG injection. However, it should be noted the 

CGI floods utilize twice the volume of CO2 to that of WAG floods. Hence, a valid 

comparison of the two would be on the basis of TRF that normalizes the recovery with 

respect to the CO2 volumes injected. This is the purpose of Figure 29(b). 

The Figure 29(b) clearly shows the advantage of the WAG process. Both, 

miscible and immiscible processes hasten recovery and result in better process 

economics. It is important to note the conclusions from Figures 29(a) and 29(b) are 

contradictory. Thereby, the use of ROIP/PV-CO2 factor for evaluation of the corefloods 

is appropriate and is used in analyzing the rest of the experimental results (along with the 

conventional recovery plots). 
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It is interesting to note that, in Figure 29(b), the TRF for experiment 3 for the CGI 

miscible flood continuously decreases and approaches the data for immiscible floods. 

This has serious implications such that appeared to be the best case scenario based on the 

recovery plot, but turns out to the worst case due to the cost of compressing CO2 to 

pressures above the minimum miscibility pressure.  

Comparing the recoveries from Figures 29(a) and (b) indicates that the maximum 

utilization (best performance) of the CGI miscible flood occurs up to 0.7 PV injection. 

The tertiary recovery factor comparisons for further injection show distinct advantage of 

the 1:1 miscible WAG process. This suggests the use of CGI till 0.7 PV injection and 

later switching over to the WAG process for maximizing the tertiary recovery. This 

seems to be the principle behind the patented processes of ‘Hybrid WAG’ and 

‘DUWAG’ of UNOCAL and Shell respectively, where a large slug of CO2 (~ 0.6PV) is 

injected in the reservoir followed by 1:1 WAG. 

Yates Reservoir Brine + n-Decane + Berea Core System 

Similar WAG and continuous mode gas injection floods were repeated at similar 

flooding conditions using Yates reservoir brine. The results are included in Figures 30(a) 

and 30(b) below. 

Similar to the previous case of 5% NaCl brine, miscible floods showed 

significantly higher recoveries than immiscible ones as can be seen in Figure 30(a). The 

CGI recovery increased from 62.9% to 97.6% and WAG recoveries increased from 

28.9% to 72.5% due to miscibility. 

  The recovery plot of Figure 30(a) favors the use of CGI rather than WAG in both 

miscible and immiscible cases. However, the use of Tertiary Recovery Factor for 

comparison, as done in Figure 30(b), shows the benefit of using WAG mode floods in 
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both miscible and immiscible cases. Hence, although the recovery plot shows higher total 

recovery, WAG floods show better economics, and give maximum benefit in miscible 

mode.  

4.5.2 Effect of Brine Composition in Miscible Tertiary CO2 Floods 

As discussed in the literature review, brine composition could affect stabilization 

of clays
(48)

 in porous medium, and also influences the waterflood recovery
(41)(42)(44)(45)

. 

Hence Craig’s rules of thumb were used to infer wettability changes that could have  

occurred in the displacement tests. 

The plots of effect of brine composition on miscible floods are shown in Figures 

31(a) and 31(b). As seen in the previous section, the evaluation of the process on the 

basis of recoveries only can lead to misleading conclusions. Therefore the results are 

analyzed mainly using the Tertiary Recovery Factor in Figure 31(b). 

While in the case of CGI, there appears to be minimal effect of brine composition 

(according to experiments 3 and 4 in Figure 31(a)), WAG floods showed significant 

dependence on brine composition. The TRF plot shows that the 5% NaCl brine WAG 

flood is the best of the miscible floods followed by Yates brine WAG. The CGI floods 

were comparable and fared lower than the WAG floods. 

This can be attributed to the difference in solubility of CO2 between 5% NaCl 

brine and Yates reservoir brine. Experiments with natural brine (Paradox Valley 

Colorado) and pure salt solutions like NaCl, and CaCl2, showed that solubility of CO2 in 

natural brines was higher than solubility of NaCl alone. The solubility of CO2 was shown 

to be higher in presence of divalent salts from natural brine
(63)

. This shows that the 

solubility of CO2 is higher in natural reservoir brines (like Yates reservoir brine) than 
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pure salt solutions. Hence, relatively higher volumes of CO2 are available for oil recovery 

(by dissolution and swelling) in the 5% NaCl brine flood than Yates reservoir brine. 

4.5.3 Effect of Core Length 

Immiscible gas floods (experiments 1, 2, 5 and 6) were conducted at similar 

flooding conditions using 5% NaCl Brine and n-Decane on both 1-ft & 6-ft Berea 

sandstone cores. The results are compared in Figures 32(a) and 32(b) below.  

As can be seen in Figure 32(a), the short (1-ft) cores show almost identical 

tertiary recovery trends for both CGI and WAG Injection, and the final oil recoveries 

from these tests are comparable. Mitigation of gravity segregation for improved flood 

profile control with WAG and recoveries are not apparent from the recovery plots. 

However, the recoveries are significantly different for 6-ft Berea CGI and WAG (33.5% 

and 54.4%, respectively) floods, suggesting the presence of gravity segregation in the 

long cores. This agrees with the experimentation that gravity segregation would be more 

pronounced in the longer cores. This clearly indicates that long core tests are not only 

appropriate and useful but also essential to examine the effects of the WAG process. 

Similar trends are also evident in Figure 32(b). 

 

4.5.4 Summarization of Results 

The recovery, residual oil saturations and gas utilization factor for the corefloods 

conducted are summarized in the Table 7 below. 

The utilization factor is a good indicator of the overall efficiency of the process, and 

is a useful augmentation, along with the TRF, for the analysis of the data. The utilization 

factor for each flood is plotted in Figure 33 below. 
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Figure 30(a): Recovery in % of ROIP 
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Figure 30(b): Recovery As Fraction of Residual Oil In Place Per PV of CO2 Injected 

Figure 30: Effect of Miscibility and Mode of Injection on tertiary recovery in n-Decane  

+ Yates brine system. 
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Figure 31(a): Recovery in % of ROIP 
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Figure 31(b): Recovery As Fraction of Residual Oil In Place Per PV of CO2 Injected 

Figure 31: Effect of brine composition on tertiary recovery in n-Decane + Yates brine 
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Figure 32(a): Recovery in % of ROIP 
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Figure 32(b): Recovery As Fraction of Residual Oil In Place Per PV of CO2 Injected 

Figure 32: Effect of Core length on tertiary recovery in n-Decane + 5% NaCl brine 
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Table 7: Summary of Tertiary Gas Injection (EOR) Cycles 

Expt 

No. 
Experiment Title 

PTEST 

(psi) 
SL SG 

Rvry 

(cc) 

Rvry 

%OOIP 

Utilz. Ftr. 

(MCF/bbl) 

5 % NaCl Brine + n-Decane + Berea Core 

1 1-ft Immiscible Continuous CO2 500 47.9 52.1 10.5 8.8% 7.0 

2 1-ft Immiscible CO2 WAG 500 -- -- 9 8.3% 4.1 

3 1-ft Miscible Continuous CO2 2500 26.4 73.6 43.5 43.3% 20.2 

4 1-ft Miscible CO2 WAG 2500 -- -- 41 42.1% 8.8 

5 6-ft Immiscible Continuous CO2 500 57.1 42.9 62 14.9% 5.8 

6 6-ft Immiscible CO2 WAG 500 -- -- 123 26.7% 1.6 

Yates synthetic Brine + n-Decane + Berea Core 

1 1-ft Immiscible Continuous CO2 500 27.8 72.2 22 20.4% 4.7 

2 1-ft Immiscible CO2 WAG 500 -- -- 11 9.9% 3.0 

3 1-ft Miscible Continuous CO2 2500 19.8 80.2 40 45.9% 19.4 

4 1-ft Miscible CO2 WAG 2500 -- -- 29 35.1% 12.5 
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Figure 33: Comparison of Gas Utilization Factor for all the Experiments conducted 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Summary and Conclusions 

Coreflood experiments were conducted with the objective of evaluating miscible 

and immiscible modes of gas injection, the effect of brine composition and core length on 

gas-oil displacements in porous media. Berea sandstone was chosen because of its wide 

acceptance as a relatively homogeneous porous medium well suited for controlled 

experiments.  

Ten sets of experiments – eight with 1-ft Berea cores and two with 6-ft Berea 

cores have been conducted for this research. Two different brines, one a commonly used 

5% NaCl solution and the other actual reservoir brine were used to examine the effects of 

rock fluid interactions. n-Decane was used as the oleic phase and pure Carbon dioxide as 

the injected gas. The 6-ft coreflood experiments were conducted using only 5% NaCl 

brine. Both miscible and immiscible displacements of n-Decane and Carbon dioxide gas 

were conducted. Miscible floods were performed at 2515 psia and the immiscible ones at 

515 psia. Two modes of gas injection were used: Continuous Gas Injection (CGI) and 

Water-Alternating-Gas (WAG) injection.  

Conventional plots of waterflood residual oil recovery vs. pore volume injected 

were found to yield misleading conclusions. Hence a new factor, namely Tertiary 

Recovery Factor (TRF) was defined to normalize by pore volume of CO2 injected the oil 
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recovery. Comparison of the results in terms of TRF enabled the evaluation of the 

performance of tertiary gas floods on the same basis.  

The main conclusions from this study are: 

1. The performance evaluation of the gas floods solely on the basis of oil 

recovery, could lead to misleading conclusions. Recoveries should be normalized by the 

amount of gas injected to enable direct comparisons.  

2. Miscible gas floods were found to recover over 60 to 70% more of the 

waterflood residual oil than immiscible gas floods. While the recoveries in immiscible 

floods (both CGI and WAG) were about 23%, the miscible floods yielded 84.5% 

recovery for the WAG flood and 93.7% recovery for the CGI flood. This is not a 

surprising result, since laboratory 1D corefloods where sweep efficiency effects are 

minimal, miscibility has significant impact on oil recovery. 

3. Based on oil recovery (as %ROIP), the CGI flood appeared to be better in 

performance than WAG flood. However, on the basis of the Tertiary Recovery Factor 

(TRF), where the recoveries were normalized by the volume of CO2 injected, the WAG 

flood clearly out-performed the CGI flood. Furthermore, the performance of the CGI 

miscible flood approaches that of the immiscible gas floods, in terms of TRF, indicating 

deteriorating economics of the CGI compared to that of miscible WAG flood. 

4. The definition of TRF enabled the identification of a process for optimizing 

tertiary recovery in gas floods. This consists of injecting a continuous gas slug of 0.7 PV 

(where the CGI flood showed maximum TRF value) followed by 1:1 WAG. This was 

found to be similar to the patented ‘Hybrid WAG’ and ‘DUWAG’ processes employed in 

the oil industry. 
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5. Miscible CGI floods showed negligible sensitivity to brine composition 

variations. Recoveries of 96.7% and 97.6% where obtained with 5% NaCl brine and 

Yates reservoir brine, respectively. As against this, the miscible WAG recoveries 

exhibited significant dependence on brine composition. The miscible WAG recoveries 

showed a significant decrease (12%) in oil recovery when the connate brine was changed 

from 5% NaCl solution to Yates reservoir brine. While the recoveries for the miscible 5% 

NaCl brine were 84.5%, the recovery decreased to 72.5% for Yates reservoir brine. This 

is attributable to the higher solubility of CO2 in natural multi-component brines than 

solutions of pure salts like NaCl, which results in higher volumes of CO2 being available 

for oil recovery in 5% NaCl brine floods. 

6. Both CGI and WAG (with 5% NaCl brine) immiscible experiments showed 

comparable oil recoveries of 21.9% and 23.7% in 1-ft Berea corefloods, respectively. 

However, significant differences (~ 21%) in the final oil recoveries of CGI and WAG 

were seen in 6-ft Berea cores, although the test conditions were identical. The CGI 

recovery increased from 21.9% in 1-ft Core to 33.5% in the 6-ft corefloods, whereas the 

WAG recovery showed a higher increase in recoveries, from 23.7% in 1-ft core to 54.4% 

in 6-ft core. Thus, it was seen that the gravity segregation phenomenon was amplified in 

long cores, thus making 6-ft corefloods more appropriate and useful to examine the WAG 

process performance. 

5.2 Recommendations 

The recommendations from this study for future work are: 

1. 1-ft Berea core experiments should be used to identify important parameters 

affecting gas-oil displacements. The effect of these parameters should then be further 

examined using the 6-ft coreflood apparatus, as they are time consuming. 
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2. Berea cores previously exposed to crude oils should not be reused in other 

displacement experiments due to interfering wettability effects. Use of fresh Berea cores 

for each fluid pair is recommended. 

3. Coreflood test conditions (namely pressure and temperature) should be chosen 

to avoid the two envelope of the injected gas in order to avoid liquefaction during the 

tests and to facilitate single-phase fluid transport through the apparatus. 

4. The effect of CO2 solubility in brine on gas-oil displacement should be 

minimized by using mutually saturated fluids. 

5. “Hybrid-WAG” type corefloods should be conducted on long cores to 

determine the optimum mode for gas floods and to compare their effectiveness against 

gravity-stable gas floods. 

6. Corefloods should be conducted with live reservoir fluids and formation rock 

samples an at reservoir conditions in order to enable collection of data for field-scale 

reservoir simulation studies and to facilitate field implementation of promising concepts 

and processes. 
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