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The dynamics of immiscible-fluid displacement is studied in the simple geometry of a capillary tube.
Here the interesting physics lies in the breakdown of the no-slip boundary condition near the contact
line, defined as the intersection of the fluid-fluid interface with the solid wall. Through numerical hydro-

dynamic calculations, we link macroscopic-flow behavior to the microscopic parameters governing the
contact-line region. It is shown that the moving contact line generates two types of frictional forces.
One, the viscous stress, is responsible for the observed deformation of the fiuid-fluid interface as the flow

velocity U increases. Our calculation is in excellent agreement with prior analytic works on this aspect.
In particular, our results reproduce Hoffman's scaling relation as well as the logarithmic dependence of
the viscous friction on slipping length. Identical macroscopic-flow behaviors are also found to result

from three different slipping models provided that their slipping lengths are each renormalized by a
model-dependent constant. Besides the viscous stress, however, comparison with experiments revealed a
second frictional force that varies as U, with 0&x 0.5, which is dominant at capillary numbers

& 10 '. %e propose that the source of this new friction is the excitation of damped capillary waves at
the fluid-fluid interface due to contact-line motion over wall roughness. Consideration of this mecha-

nism yields not only the correct range of x values, but also good agreement with the measured magnitude

of the second frictional force. The paper concludes with an analysis of the frequency-dependent pressure

response to an imposed ac velocity perturbation. An expression is derived for the critical frequency that
separates the low-frequency behavior from that of the high-frequency regime.

PACS number(s): 47.55.Kf, 03.40.Gc, 68.10.—m, 68.45.—v

I. INTRODUCTION

Immiscible-Quid displacement is a common
phenomenon whose diverse ramifications have been the
subjects of continued research over the past few decades.
In Hele-Shaw cells or porous media, the displacement is
known to result in unstable fingering patterns, some of
which characterizable as fractals, whose dependences on
the relative viscosity, wetting property, velocity of dis-
placement, and other physical parameters have only re-
cently begun to be understood. Apart from the pattern-
formation aspect of the phenomenon, but intimately re-
lated to it at the fundamental level, is the problem of the
moving contact line [1],defined as the intersection of the
fluid-Quid interface with the solid wali. Here the problem
in its simplest form may be stated as follows. When one
Quid displaces another immiscible Quid, the contact line
appears to "slip" relative to the solid wall, in direct viola-
tion of the traditional no-slip boundary condition at the
fluid-solid interface.

There have been two resolutions of this classical prob-
lem depending on the wetting property of the Quids.
When one of the fluids completely wets the solid surface,
or when the contact angle between the fluid-Quid inter-
face and the solid wall is small, it was proposed that a
thin "precursor film" of the wetting Quid actually pre-
cedes the Quid-fluid interface so that there is no true con-
tact line [2]. On the other hand, when the fluids only par-
tially wet the solid it was initially proposed that the no-
slip boundary condition can be maintained by the fluids

"rolling" over the solid wall in much the same manner as
a bicycle tire rolls over the ground (without slipping)
such that the point of tread contact only appears to "slip"
forward [3]. Analytical solution to the problem can be
written down following this physical picture, but it was
discovered that the calculated viscous stress diverges at
the contact lines as 1/z for any finite
velocity, where z is the distance on the wali away from
the contact line. The existence of this divergence is un-
derstandable since the fluids have to execute infinitely
sharp turns at the contact line. However, what makes
this solution unphysical is the fact that the divergence is
nonintegrable (since the integral of 1/z yields lnz), imply-
ing infinite dissipation. This is to be contrasted with the
physical divergence of the electric field ~E~ at a sharp
point, where the integral of ~E~ always converges. The
nonintegrable divergence therefore directly implies (in
the partial wetting case) the breakdown of the no-slip
boundary condition, at least in a region close to the con-
tact line. What may first "appear" as slipping ends up,
after much analysis, as actual slipping. Recently, this
slipping picture was supported by results of molecular-
dynamics simulations [4,5], which explicitly demonstrat-
ed the slipping of the moving contact line. Slipping thus
removes the unphysical siagularity but makes the result-
ing macroscopic behauior of immiscible fluid displacement
directly dependent on the microscopic parameters govern-
ing the region close to the contact line

Our motivation for this work is to use first-principle
hydrodynamic calculations to relate the microscopic pa-
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II. SLIPPING MODELS AND FORMULATION
OF THE CALCULATIONAL APPROACH

A. Slipping models

Consider two immiscible fluids labeled 1 and 2 in a
capillary tube of radius 8, assumed to be small enough so
that the gravity effects may be neglected. At rest, the in-
terface between the two fluids forms a static contact an-
gle 80 with the wall as shown in Fig. 1. The contact line
in this case is a circle defined by the intersection of
the Quid-fluid interface with the tube wall. As a result
of the capillary pressure, it is necessary to have a
counter-balancing pressure difference of po =p

&

—
p&= —2y cos8o/R to maintain the static state. Here y is
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FIG. 1. Static interface Zo(r) between fluid 1 and fluid 2.

rameters governing the slipping region directly to
macroscopic-flow behavior for immiscible fluids in a
capillary tube. By measuring macroscopic Qow parame-
ters, it was initially expected (maybe naively) that one can
use the theory to obtain information about the slipping
region. Our calculations indeed support the conclusions
of prior studies [1] on some aspects of the macroscopic-
flow behavior, such as the manner in which the viscous
deformation of the fluid-fluid interface increases as the
velocity U is increased. Yet quantitative comparison
with experiments revealed a second frictional force [6] at
low velocities that varies as U, where 0 &x &0.5, which
is not accounted for by prior theories. We propose that
the source of this new frictional force is the excitation of
damped capillary waves at the fluid-fluid interface due to
contact-line motion over wall roughness. Consideration
of this mechanism yields excellent agreement with experi-
mental data.

In what ensues, slipping models and formulation of the
calculational approach are given in Sec. II. Viscous-
stress effects are described in Sec. III, followed by a com-
parison with experiments and a discussion of the new
frictional force and its generating mechanism in Sec. IV.
In Sec. V we consider the frequency modulation aspects
of the interfacial dynamics. The paper concludes with a
summary and remarks about the potential direction of fu-
ture studies in Sec. VI.

the surface tension of the fluid-fluid interface. In this pa-
per, all calculations will be performed in the comoving
frame in which the interface is stationary. Any pressure
difference in excess of po is counterbalanced by the
viscous pull of the moving tube wall.

During the Quid-displacement process the manner in
which the slipping occurs at the contact line is not known
in detail at present. Here we consider three slipping
models. In model I we let U, =0 at the slipping contact
line, z =0, and u, = —U[1—exp( —~z~/l, )] away from
the contact line [6], where 1, denotes the slipping length.
In model II we adopt the classical Navier slipping model
[1] where the relative slipping velocity, v, + U, is propor-
tional to the tangential stress cr,„at the wall, i.e.,
U, + U = (I, /g)o', „,with g denoting the fluid viscosity. In
model III we consider slipping the model. of Huh and
Mason [7], where o,„=0 at ~z~ ~/„with the no-slip
boundary condition operative at ~z~)I, . In all three
cases I, is the model parameter whose value has a direct
bearing on the macroscopic immiscible-flow behavior.

It should be noted that the three models above are all
phenomenological in nature. On the microscopic scale,
there are two possible ways in which slipping can occur.
In the simple case of a solid wall smooth on the molecu-
lar scale, molecular-dynamics simulations have shown I,
to be on the order of 10 A [4,S]. On the other hand, for
the more realistic case of a rough wall, the same phenom-
enological effect of slipping can occur when the contact
line "jumps" across indentations. Jansons [8] has shown
that such jumps can give rise to the same macroscopic
behaviors as slipping does, but with a slipping length that
is inversely proportional to Ca, i.e., I, =ld/Ca, where ld

denotes the scale of wall roughness. However, physically
the jump process is very different from the smooth wall
case since the jerky motion of the contact line (resulting
from the jumps) introduces a nearly periodic time depen-
dence into the problem. The phenomenological models,
which are all time independent, are recovered only in a
time-averaged sense. Furthermore, there are two ways in
which a "jump" can occur. In one scenario, proposed by
Joanny and Robbins [9], the contact line is assumed to
move very quickly through a trough, thus simulating a
jump. In the other case, Jansons's picture is that the con-
tact line can encounter points on the rough surface where
the local force balance no longer holds, and the contact
line jumps with capillary number Ca —1 (slowed down
only by the viscosity of the fluid). Whereas in the first
scenario the slipping length is still —10 A, in the second
case the slipping length can be on the order of the wall
roughness and larger [8]. In any case, it is probable that
whereas the picture of Joanny and Robbins is valid when
the amplitude of the roughness is small; jumps in the
sense of Jansons can occur when the ratio between rough-
ness amplitude and Id becomes large. Details of our mod-
el can be found in Sec. IV B.

The near-periodic time dependence of the contact-line
motion in the rough-wall case can give rise to additional
capillary-wave excitations at the fluid-fluid interface.
The effect of these excitations will be considered in Sec.
IV.
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8. Caleulational approach

Given a slipping model, the calculational task is to
solve the nondimensionalized time-independent Navier-
Stokes equation with the incompressibility condition

—Vp+CaV v=(Ca)(Re)v. Vv,

V-v=0

(la)

(lb)

(p, —p2)n=(o'" —cr' ').n+2~n,

Uz
o.„=2Ca

Z

(2a}

(2b)

Bv Bv„
o,„=Ca +

BP Bz
(2c)

Here v is measured in units of U, pressure p is in units of
y/R, and length is in units of R. Fluid density is denoted
by p. The capillary number Ca=qU/y measures the ra-
tio of viscous stress to surface tension, and the Reynold's
number Re=pUR/rl measures the ratio between inertial
effect and viscous stress. In our calculations the non-
linear term v Vv shows negligible effects for all the cases
addressed, since Re 1 for Ca ~ 10 and the experimen-
tal values of p, R, and q. Therefore for all practical pur-
poses the nonlinear term may be set equal to zero. The
capillary number Ca, which may be regarded as the di-
mensionless velocity, is thus the only controlling parame-
ter in Eq. (1}.

For the boundary conditions, at the tube wall (r =1)
we use the slipping models specified above for u„and let

v, =0. Far from the interface viscous damping should
make the flow insensitive to what happens near the inter-
face, and thus Poiseuille-like. That means at z=+L,
where we let L =5, Bv, /8, =0, v„=0, and p=const. The
choice of L =5 has been checked to be adequate since let-
ting L =6,7 produces no discernible changes in the solu-
tion. At the fluid-fluid interface, we must have v, =vz,
v n=0, where n is the interface unit normal, and stress
balance

gradually increasing in size away from it. We have
chosen a hyperbolic-tangent coordinate transformation
such that the interface Zv(r), as well as the extra-fine grid
points for (I r~—, (z) &I„ is transformed to a regular
Cartesian coordinate. In particular, the transformation
of (z, r) to the Cartesian coordinate system (X, Y) is ac-
complished by the following:

z = —ZD(r}+ [L +Z0(r)] 1—

GL+X

tanhG

tanh(GY )

tanhG

(3a)

(3b)

where 6 and 5 are the two transformation parameters
whose values are chosen to optimize the placing of grid
points in the (z, r) coordinate system within the con-
straint of given computed memory (in this case four
mega-words of Cray-XMP}. It should be noted that the
interface Zv(r) is part of the transformation. Zv(r) is
transformed to the Faxis of the Cartesian coordinate sys-
tem.

We use the method of finite differences to carry out the
numerical solution of Eqs. (1}and (2) in the transformed
(X, Y') coordinate system, with the initial assumptions of
a certain pressure difFerence and a spherical shape for
Z0(r). The calculational steps are as follows.

(1) In regions away from the interface, the relevant
equations are Eqs. (la) and (lb), and the variables at each
grid point are v and p. At the interface, we have the ad-
ditional Eqs. (2a) and (2b), with ~ as the additional vari-
able at each interface grid point.

(2) Once the linear system is solved, a cubic-spline fit
of v(r) is obtained, and from z(r) a new Z0(r) is calculat-
ed by integrating the following second-order nonlinear
differential equation relating the curvature to the surface
shape Z0.

o„,=2Ca
v

(2d)
1 Zt)'+Z()'[1+(Zt)) ]/ra(r)=—

[1+(Z& )2]3/2
(4)

where o" denotes the stress tensor of the fluid i ex-
pressed in units of y/R, and a (in units of R ') is the
principal curvature of the interface Z0(r), which must
also satisfy the requirements that at r = 1 it forms an an-

gle 80 with the wall, and dZv(r)/dr =0 at r =0.
Due to the unknown interfacial shape Z0(r), which

must be obtained self-consistently as part of the solution,
the present problem is highly nonlinear. Added diSculty
in numerical calculation arises from the small grid size
needed to resolve the microscopic-flow behavior inside
the slipping region, ~z~ &1,. If one uses a uniform grid
size that is small enough to resolve the slipping region,
then the number of grid points would be astronomical,
certainly beyond the computational power of any existing
supercompUter. To make the calculation feasible one
must therefore use a nonuniform coordinate system
where the grid size is small close to the contact line and

with the initial conditions of Zv=0, Zv = —(tan80) ' at
r =1.

(3) Once Zv(r) is integrated to r =0, the slope Zt(0) is
checked. If it is not zero, then the initially assumed pres-
sure difference is modified and the calculation (including
the coordinate transformation) is iterated by using
Newton's method until consistency, in the sense of
Z0(0)=0 and the assumed Z0(r) equals the Zv(~) ob-
tained, is achieved.

(4) The results obtained at each U are used as the initial
guess for the solution at a (subsequent) higher U.

In this manner the interfacial shape Z0(r), the pressure
drop, and the flow patterns are obtained as a function of
U. Zero-sum checks, such as force balance and entropy
generation minus the work done, show that our solution
is accurate to —1% at Ca&10 and -5—10% at
Ca=10, provided the slipping region is resolved by
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5 —10 grid points. In what follows, we present results of
calculations with pi =f2 (equal viscosity for Auids 1 and
2). In all the calculations the two microscopic input pa-
rameters are 1, and 8o. The relationship between I, and

Oo and the macroscopic-flow behavior is the topic of the
next two sections.

III. VISCOUS STRESS EFFECTS
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A. Flow pattern and the apparent contact angle
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In Fig. 2 we show the calculated Qow diagram for the
low-velocity case of Ca= 10, l, =6X 10,and 8o=40'.
The slipping model used is that of Huh and Mason [7]
(model III), where the tangential stress at r =1 inside the
slipping region ~zl & I, is set equal to zero. On the macro-
scopic scale, the Qow lines exhibit the pattern expected
from the existence of a stationary fluid-fluid interface in
the comoving frame. This Qow pattern remains qualita-
tively similar for all three slipping models. However, in
the slipping region close to the contact line the difFerent
models exhibit different behaviors. For model III, shown
in Fig. 2, we see two eddies: one on the Quid 1 side of the
slipping region, and the other (the narrow one) on the
fluid 2 side of the slipping region. For the other two
models, due to the fact that the boundary condition im-
posed by models I and II is a smooth function of z, the
eddy on the fiuid 1 side extends outside the region of
—1, &z&0 for these two cases. Calculated values of
pressure and viscous stress all show a dramatic surge in
the slipping region (they would diverge if not for the slip-
ping condition inside the slipping region), and their net
effects on the interfacial shape are summarized in Fig. 3.
Here l, =10,80=40', and the slipping model I is used.
It is seen that as the flow velocity increases, the interface
is incrementally deformed to the right until it completely
flips to the other side. What should be noted, however, is
that 8o remains at 40' for all the calculations. The de-
formed interface is therefore measured by an apparent
contact angle

0.2—
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I

0.6

1 —hI9=tan '
2h

where h is the distance of the interface at r =0 from the
z =0 plane (z =0 is defined by the contact line). The in-
set in Fig. 3 shows a closer view of the contact region. It
is seen that the interface bends continuously from 40' at
r =1 to the apparent contact angle outside of the slipping
region.

The essential physics of the viscous stress effect may be
stated as follows. At Ca=10, which is usually reached
only at high fiow velocities (for g=0. 1 P, y =20 dyn/cm,
Ca=10 implies U =2 cm/sec), the viscous stress at the
center of the capillary tube is about two orders of magni-
tude smaller than the capillary pressure (surface tension),
so the interface would appear rigid to the quid. Howev-
er, near the contact line the near divergence of the
viscous stress (the divergence is cutoff by the slipping
condition inside lzl & l, ) makes it comparable to the capil-
lary pressure. The interface is therefore deformed by the
viscous stress, forcing the apparent contact angle to devi-
ate from 8o. At the macroscopic level, the different slip-

ping models all exhibit qualitatively the same behavior.
Below we show that the macroscopic predictions of the
three slipping models can be quantitatively superimposed
if one renormalizes the slipping length by a constant fac-
tor which is particular to each model.

FIG. 3. Interfacial shape Zo(r) calculated with model I,
g2/g&=1, 1,=10, and HO=40'. The leftmost profile is the
static one. As Ca is increased from 0 to 10,2X 10,4X 10,
8X 10, 1.6X 10, 6.4X 10, 1.14X10, 1.64X 10
2. 14X10 2, 2.64X10, 3.14X10,and 3.64X10, the inter-
face flips progressively to the right. Inset: An enlarged view of
the contact-line regions. The microscopic contact angle 80 is
fixed at 40'.

Center

FIG. 2. Flow diagram for Ca=10 ', 1,=6X10 'R, and
HO=40'. The slipping model of Huh and Mason (model III) was
used. The inset sho~s the slipping region. The left side is fiuid

1; the right side is fluid 2.

B. Sealing property

In Fig. 4 we plot the apparent contact angle, calculated
with l, =10 and slipping model I, as a function of
log(Ca) for 8o=40', 60', 80', and 100'. It is seen that the
apparent contact angle always increases monotonically as
a function of Ca until at some point the extrapolated
curve reaches 180'. (Our calculation always fails, usually
in the form of not showing convergence, before 180' is
reached. ) Beyond that point instability sets in, and exper-
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G (8)=G (8O)+ Ca In(E/I, ), (6a)

G(8)=G(8o)+Cain(EC/ld)+Cain Ca, (6b)

provided ld /Ca ~ E since the viscous effect always makes
0&8o. That means there is a leveling off of l, at
Ca ld/E. Equation (6a) implies that if the function G
has an inverse, then 0 is a function of only one variable

g= G(8 )+Ca ln(E/I, ),

where K is a slipping-model-dependent constant. It
should be noted that if l, =Id/Ca for the Jansons's pic-
ture, then

FIG. 4. Apparent contact angle plotted as a function of ln Ca
for Ho=40', 60', 80', and 100'. The inset shows the scaling of the
four curves. The solid line is the fit produced by using Eqs. (6)
and (7) with K =0.3.

imentally one can have a continuous film of fluid 2 left
behind and pinched-off droplets of fluid 1 traveling ahead
of the interface in Quid 2. While not apparent from Fig.
4, the four curves can actually be scaled to a single curve
by using the scaling function found by Hoffman [10],

i.e., 8=G '(g). It follows that two distinct 8O values,
00 ' and 60' ', can yield the same apparent contact angle
8 at Ca values that differ by [G [80(1)]—G[8o(2)]]/
In(K/I, ), so that they give the same value of g. Two 8 vs

Ca curves, calculated at different Ho values, may therefore
be superimposed upon each other through a uniform ad-
ditive shift horizontally along the Ca axis. This is done
in the inset to Fig. 4, and we see that the four curves
indeed collapse into one (with 8O=40'). Moreover, we
have fitted our numerical data by the solid curve
representing Eq. (6a) where the function G(8) is given by

(7a)

( )= 2sing[q (P —sin P)+2q[P(n —P)+sin P]+(n —P) —sin P]
q (P —sin P) [(m.—P)+ sing cosP]+ (P —sing cosP) [(n —P )

—sin P]
(7b)

where q =rI2/ri&. This form of G (8) was derived by Cox
[11] by the method of matching asymptotic expansions.
The excellent fit in this case is obtained by letting
E =0.3. In fact, for models II and III we get equally ex-
cellent fits with K =0.05 and 1, respectively. What this
demonstrates is the fact that, in spite of significant micro-
scopic differences, macroscopically the three slipping
models all exhibit the same behavior. The only quantita-
tive difference is in the value of K. Our numerical results
thus completely support prior works [1] on this issue.
The excellent agreement of Eqs. (6) and (7) with our nu-
merical data means that, provided the value of E is
known, the scaling function can serve as a simpler way to
evaluate the 0 vs Ca behavior.

It should be noted here that for q = 1 and
~
cos8~ (0.6,

Eq. (6a) is excellently approximated by

cos80 —cos8= 5.63 Ca ln(IC/1, ) .

Since cosL9 represents a capillary pressure drop across the
interface, the increase of this pressure drop is seen from
Eq. (8) as linearly proportional to the velocity, or Ca.
This is expected, since viscous stress, which gives rise to
the effect of changing 0, is linearly proportional to the ve-
locity.

C. Pressure drop due to the moving interface

p, —
pz =25P+ 16(Ca)L, (9a)

where hP denotes half the pressure drop arising from the
interface, and 16(Ca)L denotes the pressure drop of the
single-phase Poiseuille flow, which is linearly proportion-
al to the sample length L. From our numerical data, we
found

hP = —cosO . (9b)

In Fig. 5 the calculated b,P (in units of y/R) is plotted
versus Ca. On the same graph —cosO is also shown.
Comparison shows that AP is slightly smaller than
—cos8 with the difference increasing (nearly) linearly
with Ca. This is due to the fact that hP is obtained from
the total calculated pressure drop by subtracting from it
the Poiseuille-flow component. However, since the aver-
age flow rate in the interface region is considerably lower
than that far away from the interface, the Poiseuille com-

The other important property of macroscopic fluid
flow is the pressure drop-flow rate relationship. By keep-
ing 80 constant and g, =g2, the total pressure drop,
p &

—p2, can be expressed as the sum of two parts
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within the accuracy of our computation. The reason for
both this degeneracy and the fact that different slipping
models produce the same macroscopic consequences is
that the singularity at the contact line is weak (lnz), and
consequently different microscopic behaviors within the
slipping region all result in the same asymptotic behavior
outside the slipping region [1]. However, the next section
shows that it is still possible to separate out the effect of
l, from that of 00 due to the existence of a second fric-
tional force [6].

0
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IV. COMPARISON WITH EXPERIMENTS
AND THE VELOCITY-DEPENDENT CONTACT ANGLE

FIG. 5. The pressure drop associated with the interface plot-
ted as a function of Ca, shown by the open squares. In the
same graph is also plotted the Ca variation of —cos0, shown by
the open triangles. Similarity of AP with —cos8 is clearly seen.

ponent thus represents an upper bound to that com-
ponent of the pressure drop.

Since hP is due to the moving interface, it would be in-
teresting to verify its dependence on the two contact line
parameters, 8o and 1, . Equations (8) and (9b) display that
dependence, which states in particular that hP should
vary linearly with —ln(l, ) as a result of the llz stress
divergence that is made finite by the slipping region.
Figure 6 plots b,P as a function of ln(l, ) for a fixed Ca.
An excellent linear relation is obtained. The predicted
slope of ( —5.63X10 )2.3= —0.0013 from Eq. (8) is
also in excellent agreement with the measured slope of—0.0014. The linear relationship between AP and—cos8o may be deduced from Eqs. (8) and (9b).

The fact that hP= —cos0 implies that one cannot
deduce the values of 00 and l, from macroscopic mea-
surements [12] of 8 and b,P at a given value of Ca. Thus,
for example, the same value of apparent contact angle
8=97' is obtained at log&OCa=——1.65 for two combina-
tions of l, =10, 8o=60' and 1, =10 ', 8o=40'. Can
one use the pressure drops to resolve the two cases'7 %e
found the total pressure drops in the two cases to be
32.62 and 32.95, respectively, which are identical to

y ~ g [
~ ~ ~

)
~ l 1 ] 1 1 ~

l
~ ~

0.008

0.0076

0.0072

A. Microscopic contact angle and the new frictional force

In the previous section we have seen that the viscous
stress is responsible for the apparent contact angle 8 to
deviate from 00. Moreover, for q = 1 the quantity
cos8o —cos8 is (approximately) linearly proportional to
Ca. Is that valid experimentally? Figure 7(a) shows the
apparent contact angle data by Fermigier and jenffer
[13]. It is seen that the experimental results have the
qualitative behavior as predicted. This is expected, since
the interface is always observed to curve more and more
towards the direction of motion as Ca increases. The
solid curves in Fig. 7(a) are drawn by using Eqs. (6a) and
(7) with % =0.3, the parameter values of 8o=50', 95',
and 117', and values of l, =10—10 "A. The physically
unreasonable values of I„ those less than 1 A, are
required in order to reproduce the Ca value where the ap-
parent contact angle 0 reaches 180'. Recently, Thomp-
son and Robbins [14], using molecular-dynamics simula-

tions, have shown that under certain assumptions lnK
can be enhanced by large factors so that one may not re-
quire 1, to be unphysically small. However, even if this
were the case, the solid lines in Fig. 7(a) clearly show that
at small Ca there still exist significant discrepancies be-
tween the prediction of Eq. (6a) [the use of Eq. (6b) does
not change the conclusion] and the experimental data.
The essential point here is that if we consider only
viscous stress eff'ects, which is given by Eq. (6), the ap-
parent contact angle 8 can only deviate from 80 by an
insignificant amount at Ca& 10,euen if we allow IC to
be significantly enhanced Therefore. , any significant vari-
ation of 9 observed at Ca & 10 may be attributed to a
velocity-dependent Op.

The microscopic contact angle 00 is determined by the
force balance at the contact line, i.e.,

K
0.0068—

O

0.0064—

o.oo6

0.0056—

Ca = i04 hu
cosOO =

r (10)

where ha denotes the difference in the interfacial ener-
gies between the wall and the two Quids. For Oo to vary
as a function of velocity, there must be a velocity-
dependent frictional force F such that

-3.2 -2.8
QQQ52, ~ ~ ~ I I I I I ~ I I I I I I I I I I-4 -3.6 -2.4

cos8o(0) —cos8o(Ca) = F(Ca)
r

(lla)

FIG. 6. Interface pressure drop hP plotted as a function of
logipl for Ca= 10 . Excellent logarithmic variation is seen.

with F(0)=0. To analyze the data shown in Fig. 7(a) for
the dependence on Ca, Fermigier [15] has replotted the
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data in the log-log scale and concluded that if there is a
dependence of 8( U) —8(0) on Ca in the form of Ca", then
x )0.5. Mumley, Radke, and Williams [16] have also
carried out a similar analysis on their data and concluded
that x= —,'. However, these analyses did not look at
cos8O(Ca). Instead, they plotted the dependence of the
apparent contact angles 8 on Ca. As we have seen, cos8
has an intrinsic x = 1 dependence that becomes dominant
as Ca increases. Since the data shown in Fig. 7(a) have
many points with Ca) 10, it is clear that in order to
look at the intrinsic Ca dependence of cos8u, one should
substract off the linear Ca dependence of the viscous-
stress effect from the data, i.e., 80 should be obtained
from the data by

g '[g(8) —Cain(I(.'/ld )—Cain Ca], Ca ~ lz/K
8c= lib8, otherwise

F—=BCa",
y

(1 lc}

with x ~0.5. What we have seen, therefore, is that sub-
tracting off the linear viscous effect makes the exponent

where we use the data values for 8 and Ca, and K =0.3.
We have included the CalnCa term in anticipation of
our later analysis of the data in terms of Jansons's pic-
ture. By solving the nonlinear Eq. (11b}for 8c with the
appropriate value of q for each data set numerically, we
plot log, c[cos8c(0}—cos8u(Ca)] vs log, cCa in Fig. 7(b),
where 8&(0) and ld have both been varied to obtain the
best linear fit to the data. The fits are very insensitive to
the value of l&, but a value of 10, i.e., 5000 A (for
R =0.5 mm), seems to be the optimal. In any case, it is
clear that Fig. 7(b) shows that the data supports the Ca
dependence of F in the form of
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FIG. 7. Apparent contact angle plotted as a function of Ca, defined as i), U/7. (a) Data of Fermigier and Jenffer (Ref. [13])mea-

sured in tubes with R =0.5 mm. Triangles denote a system with g2/g&=0. 01, squares denote a system with g2/g, =0.9, and dia-
monds denote a system with i)z/ri, —7.6X 10 . The solid lines are calculated from Eqs. (6) and (7) with the appropriate q =i)z/i),
values, K =0.3, and i, =10 ', 10, and 10 ' cm for the triangles, squares, and the diamonds, respectively. (b) By using Eq. (11b)
and the same data sets as in (a), the values of 80 are calculated as a function of Ca, with lq =5000 A and the appropriate q values for
each data set. What is shown are plots of log, o[cos80(0)—cos80(Ca)] vs log, oCa, where 80(0)= 105', 90', and 40' for the squares, tri-

angles, and diamonds, respectively. For clarity, the data and the straight lines for the triangles and the diamonds have been displaced
vertically by dividing by 10 and &10, respectively. The Sts to the data sets yield 8 =2.5 and x =0.29+0.01 for the squares, 8 =7.2
and x =0.46+0.01 for the diamonds, and 8 =4.24 and x =0.43+0.02 for the triangles. (c) The data are the same as in (a). The solid
lines represent Eq. (6b) evaluated with a Ca-dependent 80. The parameters B and x for evaluating 80 are obtained from the fits shown

in (b).
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value x for cos80(Ca) smaller than that for the apparent
contact angle. The best-fitted values of B and x are noted
in the figure caption. In Fig. 7(c) we replot Fig. 7(b) in
the same format as in Fig. 7(a). Comparison with Fig.
7(a) clearly shows an improvement.

B. Capillary-wave-excitation mechanism

What is the source of this velocity-dependent frictional
force? Joanny and Robbins [9] have taken the view that
the contact line always follows the undulating contour of
a rough wall but the velocity of the moving contact line
varies as a periodic function of time. In this picture, the
dominant frictional force is viscous in nature and there-
fore linearly proportional to Ca; however, the effective
time-averaged frictional force can deviate from linearity
in its velocity dependence. By carrying out the time
averaging in different ways, they obtained x =—', as the
minimum value of x. Since this is not in agreement with
the experimental value of x 5 —,', a different physical pic-
ture must be operative.

We propose here the capillary-wave excitation at the
fluid-fluid interface by wall roughness as the source
mechanism of this frictional force. Basic to this picture is
the Jansons's picture that the contact line "jumps" across
indentations on the wall as the contact line moves for-
ward. During the jump the fluid-fluid interface is pulled
forward by interfacial tension and retarded by fluid
viscosity. The jump speed is therefore on the order of
v=y/ri, i.e., Ca= l. As a function of time, the end of
the fluid-Quid interface thus executes a nearly periodic
motion with frequency co0=2nU/ld in .the comoving
frame where the overall interface remains static. Here ld

denotes the scale of wall roughness. If lo is the jump dis-
tance, then lo S ld. Figure 8(a) illustrates the relation be-
tween ld and lo. If the contact line moves in the slow seg-
ment at the velocity (1—a }U, where a (1, then lo =aid.

The fact that the motion of the contact line can consist
of two distinct time segments as shown in Fig. 8(a} means
that besides the "apparent slip length" ld/Ca as intro-
duced by Jansons, there can also be dissipative effects
arising from the fast-moving segment in which Ca= 1. In
what follows, we hypothesize that the contact line actual-
ly slips during the jump process, and that the correspond-
ing dissipation incurred during the jump is responsible
for the additional frictional force which gives rise to a
velocity-dependent 80. One potential slip scenario during
the jump process is that the contact line actually leaves
the solid surface on one side of the indentation and reat-
taches itself on the other side of the indentation, leaving
behind a small packet of fluid 2 in fluid 1. In fact, such a
scenario would be consistent with the description of the
jump segment as having Ca= 1, because without the de-
tachment, the large viscous stress near the contact line
would necessarily retard the movement so that Ca would
be much less than 1 as a result. Our model thus has two
relevant scales: the jurnp-slip length ld and the apparent
slip length I„/Ca.

Let the amplitude of damped capillary-wave excitation
be denoted by log (s, t), where s =1—r is the coordinate
normal to the wall. From what we have described above,

g(O, t)= g C„cos(ncoot —~/2) .
n=1

(12a)

Here the amplitude of the sawtooth function is always
normalized to 1. By assuming that the spatial depen-
dence is of the form exp( ik„—s) for each frequency com-
ponent of the excitation with frequency neo, we get

g(s, t)= g C„e "cos(ncoot n/2+—p„s),
n=1

where

(12b)

k„=P„+ia„. (12c)

The total force on the solid wall can be decomposed into
two components: the viscous part and the surface-tension
part, which acts only at the contact line. In the uniform-
surface case, the total force, and therefore the total dissi-
pation, is related to the apparent contact angle. In fact,
we have shown that EP = —cos8. However, since we are
now interested on the extra dissipation due to the modu-
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FIG. 8. (a) Contact-line motion as a function of time. The
solid line denotes the actual movement. The dashed line
denotes the average uniform velocity. The jump distance lo is
noted. (b) The motion of the contact line in the comoving frame
as a function of time.

g(O, t) should behave like a sawtooth function as shown
in Fig. 8(b), where in one period there is a segment of
slow motion with Bg(O, t)/Bt=aU/lo and another seg-
ment of fast motion corresponding to the jurnp. By
decomposing g(O, t) into a Fourier series in terms of the
basis functions sin(ncoot), we get
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lation of Oo, we would like to focus on the surface-tension
component of the total force. The instantaneous
surface-tension part of the force along the flow direction
is simply given by the instantaneous angle at which the
fluid-fluid interface makes with the wall, or

Bg(s, t)
y

s=0
(13)

The average rate of energy dissipation FU may be equat-
ed to the time average of floBg(0, t)/Bt over one period.
It is noted that for uniform surfaces, 80 and g(s, t) are
constant in time and this quantity is zero. Therefore this
dissipation is over and above the dissipation that is
present in the uniform-surface case. Carrying out the
algebra yields

00—=amia Q nC„P„.
n=1

(14)

To calculate P„, one has to first obtain the dispersion re-
lation for a damped capillary wave in the presence of a
solid wall at s =0. In particular, we would like to have
the solution for the case where the contact line is allowed
to slip and therefore moves freely over z=kld, but the
no-slip boundary condition applies for z & old i, s =0. In
anticipation of the result that the physically relevant
solution is highly damped, we note that if the damping
length in the z direction is comparable to or smaller than
ld, then the no-slip boundary condition at z & old i, s =0
essentially does not matter since the capillary-wave am-
plitude is negligibly small in that region anyway. That
means for the physically relevant solution we can ignore
the wall and just simply treat it as a free-surface problem.
However, it has to be emphasized that our solution is
relevant only to the jump segment of the contact-line
motion where dissipation is large.

The solution to the free-surface problem has been done
by Huang and Webb [17], and they obtain for the equa-
tion determining the dispersion relation

S + —,'S[1+(1+2S)' ]+y =0, (15}
'4

where S =icll1 p y =0 rz, ro=pl2rtk, 0 =yk l2p,
p1=p2=p being the density, and g=g1=q2. Derivation
of the capillary-wave dispersion relation in the general
ease is given in the Appendix. The solution of Eq. (15}
shows that for co &y p/64' =vo, the dispersion relation
is of the classical form P~co i . This is understandable
because the capillary-wave velocity is given by v'yk/p,
and therefore co~v'kk=k . On the other hand, for
co )vp viscous damping becomes important, and we get
P o- co", where x =0.44 at intermediate frequencies but ap-
proaches x =0.5 as ~~ 00. This square-root dependence
corresponds to the universal diffusive nature of over-
damped waves and is not limited by the condition of
q1=q2 but is entirely general as shown in the Appendix.
For y=30 dyn/em, p= 1 g/em, and q=0. 15 P, we get
vo=5X 10 sec '. Since the dissipation is dominated by
high-frequency components arising from the jump seg-
ment of the motion, the important frequency to be com-
pared is 2mu/io & 2mv/ld —-2~y/1st) =10 —10 sec ' (for

0
id=1 p,m to 100 A), which is much larger than vo.
Therefore, one can take the high-frequency asymptotic
solution of

P„=(ncoop/2g)' =(nnpU/ling)'

By substituting Eq. (16) into Eq. (14), one gets
1/2

F m. ypld—=a
y

m Cg/n"
n=1

(16)

(17)

It is seen immediately from the derivation above that the
square-root dependence arises mainly from the diffusive
nature of damped capillary waves. Since in the over-
damped case a„=P„,the damping distance in the z direc-
tion (see the Appendix) is given by —(cop/g )

'i
=(1-3)X 10 cm ', where t0=2y/Idri=10 -10 sec

0
for id -—1 Itm to 1000 A. That means the damping dis-
tance is comparable to ld as we supposed. In any case,
the universal diffusive nature of an overdamped wave
makes the result, Eq. (17), fairly general. However, the
coefficient 8 is not completely velocity independent. This
can be seen from the fact that if the ratio between the
jump velocity and the slow-moving part of the velocity
were to approach infinity as shown in Fig. 8(b), then the
sum

g(t)=
sin ~, t&t,

sin

(18a)

for 0&t &1, where t, =0.5(1—P)+P denotes the posi-
tion of the peak, and 0 &P& 1 is a parameter which shifts
the peak of g (t) from 0.5 at P=O to 1 at P= 1. As the ra-
tio of the average velocities for the two segments, given
by t, /(1 t, )=(1 P+)/(1 —P—)=Ca, approaches zero, W
still diverges, but in this case the numerical evaluation of
8'over the relevant experimental Ca regime gives

8'= 1.3Ca (18b)

W= y C"»2--.
n=1

On the other hand, if the ratio were finite (i.e., the jump
segment has Ca=1} then the sum W is also finite and
displays a Ca ' dependence in the limit of small Ca.
Obviously, if this were always the case then I'/y should
be velocity independent in the limit of small Ca. Howev-
er, what we have assumed above is that in one period the
contact line always travels in two segments of constant
speed as shown in Fig. 9(a). What is more realistic is
shown in Fig. 9(b), where the transition between the two
segments is not sharp but rounded due to the small but
nonvanishing inertial effect. Since W is a sum of C„, its
divergence behavior is sensitive to the asymptotic trend
of C„as n~ao, i.e., the fact that whether the peak is
sharp or rounded can be significant. Here the function
we use is given by
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FIG. 9. (a) Contact-line motion as two segments of constant
speed. In this case if the ratio of the slow velocity to the fast ve-

locity were given by Ca, then W diverges as Ca ' when
Ca~0. (b) The transition between the two segments is made
smooth. The function g(t) is given by Eq. (18a). Here W
diverges as Ca

0.54

This behavior is illustrated in Fig. 10. This yields, for
g(t} given by Eq. (18a), a correction to the square-root
behavior with the final results expressible as

' 1/2

2

F m ypld
Ca =BCa'

y

The new coeScient B is now velocity independent. For
a =1, ld-—1 )Mm, p=l g/cm, @=30 dyn/cm, and

g=0. 15 P, we get B=2.6. Recent accurate experiments
by Stokes et al. [18] on fluid systems with q&=gz show
that B=3.1 and the exponent has the value of 0.4+0.05
over the same Ca range as shown in Fig. 10. Since the
g (t) of Eq. (18a) is chosen arbitrarily, the agreement be-
tween theory and experiment is therefore astonishingly
(or maybe fortuitously) good. Also, the assumed value of
Id-—1 pm is noted by the same experimentalists to be
within the realm of physically reasonable values for wall
roughness.

What we have illustrated above is that, depending on
the degree of rounding in g(t}, the exponent x can have
the value 0 &x ~0.5 over the experimentally achievable
range of 10 ~Ca(10 . As the value of x decreases
toward zero, the capillary-wave-generated friction be-
comes important only at lower and lower values of Ca.
At higher Ca it would appear as a near-constant and
therefore diScult to separate out from the viscous fric-
tion, with EP~Ca. This fact could explain the good
agreement obtained between Eq. (6a), with a constant 8o,
and some data sets [13].

A contact line moving over rough surface can excite,
besides capillary waves, acoustic and solid-liquid interfa-
cial waves as well. A valid question is why should the
capillary wave be the dominant mechanism for energy
dissipation at small capillary numbers. The answer may
lie in the fact that compared to acoustic and Stoneley
waves, which have linear dispersion relations, the capil-
lary wave has a nonlinear dispersion that ensures its den-
sity of states to be higher than those of the other waves at
small capillary numbers.

A direct prediction of our mechanism is that for solid
walls smooth on the molecular scale, B =0 and there
should only be viscous-stress effects. Also, for rough
walls, the microscopic contact angle I90 is noted to be a
quantity which is defined only through the time-averaged
force B Ca" and Eq. (1 la).

In short, our study has shown that for two-phase im-
miscible flow in a capillary tube, the macroscopic-flow
behavior may be described by three parameters: x, ld,
and B. Whereas the ld governs the viscous effect, x and B
control the velocity-dependent "capillary pressure. "
When rt, =g2 and

~
cos8~ & 0.6, the excess pressure due to

a moving interface is 25P, where hP may be expressed in
units of y/R by the approximate formula

hP = —cos8

0.52— cos8o(0)+ B Ca"—

+5.63[Ca ln(E /ld ) +Ca ln Ca ], (20)

0.5—
CI

Ql0
0.48—

0.46—

-3.4
I

-3.2
I

-3
log„ca

I

-2.8 -2.6

where 0&x &0.5. Equation (20) represents the essential
result of this paper. It demonstrates the connection be-
tween pressure drop, apparent contact angle, and the mi-
croscopic parameter which describe the slipping region.

V. FREQUENCY MODULATION EFFECTS

A. DeSnition of the problem

FIG. 10. Variation of 8' as a function of Ca, plotted in the
log-log scale. The slope of the straight line is —0.12.

Up to now we have considered the problem of interface
dynamics under the imposed condition of constant-flow
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velocity. In this section we study the effects of adding a
small ac component to the imposed flow rate. The inter-
face will now oscillate, following the imposed ac frequen-
cy co. However, as noted by Charlaix et al. [19], the im-
portant point here is that the interface can execute two
types of motions. One is where the whole interface slides
back and forth rigidly, and the other is the flexing, or os-
cillation, of the interface. Due to mass conservation,
these two types of motion are coupled. Since the rigid
sliding motion involves the capillary-wave generated fric-
tional force, the ac pressure response to the imposed ac
flow rate can directly yield information about the value of
x. Indeed, this type of experimental measurements has
proven to be an extremely sensitive and useful probe for
nonlinear pressure-velocity relationships [18]. To relate
our calculation to the experiments, in this paper we will
focus our attention on the case where both Ca and the
added ac component are small, in contrast to the case of
Charlaix et al. , where the ac is the only component and
its amplitude need not be small. The assumption of small
ac-component amplitude (relative to the dc component)
enables us to obtain analytical form of the response func-
tion as is shown below.

u = V+V, exp( icot—),
8=8~,+8,exp( i cot—) .

(25a)

(25b)

Equation (21}can also be cast in the dimensionless form
as

u =Ca+u, exp( ice—t) . (25c)

By substituting Eq. (25} into Eqs. (23) and (24) and treat-
ing V„8„and u, as small perturbations, one gets from
Eq. (24)

Ca=B '~"[cos8(0}—cos8d, ]' ",
v, =a8, ,

(26a)

(26b)

cause we have assumed Ca= riU/y to be small. It will be
seen from the following that 8 =Ca to first order. There-
fore v must also be small so that the linear term is negligi-
ble compared to the term v, with x =0.4 as seen experi-
mentally.

Equations (23) and (24) are the main equations for
determining the frequency-modulation effects. To
proceed further, we write

B. Mathematical formulation a =—B 'Ca' sin8d, . (26c}

as
I.et the imposed instantaneous flow velocity be denoted Similar perturbation expansion from Eq. (23) yields

u = U+u, exp( i cot),— (21)

(22a}

where

where U is the dc flow component and u, is the ampli-
tude of the ac component. It is assumed that u, /U«1.
In response to the imposed ac perturbation, the interface
motion can consist of two components: the sliding of the
contact line and the variation of the interfacial shape as
parametrized by the apparent contact angle 8. If the in-
terface were rigid, then the instantaneous sliding velocity
v has to be equal to u by mass conservation. However,
the variation in the interfacial shape implies that u can
differ from u. That is, u is related to u by

mR v+ d V(8) =mR u,

V=Ca,

icob(8—d, )8, =u, .

By using Eq. (26b), we get from Eq. (27b)

a
a i cob(8s, )—

Now from Eqs. (20) and (24), we have

b P =BB'"—cos80(0}

=8 [Ca+0,exp( i cot ) ]"—cos80(—0)

=B Ca"—cos80(0)+ 0', e '"'+dhP
8 Ca

(27a)

(27b)

(28)

m.R (2+ sin8)
2

cos8
(1+sin8)

(22b)

=hP +hP e ' '+hP e ' '+

b,Po =8 Ca"—cos80(0),

(29a)

(29b)

is the volume of a spherical cap with contact angle 8 as
shown in Fig. 1. Direct differentiation of V(8) yields

u+b(8) =u,
dt

(23a) (29c)

b(8)=— 1

(1+sin8)
(23b)

8'i"u =[cos80(0)—cos8]' ", (24)

where the terms U ln(E/ld) and U lnv are neglected be-

where 8 and u are dimensionless velocities expressed in
units of y/q, and the time unit here is qR /y. In addi-
tion to mass conservation, the instantaneous sliding ve-
locity U is related to the contact angle 8 through Eq. (20)

Equation (29} expresses the basic idea of using frequency
modulation to measure B(AP)/B(Ca) (and higher deriva-
tives) by locking into the modulation frequency (and its
higher harmonics) of the pressure response. If hP de-
pends nonlinearly on Ca, then by measuring its deriva-
tives one can accurately determine its nonlinear exponent
x. However, due to the effect of interfacial shape modu-
lation, u, can differ from U, as seen from Eq. (28). As a
result, the sliding component of the response can be
masked by considerable frequency dependence.
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C. Frequency dependence of the pressure response

hP) sined,

x 'B 'sin8~, Ca' "+iso(1+sin8d, )
(30)

where we have normalized our pressure response to the
impose perturbation amplitude. In the limit of m —+0, we

get

lim Re
N~O

hP) =xB Ca" (31a}

We will focus our attention on EP„ the pressure
response at frequency co. By using Eq. (26c), Eq. (29c)
can be expressed as

I

-3.5
log„(Ca)
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hP) = —cox B (sin8d, ) '(1+sin8d, )

2x 2 (31b}

lim Re
hP =co x 'B 'sin 8d,(1+sin8&, )

It is seen that the real part should be much larger than
the imaginary part and contains the Ca dependence that
arises from rigid sliding of the contact line. On the other
hand, for u —+00 we have
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(b)

1 —x (32a} ~oslo (~a)

hP)
lim Im = —co '(1+sin8d, ) sin8d, . (32b}

cu, =x 'B 'Ca' "sin8d, (1+sin8d, ) (33}

For a given Ca, co «co, means the low-frequency regime.
If we let Ca=10, 6rd, =90', x =0.4, B =3, then

co, =0.01. In terms of the actual time units r}R/y, this
translates into a frequency of -3 Hz for y =30 dyn/cm,
r)=0. 15 P, and R =0.1 cm. That is, for co/2~(3 Hz we
can expect the Ca dependence to follow Eq. (31a) for
Ca) 10 . This critical frequency is in good agreement
with what has actually been observed by Stokes et al.
[20]. Above co, the oscillation of the interface introduces
considerable imaginary part to the response, and the Ca
dependence is expected to deviate significantly from Eq.
(3la). In Fig. 11 we plot the Ca dependence of (hP, /u, )

as calculated from Eqs. (30) and the relation

8d, =cos '[cos80(0)—B Ca"],
obtained from Eq. (24). It is seen that for co=0.01 the
real part of (b,P, /u, ) follows the low-frequency behavior

Now the real part is much smaller than the imaginary
part, and its Ca dependence is inverse to that of the low-
frequency dependence (if we discount the weak Ca depen-
dence of sin8~, ). The high-frequency behavior reSects the
physical process of interfacial oscillation with a pinned
contact line.

The frequency that separates the low-frequency regime
from the high-frequency regime is obvious from the
denominator of Eq. (30), i.e.,

FIG. 11. Dependence of hP!u, on the capillary number for
several frequencies, calculated with 8d, = 105', B =3, and
x =0.4. In units of y/Rq, the curves for different angular fre-

quencies are denoted by different symbols: open square,
co=0.001; open circle, co=0.01; open diamond, co=0. 1; and

open triangle, co=0.05. (a) Real part. (b) Imaginary part. Here
hP& is in units of y/R and 9, is in units of y/g. For co=0.001
the real part is seen to be a straight line with the slope of —0.6.

given by Eq. (31a} for Ca) 10 . Experimentally, pre-
cisely those behaviors as shown in Fig. 11 were measured
[20].

One implication of the above result is that, since the
capillary-wave-generated frictional force is much larger
than the viscous friction at low capillary numbers, the
rigid sliding part of the ac motion can introduce addition-
al dissipation for low-frequency waves traveling through
porous media. This could be the explanation for extra
dissipation observed for seismic waves in partially sa-
turated rocks [21].

VI. SUMMARY AND CONCLUDING REMARKS

We have shown that both the shape of the interface
and the macroscopic immiscible-flow behavior are deter-
mined by the microscopic parameters governing the
contact-line region. Two dominant frictional forces have
been identified. One is the viscous stress generated in the
slipping region, which is responsible for the deformation
of the fluid-fluid interface and the deviation of the ap-
parent contact angle from the microscopic contact angle.
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The other friction, due to the damped capillary-wave ex-
citations at the fluid-fluid interface, is shown to induce a
nonlinear velocity dependence on the microscopic con-
tact angle. These effects are describable in terms of the
microscopic parameters as expressed by Eq. (20).
Frequency-modulation effects have been deduced from
these relations by the additional condition of mass con-
servation.

While progress has been made in understanding
immiscible-flow behavior, it is noted that the present
model involving rough-wall surfaces relies on assumed
behaviors of contact-line "jumps" across indentations.
Obviously, there is a need for making the plausible as-
sumptions more rigorous. This will be the task of future
investigations.
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(A9)

Here the last condition is exactly that of Eq. (2a), except
here we have not nondimensionalized the variables.

To proceed, we write down the general forms for v,
and v2,
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APPENDIX

In this appendix we derive the general dispersion rela-
tion for the damped capillary wave at a flat interface.
Figure 12 defines the relevant coordinates and parameters
of the problem. Here the interface is defined to be z =0.
The parameters related to the fluid at z )0 are denoted
by subscript 2, i.e., p2, g2, p2, etc. , and those related to
the fluid at z & 0 are denoted by subscript 1, i.e, p&, g&, p&,
etc.

The general linearized equation of motion for in-
compressible fluid is

v„= i exp[i—(kx cot)] —A exp(kz)

m&
exp(m, z) (Al 1)

v2, =i exp[i(kx cot))—

Here the presence of the terms exp(m, z ) and exp( —mzz)
are required to accommodate viscous losses as seen
below. Given v and v, v, can be obtained from the in-
compressibility condition, Eq. (A2}

—v= V v ——Vp,2 1

Bt p p

V v=0.

(A 1)

(A2)

X C exp( kz)+D —exp( —m2z)
k

m2
(A12)

For interfacial excitations, the boundary conditions are By taking the curl of Eq. (Al), one can get rid of Vp and
obtain a relation between m, 2 and k

m
&

=k —icop~/7f~

m 2
=k —icop2/rf2 .

(A13)

(A14)

P2 '92
By again returning to Eq. (A 1), we obtain pressure at
z =Oas

p)co
pi(z =0)= A, (A15)

p&co
p2(z =0}= C . (A16)

P1~ 11 Now we have all the ingredients for matching boundary
conditions. From Eq. (A5), we obtain

A+B —C —D =0, (A I 7)

FIG. 12. Coordinates and material parameters for calculat-
ing the dispersion relation of damped capillary waves.

A + 8+C+ D=O .
m& m2

(A18)
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From Eq. (A6), we get

yk Pi~ —2ig)k A + —2ikg) 8yk
co k tom

&

P2CO
2ik—ri~ C+2ikv]~D =0, (A19)

k2 k2
2g)kA+g) m)+ B+27tI2kC+q2 m2+ D

m, m2

=0 . (A20)

The dispersion relation can be obtained by simply requir-
ing the coeScient matrix to have a zero determinant. By
using Eq. (A17) to eliminate C, we get a 3 X 3 determinant
as

2(ri, + ri~)k

2(ri&+ gz)cok

2

+i yk + (p~
—

p )

k
2'/2k +'gi m i +

m&

2(ri) —riq)cok

k p2+i P +N
m&

k
2g)k+g2 m2+

m2

2(ri&
—gz)cok

r

2
CO Pi+i yk-

k

=0. (A21)

By defining q = rizlri„p=pzlp&,

COP )S=—i
2g, k

pi'v
y

+1
m&

'+1
m2

(A22)

(A23)

we get

rn, =&1+2Sk=o,k,
+1+2pS

km2=
q

and the determinant becomes

(A24)

(A25)

2(1+q) 1
2q + o&+

CT )

12+q cr2+
O'2

r

D= (1—q)S+(1—p)S +2y (1—q)S —pS +2y/o& (1—q)S+S +2y =0.
1+ '

o2

(A26)

In the limit of co~ oo, let us try the ansatz co ~ k . In that case y ~0 and S should be a material constant. From Eq.
(A26) it is easily seen that this is indeed the case. Therefore, in general

lim k ~Neo,

independent of material parameters. The fact that this is the case reflects the general diffusive nature of an overdamped
wave.

For the case q = 1,p= 1, we get cr, =o.2=o. , and

2 2+ o+—1 12+ o+—

D= y S2

1+—1
2y +S

11+—

=0 (A27)
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From Eq. (A27) we immediately get

18 + 1 ——y=o.
CT

By using the fact that o =&I+2S, one recovers Eq. (15).

(A28)
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