
University of South Florida

Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2013

Immobilization and Characterization of
Physisorbed Antibody Films Using Pneumatic
Spray as Deposition Technique
Jhon J. Figueroa
University of South Florida, jjfiguer22@aol.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Biochemistry Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

Scholar Commons Citation
Figueroa, Jhon J., "Immobilization and Characterization of Physisorbed Antibody Films Using Pneumatic Spray as Deposition
Technique" (2013). Graduate Theses and Dissertations.

http://scholarcommons.usf.edu/etd/4889

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=scholarcommons.usf.edu%2Fetd%2F4889&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


  
 

 
 
 
 
 

Immobilization and Characterization of Physisorbed Antibody Films Using Pneumatic  
 

Spray as Deposition Technique 
 
 
 

by 
 
 
 

Jhon Figueroa 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements of the degree of 

Doctor of Philosophy 
Department of Chemistry 

College of Arts and Sciences 
University of South Florida 

 
 
 

Major professor: Rudy Schlaf, Ph.D. 
Xiao Li Ph.D. 

Li-June Ming Ph.D. 
Abdul Malik Ph.D. 

 
 

Date of approval:  
November 14, 2013 

 
 
 

Keywords: Biosensors, avidin-biotin bridge, surface morphology, antibody 
Immobilization 

 
 

Copyright © 2013, Jhon Figueroa 



 
 
 
 
 
 

DEDICATION 

 
 
 

This dissertation is dedicated principally to God who gave the strength to achieve 

the unachievable. I want to honor Him in all that I did and in all that I would do after this 

stage. I also dedicate this to my dear wife Ruth Mary who was able to accept all the hard 

conditions that brought the challenge of pursuing a PhD degree. I have to recognize you 

nena as inherent part of this achievement and thank you for your commitment, support, 

appreciation, patience, love and overall thank you for being my friend, I love you. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

ACKNOWLEDGMENTS 

 

 

The first person that I want to acknowledge is Dr. Schlaf who with his guidance, 

advice, trust and support has helped me to complete all the requirements to achieve this 

dissertation. There are many words to express feelings, but two can summarize well what 

I feel towards him: gratitude and admiration for what he has done through these years.  

 
I also want to thanks the committee members for their time and guidance making 

it possible to achieve this dream.  

 

I would like to thanks Dr. Lim and his team in the Advanced Biosensor 

Laboratory for all the technical support given to me and especially to Sonia Magana who 

has been an invaluable asset to this project and an incomparable source of knowledge; 

thank you Sonia for all the fructiferous scientific discussions. 

 

Thank you to all the members of the surface science laboratory for their support 

and unconditional help especially Eric Tridas and Daniel Gomez. Finally, I want to thank 

my parents, family, church members and friends who in one way or another were a 

crucial part of this achievement by their patience and understanding. 

 
 



i 
 

 
 

 
 
 

TABLE OF CONTENTS 

 

LIST OF TABLES ............................................................................................................. iv 

 

LIST OF FIGURES .............................................................................................................v 

 

LIST OF ABBREVIATIONS ..............................................................................................x 

 

ABSTRACT….. ................................................................................................................ xii 

 

CHAPTER 1. INTRODUCTION AND FUNDAMENTALS……………... ......................1 

           1.1 Outline and motivation .......................................................................................1 

           1.2 Immobilization methods. ....................................................................................3 

           1.3 Pneumatic spray. .................................................................................................6 

           1.4 Proteins, structure and importance. ...................................................................11 

 

CHAPTER 2. EXPERIMENTAL METHODOLOGY......................................................16 

            2.1 Analysis performed by fluorescent microscopy ..............................................16 

                        2.1.1 Visualization of antibody and bacteria patterns ...............................16 

                        2.1.2 Specificity, shelf life, capture efficiency and sensitivity test. ............19 

            2.2 Characterization of antibody thin films. ..........................................................23 

                        2.2.1 Ellipsometry and Ultraviolet visible spectroscopy. ..........................23 

            2.2.2 Attenuated total reflection Fourier transform infrared         

                        (ATR-FTIR) ................................................................................................27 

                        2.2.3 Atomic force microscope (AFM) .......................................................30 

                        2.2.4 X-ray photoemission spectroscopy (XPS). ........................................33 

                        2.2.5 Contact angle (wetting properties of a film). ....................................38 

            2.3 Experimental set up..........................................................................................41 



ii 
 

                        2.3.1 Materials ...........................................................................................41 

            2.3.2 Immobilization methods (pneumatic spray and avidin-     

                        biotin bridge) .............................................................................................43 

  2.3.3. Reproducibility and visualization of patterns of    

                        immobilized antibody. ................................................................................45 

           2.3.4 Testing capture efficiency, specificity and shelf life of   

                        immobilized antibody. ................................................................................46 

                        2.3.5 Testing sensitivity of immobilized antibody films. ............................47 

                2.3.6 Equipment (ellipsometry, UV/vis spectroscopy and ATR-  

                        FTIR). .........................................................................................................49 

 

CHAPTER 3: ANTIBODY IMMOBILIZATION USING PNEUMATIC SPRAY: 
COMPARISON WITH THE AVIDIN-BIOTIN BRIDGE IMMOBILIZATION 
METHOD         ..................................................................................................................53 

            3.1 Introduction ......................................................................................................53 

            3.2 Results ..............................................................................................................56 

            3.3 Discussion ........................................................................................................66 

            3.4 Conclusions ......................................................................................................72 

 

CHAPTER 4. CHARACTERIZATION OF FULLY FUNCTIONAL SPRAY-ON 
ANTIBODY THIN FILMS ...............................................................................................73 

            4.1 Introduction ......................................................................................................73 

            4.2 Results ..............................................................................................................76 

                        4.2.1 Ellipsometry, UV-Vis spectroscopy and ATR-FTIR..........................76 

                        4.2.2  AFM, XPS and contact angle measurements ...................................79 

                        4.2.3 Capture cell performance and fluorescent microscopy ....................85 

            4.3. Discussion .......................................................................................................87 

     4.3.1 Surface morphology, physical characteristics and      

                        capture activity...........................................................................................88 

                        4.3.2 Chemical and mechanical properties ...............................................91 

                        4.3.3 Film thickness and growth ................................................................93 

            4.4 Conclusions ......................................................................................................95 



iii 
 

REFERENCES ..................................................................................................................96 

 

APPENDIX A: COPYRIGHT APPROVAL ...................................................................108 

 

APPENDIX B: PUBLICATION 1: ANTIBODY IMMOBILIZATION USING 
PNEUMATIC SPRAY: COMPARISON WITH THE AVIDIN-BIOTIN BRIDGE 
IMMOBILIZATION METHOD .....................................................................................112 

 

APPENDIX C: PUBLICATION 2: CHARACTERIZATION OF FULLY 
FUNCTIONAL SPRAY-ON ANTIBODY THIN FILMS ..............................................122 

 

  



iv 
 

 

 

LIST OF TABLES 
 

Table 1. Assays on sprayed slides to determine the relationship of deposition time 
and capture cell counts. Captured E. coli O157:H7 cell counts on glass slides 
pneumatically sprayed with goat anti- E.coli O157:H7 IgG at different deposition 
times. ..................................................................................................................................86 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



v 
 

 

 

LIST OF FIGURES 

 
 
Figure 1.  Schematic of attachment through intermediate layer immobilization 
method. Goat-anti-E coli O157:H7antibody and donkey anti-goat reporter 
antibody were used for the immunoassay. ...........................................................................5 
 
 
Figure 2. Schematic of pneumatic spray immobilization of antibody on glass 
surface. Goat-anti-E coli O157:H7antibody and donkey anti-goat reporter 
antibody were used for the immunoassay. ...........................................................................6 
 
 
Figure 3 Schematic of pneumatic spray process during deposition of antibody 
solution on glass surface.  A suggested multilayer formation of pneumatic spray 
antibody films with randomly oriented antibody. ................................................................8 
 
 
Figure 4. Low flow concentric pneumatic nebulizer DS5 ...................................................9 
 
 
Figure 5. Representative diagram. Effects on the sprayed area by changing the 
distance between the nebulizer and substrate ....................................................................11 
 
 
Figure 6. . Antibody basic structure. Each heavy (H) part has a constant (C) and a 
variable (V) section (VH, CH). The light chain has also two parts one constant 
and one variable (VL, CL). The chains are linked by disulfide bonds (s-s). 
Antibody main two regions are fragment antigen binding (Fab) and fragment 
crystallizable (Fc)...............................................................................................................15 
 
 
Figure 7. Diagram of the basic components of a fluorescence microscope. ......................17 
 
 
Figure 8. Representative sample of fluorescent biomarkers on antibody and 
bacteria. Images of E. coli O157: H7. The left image shows GFP- E. coli O157: 
H7 (green particles) immobilized on an AF647 conjugated anti-E. coli O157: H7 
IgG antibody film. The right image shows  E. coli O157: H7 immobilized on goat 
anti-E. coli O157: H7 IgG after being incubated with Rhodamine red conjugated 
donkey anti goat-E. coli O157:H7 IgG. .............................................................................18 



vi 
 

Figure 9: Screen shot of DIME 1.31, setting parameters for the images to be 
analyzed. ............................................................................................................................21 
 
 
Figure 10. Representative sample of HLAB 5000 images. Left image, the blue 
(background) and yellow (region of interest) rectangles were used to calculate 
SNR and measure intensities. Right image, patterns created by pneumatic spray of 
unlabeled goat anti- E. coli O157:H7 plus detector antibody AF647 labeled 
Donkey Anti-Goat. .............................................................................................................22 
 
 
Figure 11. Schematic of Rudolph null ellipsometer used for these experiments...............24 
 
 
Figure 12. UV/vis representative absorption spectrum of goat anti-E.coli O157:H7 
IgG in PBS solution. ..........................................................................................................26 
 
 
Figure 13. Schematic of attenuated total reflection system. The refractive index 
(n) of the zinc selenide crystal is higher than the refractive index of the sample. .............28 
 
 
Figure 14. Two amino acids forming an amide bond (peptide bond). ...............................29 
 
 
Figure 15. Stretching vibration mode of carboxylic group in the amide bond 
(Amide I vibration). ...........................................................................................................30 
 
 
Figure 16. AFM image of immobilized antibody on glass surface. (A) 
Immobilization of anti-E. coli O157:H7 IgG using pneumatic spray method, rings 
from droplets formed during the spray can be noticed on the surface after drying. 
(B) Immobilization of anti-E. coli O157:H7 IgG using avidin-biotin bridge 
method, large particles form due to aggregation of avidin. ...............................................32 
 
 
Figure 17. Basic schematic for a surface spectroscopy equipment. For the XPS the 
primary beam is X-ray photons and the detected secondary beam are electrons. .............34 
 
 
Figure 18. Representative image of a X-ray photoelectron survey spectrum. Three 
different films were deposited by pneumatic spray on silicon wafer: from bottom 
to top, silicon surface as reference, a PLA film, a film of anti E. coli antibody 
deposited on a PLA film and the top survey is a film of anti E. coli antibody 
deposited on silicon wafer. The presence of antibody (protein) is confirmed by the 
N1s peak in the top two surveys. .......................................................................................36 



vii 
 

Figure 19. Inverse relationship between contact angle and wetting properties. The 
images show a drop of water on a poly-lactic acid coated surface (left) and drop 
of water on a glass surface (right). .....................................................................................38 
 
 
Figure 20. Image of a contact angle formed by a water drop on an antibody film 
immobilized on glass substrate. Three tension interfaces are shown solid-liquid 
(sl), solid-vapor (sv) and liquid-vapor (lv). ........................................................................39 
 
 
Figure 21. Pneumatic spray setup for immobilization of antibodies on solid 
substrate. ............................................................................................................................44 
 
 
Figure 22. Schematic of an in-house physical water-drop apparatus to measure 
contact angle on solid surfaces. .........................................................................................52 
 
 
Figure 23. Representative images (A-C) of the ten slides sprayed with established 
parameters of 200 µg/mL goat anti-E. coli O157:H7 IgG with 60 PSI N2 outflow, 
7 min spraying time, 30 mm distance from slide to nebulizer, and slide rotation at 
12 RPM.  Slides were.........................................................................................................57 
 
 
Figure 24. Comparison of mean (A) fluorescent intensities, (B) background 
relative fluorescent units, (C) signal to noise ratios, and (D) percent capture 
efficiencies for multiple samples of E. coli O157:H7. ROI denotes region of 
interest, RFU is relative fluorescent units. .........................................................................58 
 
 
Figure 25. Mean (A) fluorescent intensities, (B) signal to noise ratios, and (C) 
percent capture efficiencies for PS slides stored for different number of days at 
4°C and then assayed with E. coli O157:H7 at 7 log10 cells/mL. .....................................61 
 
 
Figure 26. Epifluorescent microscopy representative images of (A, B, D, E) 
immobilized antibody patterns visualized by treatment with Rhodamine Red 
donkey anti-goat IgG and (B, C, E, F) captured GFP-E. coli O157:H7 cells. 
Images on the left are (A) pneumatic and (D) avidin-biotin immobilized goat anti-
E.coli O157:H7 patterns with no cells using a 535-550 excitation filter.  Images in 
the middle are (B) pneumatic spray and (E) avidin-biotin immobilized goat anti-
E.coli O157:H7 patterns with GFP-E. coli O157:H7 cells using a 535-550 
excitation filter.  Images on the right (C, F) are the corresponding areas of (B) and 
(E) but using a 470-490 excitation filter to view the GFP cells (fluorescing green 
dots)....................................................................................................................................62 
 



viii 
 

Figure 27. Epifluorescent microscopy representative images of slides immobilized 
by pneumatic spray and avidin-biotin bridge. All the slides were treated with 
Rhodamine Red conjugated donkey anti-goat IgG. Pneumatic spray slides (A) had 
immobilized antibody and captured cells in between the pattern rows (B) 
immobilized E. coli O157:H7 on goat anti-E. coli O157:H7 IgG .  Avidin-biotin 
bridge slides (C) no cell detected between rows and (D) immobilized E. coli 
O157:H7 on goat anti-E. coli O157:H7 IgG. .....................................................................65 
 
 
Figure 28. Pneumatic spray set-up for deposition of antibody onto glass slides. 
The nebulizer used was model DS-5. ................................................................................75 
 
 
Figure 29. Film thickness change after rinsing process. Different deposition times 
of goat-E.coli O157:H7 antibody films by pneumatic spray followed by rinsing 
using PBS. Thickness determined by ellipsometry before and after rinsing. ....................77 
 
 
Figure 30. ATR-FTIR spectra of  goat-E.coli O157:H7 antibody  pneumatically 
sprayed at different deposition times. The deposition times are (2, 
4,7,10,14,20,30,40,50,60 min) from bottom to top in the same order. Amine band 
I vibration at 1640.66 ± 0.51 cm-1 average. .......................................................................78 
 
 
Figure 31. AFM images of pneumatic spray film and avidin-biotin bridge film. (a, 
b) Pneumatic spray film at 7 minutes deposition time, (a)1 µm scan size, Rq= 
1.379±0.2 nm and (b) 50 µm scan size, Rq= 3.318±0.6 nm (c, d) ABB film, (c) 1 
µm scan size, Rq= 2.657±0.4 nm and (d) 50 µm scan size, Rq= roughness root 
mean square average. .........................................................................................................80 
 
 
Figure 32. Optical image of deposited goat-anti E. coli O157:H7 on glass slide 
using two deposition techniques. (a) Pneumatic spray deposition technique, 
smooth film with not visible patterns at the surface. (b) ABB deposition 
technique, particle formation at the surface. Images taken with a 32x lenses. ..................81 
 
 
Figure 33.  Optical images and contact angle analysis of each stage of the avidin-
biotin bridge process. .........................................................................................................82 
 
 
Figure 34. Deconvolution of XPS spectra C1s of pneumatic spray deposition of  
goat-anti E. coli O157:H7 antibody. ..................................................................................83 
 
 



ix 
 

Figure 35. XPS analysis of N1s of pneumatic spray deposition of  goat-anti E. coli 
O157:H7 antibody at different deposition times. Avidin (no antibody attached), 
avidin-biotin bridge film (ABB). .......................................................................................84 
 
 
Figure 36. Contact angle measurements of pneumatic spray of goat-E.coli 
O157:H7 antibody films on glass slides using different deposition times.Error 
bars on the graphics represent the standard deviations of replicates. ................................85 
 
 
Figure 37. Fluorescence microscopy. (A) Image of pneumatic sprayed film (B) 
Avidin biotin bridge film. Images of immobilized GFP transformed  E. coli 
O157:H7 (green particles) immobilized on a goat anti E. coli O157:H with 
Rhodamine red donkey anti-goat IgG. Aggregates on each slide can be seeing and 
the bacteria was randomly immobilized for both techniques. ...........................................87 
 
 
   

  



x 
 

 

 

LIST OF ABBREVIATIONS 

 

 

ABB  Avidin-biotin bridge 

AF647  Alexa Fluor 647 dye 

AFM  atomic force microscope 

ATR-FTIR attenuated total reflectance-Fourier transform infrared    

                        spectroscopy 

CCD   charge-coupled device  

Fab   Fragment of antigen binding 

Fc   Fragment crystallizable 

FM  Frank-van der Merve 

GFP  Green fluorescent protein dye 

ICP-MS  Inductively coupled plasma mass spectrometry  

IgG    Immunoglobulin G 

IR  Infrared 

kDa   Kilodaltons 

LBAA  Luria-Bertani, arabinose, ampicillin 

NaPCl  Sodium Phosphate / Sodium Chloride buffer 

PBS  Phosphate Buffered Saline 

PS  Pneumatic spray 

PVDF   polyvinylidene difluoride  



xi 
 

ROI   Region of interest 

Rq  Root mean square average 

SD   Standard deviation 

SNR  Signal to noise ratio 

Tbkg   Total background 

TSA  Tryptic Soy Agar  

UV/vis  Ultraviolet visible spectroscopy 

XPS  x-ray photoemission spectroscopy 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
  



xii 
 

 

 

ABSTRACT 
 

The immobilization of antibodies on silica surfaces has been a wide and 

common practice via crosslinking with the formation of covalent bonds between 

surface and antibody. The formation of antibody thin films on solid surfaces using 

pneumatic spray (PS) as the deposition technique and the analysis of the surface 

morphology of these films were investigated during this study. The pneumatic 

spray method was compared with the covalent bonding method Avidin-Biotin 

Bridge (ABB). The intensities and capture efficiency tests showed similar results 

for both techniques with a lower signal-to-noise ratio (SNR) for the PS deposited 

films. Specificity tests suggested that the bio-sensitivity of the antibody films that 

were pneumatically sprayed maintained their capture abilities after the 

immobilization process. Analysis obtained from the attenuated total reflectance 

Fourier transform infrared ATR-FTIR support these results indicating that the 

antibodies retained their native structure and chemical stability thorough the 

induced physisorption process. The pneumatic spray films also preserve 

mechanical stability by adhering to the surface after the rinsing procedures. 

 

Capture efficiency was tested for both immobilization techniques, the 

results of which were similar. The pneumatic spray technique was also tested 

using a diverse range of deposition times. It was shown that a 2 minute deposition 

time was sufficient to produce a film with similar capture efficiency to the avidin-
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biotin bridge technique. The surface density obtained for the 2 minute deposition 

was 9.05 ng/mm2, which is higher than the range of 2.2 to 4.74 ng/mm2 reported 

for the avidin-biotin bridge technique[1-3]. The contact angle measurements for 

the pneumatic spray films showed a higher hydrophobicity compared with the 

avidin-biotin bridge films. This is due to the higher surface roughness obtained 

for the avidin-biotin bridge films, a higher surface density for the PS and the 

random orientation of the antibodies in the pneumatic spray films. A study of 

shelf life showed that the pneumatic spray technique produces stable films that 

can be used for as long 100 days (study performed only up to 100 days) with 

similar capture efficiency to those prepared in the same day.  

 

To further understand the improvement in capture efficiency of the 

pneumatic spray films, the surface morphology was investigated to determine its 

influence in the cell adhesion process. The surface was characterized by several 

different techniques: ellipsometry to determine the thickness of the films, atomic 

force microscopy (AFM) to calculate the surface roughness, optical microscopy to 

identify particle formation during antibody immobilization process, fluorescent 

microscopy and sandwich fluorescent immunoassay to observe the 

immobilization patterns of antibodies and antigens on the surface, contact angle 

measurements to analyze the wettability of the antibody films and X-ray 

photoelectron spectroscopy (XPS) to confirm the presence of antibody on both 

deposition methods and to propose a growth model for the pneumatic spray 

deposition technique.   
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A possible explanation for the similar results of capture efficiency for both 

techniques can be attributed to three main factors. First, the antibodies retained 

their native structure thorough the induced physisorption process allowing then to 

capture antigen normally. Second, the lack of orientation of the antibodies in the 

pneumatic films was compensated by high surface density thereby offering more 

binding sites to capture antigens. Third, hydrophobic surfaces are favorable to cell 

adhesion, therefore the high hydrophobicity of the pneumatic spray films 

increases the capture efficiency. It is important to mention that the time that it 

takes to produce the immunoassay surfaces was reduced dramatically from more 

than twenty four hours for the avidin-biotin bridge films to only a few minutes for 

the pneumatic spray films.  In addition, pneumatic spray films significantly 

reduce the amount of materials and chemicals used in the deposition process.  

These factors make the pneumatic spray technique an excellent technique for the 

immobilization of antibodies on glass slides for commercial biosensor devices. 
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CHAPTER 1. INTRODUCTION AND FUNDAMENTALS 

 

 1.1 Outline and motivation 
 

The use of biosensors has become an important part of many industries due to the 

importance of pathogen monitoring. Quality assurance in food, agriculture and 

pharmaceutical industry, monitoring the environment for contaminants, developing new 

methods for the detection of biological agents in warfare and the identification of 

important biomolecules in medical diagnostics are some of the common uses of 

biosensors[4-7]. Desirable properties for these biosensors include high sensitivity and 

specificity to a variety of pathogens, cheap mass production and easy operation in the 

field. One of the most popular and well known sensor devices is the evanescent wave 

biosensor[8]. Evanescent waves are formed when electromagnetic waves go from a 

medium of a high refractive index to one with a less refractive index. If the incidence 

angle is greater than the critical angle, the wave undergoes total internal reflection. At its 

boundary, the energy of the wave is totally reflected but an electromagnetic field extends 

from the interface into the medium with the lower refractive index. This field is the 

evanescent wave which decays exponentially with the distance from the interface. The 

materials used to fabricate planar array evanescent wave biosensors must comply with 

some minimum criteria with respect to the refractive index. Glass complies with almost 

all of those criteria (especially when doped)[9].   
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The biological capture agent (i.e. antibody) of the biosensor must be attached to 

the sensor in a way that the biomolecules preserve their biological activity and chemical 

attributes. Planar waveguides designed specifically for the evanescent wave technique are 

based on a variety of methods such as covalent bonding or physical adsorption[10]. The 

immunoassay used in many current protocols immobilizes antibodies onto a glass surface 

via covalent bonds with the most common being the Avidin-biotin bridge (ABB) 

technique. This process involves many steps and can take days complete. Due to the high 

number of steps and the complexity of the process, the ABB technique is error prone. The 

ABB procedure also uses a variety of hazardous chemicals resulting in a less 

environmentally friendly protocol.[11-13] 

 

The presented research explores a new methodology for the fabrication of 

immunoassays targeting the common pathogen E. coli O157:H7 using a low flow 

pneumatic nebulizer to immobilize the antibody to planar waveguides. A short spray 

deposition of the antibodies creates a thin film that is adsorbed on the surface of the glass 

with an interaction force strong enough to withstand the rigors of the rinsing procedures 

carried out during the immunoassay process. The film also keeps the functionality and 

specificity of the antibodies at the same level of the avidin-biotin bridge process. This 

unexpected result warranted further investigation of the physical properties of the sprayed 

films with experiments examining the surface morphology in the context of the excellent 

chemical and mechanical stability of the films. 
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The thickness and film composition was investigated by ellipsometry and XPS. 

Sandwich immunoassay and ATR-FTIR experiments showed that the films well preserve 

to preserve their native chemical structure and their biological activity. Fluorescent 

microscopy and AFM showed that physical adsorption was facilitated through rapid 

evaporation of the solvent during the nebulization process and complete solvent removal 

from the droplet at the surface. A central feature of the pneumatic spray process is its 

non-equilibrium characteristics which allowed direct control over the thickness and 

density of the adsorbed material. This is in contrast to immersion/ incubation based 

physisorption processes, where usually an equilibrium-based deposition state results. 

 

 In general, the spray process offers a number of practical advantages over the 

avidin-biotin bridge immunoassay method that include a high process speed, an almost 

chemical-free protocol, consistent coverage of the surface, and easy set up suggesting that 

large scale manufacturing should be possible. Additionally, the relative low cost and easy 

maintenance of the equipment makes the pneumatic spray technique an inexpensive and 

efficient immunoassay preparation process.  

 

1.2 Immobilization methods 
 

The biological component of the biosensor is introduced by immobilization onto a 

solid surface (waveguide). An essential characteristic of the immobilized biomolecule is 

that its biological activity has to be preserved in order to get maximum interaction with 

the target molecule.  
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There are many methods to immobilize the biomolecules on the wave guides, the 

most common being  covalent attachment, entrapment within polymer matrices, indirect 

attachment via intermediate bimolecular species and physical adsorption[9]. 

 

The direct covalent attachment of molecules to glass is performed mainly with the 

use of organoheterosilanes with functionalized chemical groups like COOH-, NH2-, SH-. 

Then, a cross-linker molecule is used to bond the biomolecule (i.e. antibody) to the silane 

modified glass surface. One of the reported drawbacks for this technique is the lack of 

control over the orientation of the antibody at the surface thus reducing the amount of 

available binding sites for the antigen to interact[11, 14]. 

 

The attachment of antibodies through an intermediate protein layer is another 

approach. Proteins like avidin and its derivatives (Figure 1) have been used resulting in 

improved sensitivity over direct attachment. However these results were dependent on the 

type of antibody used[15]. Protein A and protein G were also used to immobilize 

antibodies to the surface. The advantage of this approach is the orientation of the outer 

layer molecules. This resulted in an  improvement of the sensitivity compared to the 

direct attachment method[3, 16]. 

 



5 
 

Figure 1.  Schematic of attachment through intermediate layer immobilization 

method. Goat-anti-E coli O157:H7antibody and donkey anti-goat reporter antibody 

were used for the immunoassay. 

 
 

Static physical adsorption (using a solid–liquid interface) has been used as a 

simple and rapid option to immobilize biomolecules on various surfaces[17-20] to 

overcome some of the drawbacks involved with chemical bonding[20-24]. The use of 

glass surfaces as substrates is not a popular approach for the physical adsorption 

technique. This is due to the chemical instability of the molecular interaction on the 

surface at low and high pH values[17, 25, 26]. Other often claimed drawbacks are high 

non-specific adsorption, and that adsorbed proteins can leach or wash off from the 

surface if the coated substrate is exposed to a high liquid flow. Furthermore, it has been 

mentioned that proteins can suffer denaturation after adsorption due to the surface-protein 

interaction[27] leading to non-specific binding of the antibodies to the target.  

 

The equilibrium process carried out during the immobilization of the protein by 

static or non-active adsorption (liquid-solid interface) limits the total amount of material 

that can be attached to the surface, thereby limiting the density of the film[28]. From a 

kinetic standpoint the adsorption of a biomolecule at the solid-liquid interface can be 
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divided into two main steps; the first is the transport of the molecules to be adsorbed 

toward the interface by diffusion and convection and the second is the interaction 

between the solute and the surface[29] until equilibrium is reached.  On the other hand, 

the non-equilibrium spray deposition process carried out via pneumatic spray (Figure 2), 

allows to define the surface density. The mass transfer of the biomolecules to the surface 

via pneumatic spray induces physisorption directly through the evaporation of the 

solution in a solid-liquid-air interface allowing the tuning of the thickness and the density 

of the films. 

 

Figure 2. Schematic of pneumatic spray immobilization of antibody on glass surface. 

Goat-anti-E coli O157:H7antibody and donkey anti-goat reporter antibody were 

used for the immunoassay. 

 

1.3 Pneumatic spray 
 

Pneumatic spray is a widely used technique for the generation of aerosol from 

biological and chemical solutions. The diverse use of pneumatic nebulizers demonstrates 

the versatility of the spray technique on which this research work is based.  

 
The performance and characteristics of nebulizers depends on the geometric 

design as well as the solution characteristics and velocity field of the gas carrier. In 
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analytical chemistry there are many techniques that require conversion of a sample from 

liquid to aerosol for analysis. These techniques include flame and electrical plasmas used 

for atomic absorption, emission, mass and fluorescence spectroscopy [30-33]. Pneumatic 

nebulization is one of the most widely used techniques for sample introduction of 

solution or slurry due to its relatively low cost, simplicity of operation, high efficiency 

and no “dead volume” of solution[34-36]. As shown in Figure 3 the process of pneumatic 

spray used for the formation of an antibody film involves evaporation of the solvent, and 

concentration of the antibody inside the drop, the deposition of concentrated antibody 

solution at the surface, surface diffusion and finally the physisorption of the antibody to 

the surface. 

 

The type of nebulizer used during these experiments was a low flow concentric 

nebulizer with a polyvinylidene difluoride (PVDF) body and fused silica capillary 

(CETAC model DS5) used for ICP-MS applications (Figure 4. Low flow concentric 

pneumatic nebulizer DS5). Pneumatic spray also has been used as a deposition technique 

creating inorganic transparent electrically conducting thin films (CdO, In2O5Sn, In2S3, 

ZnO) [37-40]. Deposition using a nebulizer to make thin films is improved by the use of 

a heated substrate, a technique called spray pyrolysis. This technique increases  the 

evaporation rate of the solvent, allowing a dry particle to react with the surface or another 

particle in a dry state[41]. Biomolecules films also benefit from heating the substrate to 

control de evaporation of the solvent. In such applications lesser temperatures compatible 

with the solute (typically in the 40-70 ˚C range) are used[42, 43]. 
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Figure 3 Schematic of pneumatic spray process during deposition of antibody 

solution on glass surface.  A suggested multilayer formation of pneumatic spray 

antibody films with randomly oriented antibody. 
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Figure 4. Low flow concentric pneumatic nebulizer DS5 

 
Furthermore, there are biomedical thin film uses for pneumatic spray that further 

enhance the versatility of the technique. For instance pneumatic spray matrix deposition 

was used to coat tissue samples for matrix-assisted laser desorption/ionization (MALDI) 

based molecular imaging of peptides and proteins in biological samples.  
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This technique has demonstrated a high degree of reproducibility from different 

investigation sites within a sample as well as results from sample to sample since is able 

to produce homogeneous thin films that can easily be reproduced[44].   

 

To create a functional antibody film from liquid samples it is necessary to control 

the amount of solvent evaporation from the aerosol before it reaches the surface. Factors 

including distance, flow rate, air pressure and ambient temperature have to be 

investigated to achieve the optimum parameters for the task. The presence of an 

adjustable stage that can be positioned to control the distance between the emitter of the 

pneumatic nebulizer and the substrate is an important key for the creation a dry deposited 

film. As the distance between emitter and substrate is decreased the solvent contained in 

the aerosol droplets has less time to evaporate.  If not properly controlled, this can result 

in large liquid droplets forming at the surface which will prevent the formation of a dry 

homogenous film and result in loss of material.  

 

The solution flow rate through the nebulizer must also be carefully controlled in 

order to generate a fine aerosol. The carrier gas of the nebulizer, which is applied at 

higher than atmospheric pressure, creates the aerosol by shearing the solution into an 

unstable liquid film which subsequently breaks down into smaller droplets[45]. The size 

of the drops in the mist will depend of the ratio between flow rate and air pressure[32]. 

Some studies suggested that there is a positive correlation between the size of the droplet 

and the survival of the biomolecule. As the drop size becomes larger more 

microorganisms can pack together and survive longer upon drying. Because the aerosol 



11 
 

plume emitted from the nebulizer is ejected in a conical shape, the resulting area of 

deposition will increase as the distance increases.  Figure 5 shows a schematic of the 

relationship between emitter and substrate distance and the diameter of the resulting 

deposition area using the pneumatic spray method. 

 

Figure 5. Representative diagram. Effects on the sprayed area by changing the 

distance between the nebulizer and substrate  

 

1.4 Proteins, structure and importance 
 

The basic component of any protein is the amino acid, which forms polymers via 

peptide bonds. These polymers form the primary structure of proteins. Each protein has a 

specific amino acid sequence that defines its main functions and physical characteristics. 

The secondary protein structure arises from a spatial organization of the linear chain via 

internal crosslinks such as hydrogen bonds, turns, ß sheets or α helices are formed 

creating a new geometry. The ß sheets and α helices are periodic structures that create 
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inner hydrogen bonds to stabilize the protein shape. For example, the α helices turns in 

clock-wise forms due to the dipoles present in the turns. These hydrogen bonds are 

almost in parallel to each other and close enough to allow Van der Waals interaction to 

take place in the helices.  ß sheets, on the other hand, form when polypeptides chains are 

close forming packs of adjacent linear chains via hydrogen bonds. These sheets can be 

antiparallel (when the chains alternate) or parallel (when the chains have identical 

orientation). Finally, the tertiary protein structure is formed when secondary structures 

pack into a three-dimensional structure that is held together by various interactions like 

hydrophobic/hydrophilic, salt bridges, disulfide bonds or hydrogen bonds. 

 

Proteins can denature under many circumstances based on parameters such as 

temperature, pressure, shear forces, interaction with other proteins, lyophilization etc. It is 

very important to keep the basic chemical structure of the antibody intact, especially in 

the Fab region where the immobilization of the antigen occurs. For this reason it is 

necessary to test the antibody for specificity after immobilization on a solid surface using 

a biological test (different antigens) or chemical analysis (ATR-FTIR) and confirm the 

biological activity of the antibody used.  

 

Antibodies like the goat anti-E.coli O157:H7 used for these experiments are 

immunoglobulin or gamma globulin  proteins found in the blood or other corporal fluids 

of vertebrates. Immunoglobulin or IgG is a glycoprotein that has four polypeptide chains 

linked through disulfide bonds. The total molecular weight of this molecule is 

approximately 150 kDa with two of these chains being light weight (25 kDa) while the 
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other two are heavier (50kDa). In a specific antibody the two heavy chains are identical 

as well as the two light chains, giving to the molecule two identical binding sites for the 

antigen. Figure 6 shows the basic structure of an immunoglobulin with the two pairs of 

chains. Each pair of chains has a constant and a variable part (CH,VH) for the heavy and 

(CL, VL) for the light chain[46, 47]. The antigen binding site is formed by the two 

variable sections of the heavy and the light chains. There are two types of light chains: 

lambda (λ) and kappa (κ), and in a given immunoglobulin only one of the two species is 

present. The heavy chain has five classes or isotypes depending of the structure: 

immunoglobulin M or IgM, immunoglobulin D or IgD, immunoglobulin G or IgG, 

immunoglobulin A or IgA, and immunoglobulin E or IgE[48].  

 

The antibody basic structure has a shape of a “Y” with a hinge formed by 

disulfide bridges in the intersection of the “Y”. The section of the molecule where the 

variable section of the heavy and light chains is located is referred as Fab (Fragment of 

antigen binding). The other section which does not interact with the antigen was observed 

to crystallize and for this reason is called Fc (fragment crystallizable) see Figure 6.  The 

antibody-antigen interaction occurs in the Fab region or paratope. The chemical 

composition of this section (Fab) determines the type of interaction with the antigen and 

it can vary among subclasses (Idiotype) making the interaction antibody-antigen very 

specific. The type of heavy chains (sequences of amino-acids) determines the class of the 

antibody and each one is correlated to a class of immunoglobulin. Gamma chain (ɣ) is 

IgG, mu (µ) is IgM, alpha (α) is IgA, delta (δ) is IgD and epsilon (ε) is IgE.[49] 
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The antibody recognizes a region of the antigen called epitope or antigenic 

determinant (chemical constituents like proteins or carbohydrates) which is a small 

section of the antigen but enough to be detected. The interaction antibody-antigen is 

strong but non-covalent in nature and is composed of a variety of interactions like 

hydrogen bonds, hydrophobic bonds, electrostatic bonds, Van der Waals forces. The 

unique interaction between one antigenic determinant (epitope) regions of the antigen 

with the paratope of the antibody is called specificity. The antibody can recognize the 

antigen with three types of identification: the primary structure of the antigen, isomeric 

forms of the antigen, and finally by the secondary and tertiary structure of the antigen. 

The cross reactivity of an antibody is the ability to  interact with more than one epitope 

from different antigens. [50] 
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Figure 6. . Antibody basic structure. Each heavy (H) part has a constant (C) and a 

variable (V) section (VH, CH). The light chain has also two parts one constant and 

one variable (VL, CL). The chains are linked by disulfide bonds (s-s). Antibody 

main two regions are fragment antigen binding (Fab) and fragment crystallizable 

(Fc).  

  

http://en.wikipedia.org/wiki/Fab_region
http://en.wikipedia.org/wiki/Fc_region
http://en.wikipedia.org/wiki/Fc_region
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CHAPTER 2. EXPERIMENTAL METHODOLOGY 

 

2.1 Analysis performed by fluorescent microscopy 
 

2.1.1 Visualization of antibody and bacteria patterns 

 
Fluorescent microscopy was initially developed to identify the natural 

fluorescence emitted by many plant and animal molecules. Over time however, the 

technique was improved upon and researchers now frequently attach fluorescent 

molecules to specimens to allow for observation using this technique. When excited, 

fluorescent molecules (fluorochromes) emit monochromatic light.  Typically the 

fluorochrome chemical structure has a base of aromatic molecules bound with conjugated 

π bonds. Fluorochromes can be bonded to a macromolecule such as an antibody or 

bacterium in order to be used as a marker or label[51].  A simple schematic of a 

fluorescent microscopy is shown in Figure 7.  

 

In fluorescence microscopy a sample containing fluorochromes is illuminated 

with light of a specific wavelength. An incident photon excites a fluorochrome on the 

surface, which fluoresces (emits photons with a wavelength of a lower energy).These 

fluorescent photons are detected through a microscope objective. Two filters are 

necessary for the technique to function properly. The first monochromatizes the incident 

wavelength, while the second blocks photons reflected off of the surface from the 

exciting light source. This technique can be used for the detection of microorganisms that 
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emit fluorescent light[51, 52]. Labeled molecules with fluorescent tags or 

fluorochromes[53-57]  have been used to develop a variety of techniques to identify and 

quantify microorganisms including crystal violet assay, direct enumeration and microtiter 

assay[58].  

 

The well-known antibody-antigen intermolecular interaction and the use of 

fluorochromes to label them have become a useful tool for a wide range of uses from 

medical diagnosis to pathogen detection in microbiology [59, 60]. In this project, the bio-

recognition properties of antibodies and fluorochromes were used to identify, visualize 

and calculate a concentration of immobilized biological samples on solid surfaces.  

 
 
 

 
 
Figure 7. Diagram of the basic components of a fluorescence microscope. 
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There are many bio-labels used in fluorescent microscopy, however for the 

experiments performed on this research only three fluorochrome molecules were used. 

Green fluorescent protein (GFP), as its name states, is a protein that emits green light 

when excited by ultraviolent light. GFP is often used as a biomarker in immunoassays 

and attached to pathogens like Escherichia coli O157:H7 allowing researchers to 

investigate and visualize many characteristics of such bacteria[61]. One of the most 

important characteristics of GFP is that it has been demonstrated that when attached to 

other molecules it does not change the natural behavior or biological activity of the 

labeled molecule, allowing for diverse in vivo analysis.  

 

 
 
Figure 8. Representative sample of fluorescent biomarkers on antibody and 

bacteria. Images of E. coli O157: H7. The left image shows GFP- E. coli O157: H7 

(green particles) immobilized on an AF647 conjugated anti-E. coli O157: H7 IgG 

antibody film. The right image shows  E. coli O157: H7 immobilized on goat anti-E. 

coli O157: H7 IgG after being incubated with Rhodamine red conjugated donkey 

anti goat-E. coli O157:H7 IgG. 
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The second type of bio-label or fluorochrome molecule used for the 

immunoassays was Alexa Fluor 647. This fluorochrome is a small dye with good staining 

capabilities on antibodies and whose emitted light is green when illuminated with 

ultraviolet light (Figure 8, green background of left image). The final fluorochrome used 

was Rhodamine red, used as a label for biomolecules including antibodies. As its name 

suggests the excitation light is red (Figure 8Figure 8, left image). 

 

2.1.2 Specificity, shelf life, capture efficiency and sensitivity test 
 

The objective of the specificity tests were to determine whether the pneumatically 

sprayed antibody film was able to properly detect the antigen (E. coli O157:H7) without 

any cross reactivity with other antigens. This test was also performed to test the 

specificity of the antibody itself, ensuring that there were no conformational changes 

during immobilization that could induce non-specific binding. Such conformational 

changes can directly affect the bioactivity of the antibody resulting in false positives 

during the immunoassay procedure [62-64]. Five types of bacteria (including two non- E. 

coli O157:H7 strains) were used during the specificity test, and the same assay procedure 

established for the target E. coli was followed.  

 

 
The shelf life test is used to determine the length of time in which a product can 

be stored and still retain its original functionality.  This is a very common test for 

different manufactured products including chemicals, food or pharmaceutical products.  

For the antibodies used in this project there are a variety of references indicating various 
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storage conditions such as in solution, frozen and lyophilized. Under these conditions the 

shelf life can vary from one month to years[65], however there are no references for the 

shelf life of antibodies immobilized on solid surfaces or in thin films. In this case the 

shelf life test was performed to establish a period of time in which the immobilized 

antibody film can be stored and then used with results similar in quality as those obtained 

by films prepared the same day.   

 

Capture efficiency is a quantitative value that indicates how well a capture agent 

is able to immobilize a specific antigen in certain period of time. Calculations of capture 

efficiency for immobilized bacteria can be complex and time consuming if the number of 

bacteria is high and the count is performed manually. Capture efficiency is calculated by 

dividing the number of captured cells by the number of cells added to a specific surface 

area[54]. Using fluorescent microscopy to quantify bacteria with the help of specialized 

software is part of the research performed in this study. The software DIME[66] was used 

to automate and accelerate the counting process as well as increase the reproducibility of 

the data obtained.  

 

A calibration curve was performed to estimate the validity of the results obtained 

by the use of DIME. The test was performed by spraying bacteria at known 

concentrations on a specific area, then manually performing the total direct counts per 

sample and comparing them with the numbers given by the DIME analysis. Figure 99 

shows a screenshot of a window in the DIME software where parameters for counting, 

including shapes, sizes and the outline marks for the objects to be analyzed can be set. 
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The physical principle is similar to that of fluorescent microscopy however in this case 

the fluorescent signal was detected by a CCD camera rather than the human eye.  

 

 

Figure 9: Screen shot of DIME 1.31, setting parameters for the images to be 

analyzed. 

 

The sensitivity test was performed to determine the lowest concentration a 

fluorescent labeled molecule needed to be detected by equipment (signal to noise ratio 

>3). As the amount of material being measured becomes smaller and smaller, the noise 

detected increase in magnitude making it difficult to differentiate between the measured 

value and the noise detected[67]. To calculate the sensitivity of both deposition 
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techniques used in this project the parameter signal to noise ratio (SNR) was calculated. 

A HLAB 5000 biosensor was used to obtain the SNR from the samples. 

 

The SNR was determined using equation 1 in which the mean background 

fluorescence intensity (Tbkg) is subtracted from the mean intensity of the region of 

interest (ROI), then dividing the result over the background standard deviation (Tbkg 

SD). Any SNR number below 3 is considered negative detection (no difference between 

the noise and the signal). 

 

SNR = (ROI – Tbkg) / (Tbkg SD)      Eq (1) 

     

  

Figure 10. Representative sample of HLAB 5000 images. Left image, the blue 

(background) and yellow (region of interest) rectangles were used to calculate SNR 

and measure intensities. Right image, patterns created by pneumatic spray of 

unlabeled goat anti- E. coli O157:H7 plus detector antibody AF647 labeled Donkey 

Anti-Goat. 
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As is shown in Figure 10, the yellow rectangle highlights the fluorescent 

intensities of the region of interest (ROI) while the top and bottom blue outline rectangles 

highlight the background. The measured intensities within those rectangles were used to 

calculate the SNR of all the measurements performed in this experiment. 

 

 2.2 Characterization of antibody thin films 
  
 The interaction of proteins with surfaces is an important factor that determines the 

way that many medical devices, including biosensor devices, are built. Proteins, like 

antibodies, are a major component of many biosensor devices which use them as detector 

agents immobilized on a solid surface. In the experiments performed in this project, 

antibodies were immobilized on glass and then used to detect antigens in an 

immunoassay procedure [68].  

 

In this study surface characterization of immobilized antibody films was 

performed using the following techniques: ellipsometry, ultraviolet/visible spectroscopy 

(UV/vis), attenuated total reflection Fourier transform infrared (ATR-FTIR), atomic force 

microscope (AFM), X-ray photoemission spectroscopy (XPS) and contact angle. 

 

2.2.1 Ellipsometry and Ultraviolet visible spectroscopy 

 
An ellipsometer was used to calculate the thickness of the films created by the 

two immobilization techniques used during this project. Ellipsometry is an optical, 

contactless technique. Because of this is well suited for in situ studies that require the 

sample to remain functional during and after analysis[69] (Figure 11). 
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Figure 11. Schematic of Rudolph null ellipsometer used for these experiments. 

 The ellipsometer detects changes in the polarization of incident light caused by 

the interaction between the light and the sample after being reflected from the surface. 

That change in the linearly polarized light is quantified (Equation 2) by the ellipsometric 

angles tan Ψ, cos ∆ and by the ellipsometric ratio ρ. Rs and Rp represent the complex 

coefficients of reflection in which Rs represents the perpendicular and the Rp the parallel 

light to the plane of incidence [26].   The value of the complex ellipsometric ratio 

depends directly on the wavelength of the light, the angle of incidence, and the optical 

properties of the surface material (i.e. refractive index). 

 

The Eq. 2 represents the relationship between the ellipsometric ratio and the angles.  

 
ρ = tan Ψ ei∆ = Rp / Rs         Eq. (2) 
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Monochromatic light emitted by the laser can be characterized by its amplitude, 

phase and incident angle relative to the interface light. The beam of light that interacts 

with the surface will be elliptically polarized and finally analyzed. A transparent film like 

the one created by immobilization of antibodies can reflect and refract the incident light, 

absorbing a minimal amount of light. The refractive index of the film and its thickness 

can be easily calculated if the refractive index of the ambient (air), substrate (Silicon 

wafer) and angle of incidence (70º) of the monochromatic light are known. 

 

 An ultraviolet/visible spectrophotometer was used in conjunction with the 

ellipsometer to detect changes in the thickness of the films after the protocol rinsing 

process and to determine the mechanical stability of the immobilized antibodies. The use 

of UV/vis to determine the concentration of proteins in solution is a common technique in 

many chemical laboratories[70]. The molecular absorption is based on measurement of 

the absorbance or transmittance of the light through solutions where the interaction 

between molecules and light is a quantitative process. In other words, the amount of light 

absorbed is proportional to the amount of molecules present in the solution. The 

relationship can be quantified by Beer’s law[67] Eq. 3. 

 

A= -log T = log (Po/P) = εbc        Eq. (3) 

 

The simplicity and usability of this nondestructive method is based on the ability 

of some molecules (proteins in this case) to absorb light in the UV and visible regions of 

the EM spectrum. The absorbance of the collected rinse solution from the sprayed films 
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at a wavelength of 280 nm was measured in order to calculate the concentration of 

protein therein. This is the region in which the tryptophan and tyrosine amino acids 

strongly absorb the light due to the π-π* electronic transition of the aromatic 

component[71]. The presence of these two amino acids remains fairly constant in 

proteins like the antibodies used in these experiments allowing the calculation of the 

concentration. 

 

 

Figure 12. UV/vis representative absorption spectrum of goat anti-E.coli O157:H7 

IgG in PBS solution. 

 
 In this study UV/vis was used to determine the amount of antibody that was 

removed from the surface after being rinsed with buffer solution. The immobilized 

antibody film was rinsed with phosphate buffered saline (PBS) and the wash solution 

collected. The solution was placed in a quartz cuvette then measured using the UV/vis 

spectrophotometer.  A solution of antibodies in PBS as well as a bulk material were 

prepared and measured to observe the wavelength at the maximum absorbance (Figure 
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12). The spectrophotometer was calibrated by creating several solutions of known 

concentration and measuring their absorbance levels.  A curve of known protein 

(antibody) concentration against absorbance was then calculated. The protein 

concentration of the collected wash solutions was calculated using this curve. 

 

2.2.2 Attenuated total reflection Fourier transform infrared (ATR-

FTIR) 
 
 The infrared (IR) region of the electromagnetic spectrum is divided into three 

sections called the near, mid and the far-IR; with each of these divisions has different 

applications and instrumentation. The wavelength of the IR region can extend from 0.78 

to 1000 µm[67] and the energy of IR radiation is not strong enough to cause substantial 

electronic transitions like UV/vis. Instead the dipole moment of the molecule changes 

caused by rotation or vibration when absorbing energy in IR region. If a molecule has no 

net change in the dipole moment during the vibration or rotation, it can be inferred that 

such a molecule does not absorb IR radiation. Examples of this can be found in 

homonuclear molecules like O2, N2, Cl2. 

 

 IR spectrometry has been widely used for quantitative analysis in many fields due 

to its inherent ability to differentiate molecules. The IR spectrometry equipment has 

changed dramatically over the last 30 years as the dispersive type was slowly replaced by 

the Fourier transform (FT) type. Dispersive instruments use grating to disperse the 

radiation that is to be detected by the transducer, which makes it difficult to differentiate 

the source signal from external radiation.  
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The FT type of instruments uses interferometry to detect the signal and the data is then 

processed using a  Fourier transform resulting in a signal to noise ratio improvement of 

more than one order of magnitude[67]. 

 

 The attenuated total reflection (ATR) devices use the phenomenon of total 

internal reflection in which a beam enters in a medium (crystal) with a higher refractive 

index than the sample at an angle in which the beam is totally reflected. The interaction 

of the beam with the reflective surface causes an evanescent wave that can penetrate into 

the sample (Figure 13). The depth of the penetration directly depends on the wavelength 

and can extend from 0.5 to 5µm into the sample. In the region where the sample absorbs 

the energy, the evanescent wave is attenuated before reaching the IR detector.  This 

technique is commonly used to perform surface analysis, protein structure detection and 

many other biological applications[72]. 

 

 

Figure 13. Schematic of attenuated total reflection system. The refractive index (n) 

of the zinc selenide crystal is higher than the refractive index of the sample. 
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  Proteins are polymers in which the monomeric unit is amino acids. Amino acids 

are linked by the union of one amino group of one amino acid and the carboxylic group 

from another; such a bond is called peptide bond (Figure 14). When a protein is formed 

by linking of many amino acids, that chain is called a polypeptide. Not all polypeptides 

are considered proteins, only those that can form a three dimensional structure by the 

folding of its chains are considered proteins. 

 

Figure 14. Two amino acids forming an amide bond (peptide bond). 

 

 Proteins are characterized by three main types of structures, primary, secondary 

and tertiary, each of which plays a role in the functionality of the protein. Due to the vast 

number of vibration modes that a polypeptide chain can exhibit, the overlapping of close 

peaks and the complexity of the spectrum, it is necessary to extract information from 

specific regions from the peptide. Repetition of chemical groups in the main molecular 

chain (backbone) offers an advantage due the common mode of vibration these groups 

will exhibit. An example of this is the carboxylic group (C=O) which is part of the 

backbone of the entire structure of a protein and can be localized in the amide I region 

(1600-1700 cm-1, Figure 155). 
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 This region is generally used to analyze the secondary structure of a protein and 

gives information regarding structural integrity and bioactivity[72].  

 

Figure 15. Stretching vibration mode of carboxylic group in the amide bond (Amide 

I vibration). 

 
The use of the ATR-FTR technique in these experiments is focused on the protein 

structure analysis after the immobilization of the antibody by the pneumatic spray 

method. The protein-surface interaction, protein-protein interaction and nebulization 

process can denature proteins[73]. By analyzing shifts in the IR structural peaks (amide I 

region) any significant change in the chemical structure can be detected. 

 

2.2.3 Atomic force microscope (AFM) 
 
 The atomic force microscope (AFM) was invented in 1989 by Calvin Quate and 

Christoph Gerber after its predecessor the scanning tunneling microscope, developed by 

Gerd Binnig and Heinrich Roher during the 1980s. The atomic force microscope or 

scanning force microscope is a great tool for topographic analysis or surface morphology 

studies. This high resolution microscope belongs to the scanning probe microscope 

family where a mechanical probe (cantilever) scans linearly and in a very close proximity 

to the sample, creating an image of the surface. Unlike optical microscopes, the scanning 
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force microscope reveals details in the direction perpendicular to the surface (z-axis) with 

a resolution close to 10 Å. The scanning probe moves in the x- and y-directions over the 

surface while the cantilever, held with a constant force during the scan,  is forced up and 

down over the sample features[67]. 

 

 The probe is a sharp tipped cantilever made of silicon or silicon nitride that, when 

brought to proximity with the sample, is forced to move in the vertical direction, 

displaced by features on the surface. The movement in the probe is related to the force by 

Hooke’s law. A laser is used to detect the deflections of the probes by reflecting its beam 

off of the top surface of the cantilever into photo-detectors. The precision of the 

technique is also achieved by the use of piezoelectric materials (ceramics) that can 

contract or expand depending on the applied electrical current. Using these materials a 

highly precise three dimensional actuator can be constructed to scan the probe with the 

appropriate resolution[74]. An advantage of the AFM over other scanning microscopy 

techniques is that can be used with insulating samples such as those used in these 

experiments. 

 

 There are three different modes in which the AFM can operate: contact mode, 

tapping mode and non-contact mode. Each of these modes offers a variety of advantages 

that can be selected according to the needs of the experiment. The first mode is contact 

mode where the probe is in constant contact with the surface of the sample. This mode 

can damage the sample or distort the images obtained from the scan due to the contact 

between the cantilever and the sample. Normal AFM analysis is performed under regular 
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ambient conditions in which the atmospheric pressure or very small surface tensions can 

change the results of the scan pulling or pushing the probe. To solve this problem the 

next AFM mode, tapping mode, can be used. In this mode the cantilever oscillates at a 

few hundred kilohertz touching the sample at the bottom of each cycle. Each oscillation 

and amplitude is monitored continuously in order to obtain a good image. The last AFM 

mode and the least common is the non-contact mode. In this mode the cantilever is placed 

a few nanometers over the surface to be analyzed. The probe maps the surface by the 

attractive Van der Waals interaction forces between the surface and the tip of the 

cantilever[67]. 

 

 

Figure 16. AFM image of immobilized antibody on glass surface. (A) Immobilization 

of anti-E. coli O157:H7 IgG using pneumatic spray method, rings from droplets 

formed during the spray can be noticed on the surface after drying. (B) 

Immobilization of anti-E. coli O157:H7 IgG using avidin-biotin bridge method, 

large particles form due to aggregation of avidin. 

 
 A sample of an AFM image can be seen in Figure 16 where anti-E. coli O157:H7 

IgG antibody was deposited using two different immobilization techniques. Even though 
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the atomic force microscope cannot show the molecular structure of proteins the 

equipment can elucidate the morphological conformation of clusters at the surface. The 

topography of the surface after the antibody is immobilized is important due to its 

intrinsic relationship with cell adhesion. The wettability of a film will determine the 

ability of such a surface to interact with other surfaces or liquids directly affecting the 

interactions between them. A good parameter that can be measured in the topography of 

the surface is the roughness (Rq). Rq can be defined as the root mean square average of 

the total height (Z) deviation taken from the mean data plane in a given area (see eq. 4). 

 

      

 Eq. 4 

 

 The surface roughness of the two immobilization techniques employed in this 

project was also used as another comparison paramter. The Rq data gives a relative value 

to the morphology of the surface, which can be used to quantify the formation of 

aggregates or clusters after the immobilization of antibody at the surface. 

  

2.2.4 X-ray photoemission spectroscopy (XPS) 
 
 In numerous studies the analysis of the bulk properties of a sample is essential to 

understand the characteristics of the material. However, in some circumstances the 

properties of the surface of a material are of greater interest. Spectroscopic surface 

methods provide the information required to perform not only qualitative analysis but 
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quantitative as well. There are many spectroscopic techniques to analyze surfaces, 

including Auger electron spectroscopy (AES), electron energy-loss spectroscopy (EELS), 

electron microprobe (EM), surface plasmon resonance (SPR), ellipsometry and X-ray 

photoelectron spectroscopy (XPS).  

 

 In 1981 the physicist K. Siegbahn was awarded the Nobel Prize for his work on 

the principles of XPS. Since then, the technique has evolved to provide chemical analysis 

due to its ability to obtain information not only about the atomic composition of the 

sample, but the oxidation state as well[75]. A schematic representation of the 

spectroscopic surface technique is shown in Figure 17. A primary beam (electrons, ions, 

photons) is used to impact a surface. The result of this impact is a secondary beam 

(electrons, ions, photons) caused by scattering, sputtering, or emission, which is ejected 

from the surface in the direction of a detector.  

 

 

Figure 17. Basic schematic for a surface spectroscopy equipment. For the XPS the 

primary beam is X-ray photons and the detected secondary beam are electrons. 
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 Contamination on the surface is one of the main problems encountered in these 

surface techniques. A vacuum environment is essential to avoid adsorption of 

contaminant molecules to the surface (rate of adsorption is reduced by increasing the 

vacuum). A simple XPS system consists of 5 main elements. The first is the source, an x-

ray tube with magnesium or aluminum targets containing a monochromator to provide a 

very narrow bandwidth (0.3 eV), high signal to noise ratio and a small beam cross section 

at the surface. Next, is the sample holder, which must be positioned as close as possible 

to the source to reduce attenuation of the beam (a pressure of 10-5 torr or less is 

important). The analyzer consists of a series of lenses that discriminate the secondary 

beam by discriminating the kinetic energy of the emitted beam. The transducer is an 

electron multiplier (doped material with lead or vanadium) that improves the signal 

received by emitting more electrons than the one that was received (a gain of 106 to 108). 

The final component is the data system which analyzes the signal collected from the 

multiplier using computer software[67, 75]. 

 

 To understand the mechanism of the XPS is necessary to imagine a prototypical 

atom with outer and inner shells. The binding energy of the shells decreases with the 

distance from the core of the atom, meaning that removing an electron from the inner 

shell requires more energy than removing one from an outer shell (valence electrons). 

Once the primary beam (with a known energy hʋ) penetrates the shells it will displace an 

electron from one of the orbitals if the incoming photon energy is greater than the binding 

energy of the electron. The energy of the emitted electron (Ek) and the binding energy 
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(Eb) can be calculated using Equation 5. In this equation (w) is the work function or a 

factor that accounts for the electrostatic environment in which the electron was measured. 

 

Eb =  hʋ - Ek – w         Eq. 5 

 

 
 
Figure 18. Representative image of a X-ray photoelectron survey spectrum. Three 

different films were deposited by pneumatic spray on silicon wafer: from bottom to 

top, silicon surface as reference, a PLA film, a film of anti E. coli antibody deposited 

on a PLA film and the top survey is a film of anti E. coli antibody deposited on 

silicon wafer. The presence of antibody (protein) is confirmed by the N1s peak in the 

top two surveys. 

 
 One of the basic analyses that can be performed by the XPS equipment is a survey 

spectrum. This spectrum normally use a range of kinetic energies from 250-1500 eV 

which are equivalent to about 0-1250 eV binding energy, thereby covering all the 



37 
 

elements in the periodic table. This spectrum elucidates the basic components of a 

material shown in Figure 18 where a polymer (poly-lactic acid) is deposited on the top of 

a silicon wafer. The two basic components of the polymer (carbon and oxygen) are 

detected for that survey, while the nitrogen appears only in the films that have antibody 

(nitrogen being a main component of proteins). The silicon survey is used as reference 

and to evaluate the elements present before any addition of material. 

 

 In this study the formation of a thin film of antibodies on a glass surface with a 

specific functionality as a capturing agent is performed under pneumatic spray 

conditions. XPS allows one to analyze the coverage of the surface with the protein after 

the deposition process. The intensity of each measured peak can be evaluated to reveal 

the amount of material present in the sample. The presence or absence of certain elements 

in a film can be detected by the survey scan which can help in the qualitative 

confirmation of a immobilized material on the analyzed surface[76].  In this case the 

solid surface on which the film was deposited was a silicon wafer. The peaks contributed 

from the substrate are Si2s, Si2p and from the film C1s, O1s and N1s.  

 

For these experiments, the presence of nitrogen in the spectrum is an indication of 

the existence of the antibody at the surface (immobilization) as this element is only found 

in the immobilized antibody films. The increase in the intensity of the peak for a single 

element after a deposition is related to an increase in the amount of  material on the 

surface.  This value will increase until it reaches a plateau. At this point the penetration 

power of the x-ray has reached the maximum.    
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2.2.5 Contact angle (wetting properties of a film 
 
 Wetting can be described as the property of a liquid to keep contact with a 

surface, and the total surface area involved in the contact depends on attractive and 

repulsive forces at the liquid-solid interface. Surface wetting is a relevant topic due to its 

importance in many industries including pharmaceuticals, cosmetics, printing process, 

fabrics, and biomaterials (body implants, contact lenses). Many techniques have been 

developed to measure those interactions. The wettability property can be determined by 

the measurement of the contact angle (Figure 19). The relationship between contact angle 

and wettability is inverse, in other words when a measurement gives a high contact angle 

(<90º) the surface has a low wetting properties; this surface is considered hydrophobic. In 

the opposite case when the contact angle is low (>90º) the wetting is high and the surface 

is considered hydrophilic[77].  

 

 

Figure 19. Inverse relationship between contact angle and wetting properties. The 

images show a drop of water on a poly-lactic acid coated surface (left) and drop of 

water on a glass surface (right). 
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The contact angle can be described as the angle between the liquid and substrate 

at the interface from the contact point as seen in Figure 20. The shape of the drop on a 

surface is affected by the surface tension forces that interact at the interface. To better 

describe these forces it is necessary to visualize the atoms within a solid broken into two 

sections; the bulk material and the surface. The atoms in the bulk material are packed 

tightly with neighboring atoms resulting in a zero net force between the atoms. The atoms 

present on the surface are not completely surrounded by other atoms causing a 

misbalance in the forces with a net attractive force pointing toward the interior of the 

bulk material. The excess energy gained by the atoms at the surface is called surface 

energy (free energy). Systems will move towards the most stable condition by reducing 

the amount of free energy. 

 

Figure 20. Image of a contact angle formed by a water drop on an antibody film 

immobilized on glass substrate. Three tension interfaces are shown solid-liquid (sl), 

solid-vapor (sv) and liquid-vapor (lv).  
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 If the system is a liquid droplet, the excess energy from the surface atoms creates 

an attractive force towards the interior of the drop. This tendency of the system leads to a 

reduction of its energy, causing the drop contract thereby decreasing its surface area. The 

force that decreases the size of the drop in an effort to maintain the lowest energy level is 

called surface tension. In 1805 Thomas Young defined the mathematical relationship 

between the surface and drop interaction in his equation[78]. 

 

ɣlv cos θY =  ɣsv - ɣsl         Eq. 6 

 

Equation 6 shows three different interfaces (lv) liquid-vapor, (sv) solid-vapor, and 

(sl) solid-liquid; (ɣ) is the tension and (θY) is the contact angle.  The experimental 

contact angle is not always equal to the value obtained from Young’s equation due to 

other factors including surface roughness that directly affect the measurement. Because 

of this characterizing the wetting properties of a surface based only in the static contact 

angle is not adequate. The use of dynamic contact angle and advancing and receding 

contact angle are more accurate approximations to the measurement. The advancing and 

receding angle is also called hysteresis (H) and is correlated to the heterogeneity 

(roughness) or topography of the surface[79]. The calculation of the contact angle in 

different topographic surfaces (rough and heterogeneous) is performed using the Wenzel 

and Cassie-Baxter angles which differ from the Young angle. The interaction of liquids at 

a solid surface has many applications in the biological field including biomedical 

implants (metal or plastic) where the wettability of the material and the exposure time are 

crucial due to the formation of a biofilm interface with the body [80]. Another application 
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is in the development of waveguides for biosensors, where antibodies are immobilized on 

a solid surface (glass), the wettability of the film is an important parameter that 

contributes to the efficiency of the interaction between the liquid containing the antigen 

to be captured and the antibody[81].  In these experiments the contact angle 

measurements were used primarily as a parameter to qualitatively analyze and compare 

the antibody films immobilized by the two different techniques, the pneumatic spray and 

the avidin-biotin bridge. 

 

2.3 Experimental set up 
 
 

2.3.1 Materials 

 
 Plain microscope glass slides used for all experiments were purchased from 

Globe Scientific Inc. (Paramus, NJ).  Antibodies used were unlabeled goat anti-E. coli 

O157:H7 (used for pneumatic spray method), the biotinylated labeled goat anti-E. coli 

O157:H7 (for avidin-biotin bridge method), AlexaFluor 647 labeled donkey anti-goat (as 

reporter antibody), and Rhodamine Red conjugated AffiniPure donkey anti-goat.  The 

first two antibodies were purchased from Kirkegaard & Perry Laboratories, Inc. 

(Gaithersburg, MD), the third antibody was purchased from Invitrogen (Eugene, OR), 

and the fourth from Jackson ImmunoResearch (West Grove, PA).  Antibodies were 

rehydrated and stored following manufacturers’ instructions.  Goat anti-E. coli O157:H7 

was labeled with Alexa Fluor 647 (AF647) using the AF647 protein labeling kit from 

Invitrogen (Eugene, OR) and following the manufacturer’s instructions.  Other reagents 

used were NeutrAvidin biotin binding protein from Thermo Scientific (Rockford, IL), 
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methanol, potassium hydroxide, sodium chloride, sodium phosphate dibasic 

heptahydrate, sodium phosphate monobasic, Tween 20 from Fisher Scientific (Fair Lawn, 

NJ), ampicillin sodium salt, L-(+)-arabinose, dimethyl sulfoxide , 4-maleimidobutyric 

acid N-hydroxysuccinimide ester, (3-mercaptopropyl)triethoxysilane, toluene anhydrous 

99.8% from Sigma-Aldrich (St. Louis, MO), and ethanol 200 proof from AAPER 

Alcohol & Chemical Co. (Shelbyville, KY). Luria-Bertani and Tryptic Soy media 

(Becton Dickinson Company, Sparks, MD) were used for growth of bacteria. 

 

Escherichia coli O157:H7 ATCC 35130 labeled with Green Fluorescent Protein 

(GFP) was used previously[61] and was employed in this study.  Bacteria (GFP-E. coli 

O157:H7) were grown on a media (Luria-Bertani) containing 5 mg/mL arabinose and 100 

µg/mL ampicillin (LBAA) for 18-24 h at 37˚C prior to each experiment.  E. coli K12 

ATCC 23590, E. coli O124:H7 CDC 3836-65, Salmonella enterica Typhimurium ATCC 

19585, Shigella flexneri  ATCC 12022, and Staphylococcus aureus ATCC 25923 were 

grown on (TSA) in the same conditions that the Escherichia coli O157:H7 mentioned 

before.  The cell suspensions were made in a buffer solution of 10 mM Sodium 

Phosphate/10 mM Sodium Chloride (NaPCl) then, diluted ten-fold.  All the direct counts 

were done with Cellometers (Nexcelom Bioscience, Lawrence, MA) to calculate 

concentrations followed by spread plating on LBAA agar plates (for GFP-E. coli 

O157:H7) or TSA (all other bacteria) in triplicate to determine the amount of viable cell 

concentrations. 
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2.3.2 Immobilization methods (pneumatic spray and avidin-biotin 

bridge) 

 
   The pneumatic spray deposition was performed using a nebulizer with a low flow 

rate (3-10 µl/min) (Nebulizer Model DS-5, CETAC, Omaha, Nebraska) and an in-house 

apparatus to hold the nebulizer and a glass slide (Figure 21).  A N2 gas line was 

connected to the nebulizer with a pressure regulator.  A syringe pump was used to deliver 

the sample (Pump 11 Pico Plus Harvard apparatus, Holliston, Massachusetts) adapted 

with a 1 mL syringe. The syringe holding the sample was connected to the nebulizer 

using PVC tubing. A solution of 10% KOH in methanol was prepared and the glass slides 

were immersed in this solution for 30 min followed by rinsing with deionized water and 

drying with nitrogen flow.  Individual slides were placed on the slide assembly and 

located at a predefined distance away from the tip of the nebulizer.  The syringe was 

filled with unlabeled goat-E. coli O157:H7 antibody solution according to the amount 

needed for each experiment.  Parameters used during the experiments were the following: 

antibody concentration (100 or 200 µg/mL), distance of glass slide from nebulizer (30-70 

mm), outflow N2 pressure (20-60 PSI), rotational rate of the moving glass slide sample 

holder (7.5-17 RPM) and amount of time sprayed (2-32 min).   

 

The flow rate was the only constant parameter throughout the experiments and 

was set at 4 µl/min.  The antibody pattern on the glass was established using a metal 

mask with dimensions of 25 x 75 mm with 15, 1 x 9 mm rectangular openings (rows).  

The patterns created by these parameters yield at least 6 rectangular rows with 

immobilized antibody. Finally, the prepared pneumatic spray slides were stored at 4°C if 

they were not used the same day. 
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Figure 21. Pneumatic spray setup for immobilization of antibodies on solid 

substrate. 

  

  The covalent immobilization method of antibodies via avidin-biotin bridge has 

previously been described in detail by other groups[12, 82].  Briefly, glass slides were 

immersed for 30 min in a solution of 10% KOH in methanol, then rinsed vigorously with 

deionized water and dried under nitrogen flow.  The following procedure was performed 

under nitrogen environment inside a glove bag: the cleaned slides were treated for 1 h 

with a 2% solution of (3-mercaptopropyl) triethoxysilane in toluene, and then incubated 

in a 2.1 mM, 4-maleimidobutyric acid N-hydroxysuccinimide ester in 200 proof ethanol 

solution for 30 min.  Slides were rinsed with deionized water then incubated for 2 h in a 

solution of 33mM NeutrAvidin in NaPCl buffer at 27°C.  Slides were rinsed with buffer 

solution and air dried, then placed in patterning templates (Hanson Technologies, Inc., 

Carlisle, PA). Each template consists of an acrylic holder and a poly-dimethylsiloxane 

(PDMS) flow module termed patterning gasket.  A biotinylated goat anti-E. coli O157:H7 
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solution of 10 µg/mL in NaPCl buffer was injected into the flow chamber.  Slides were 

incubated for 18-22 h at 4°C and then rinsed using a plastic pipette with NaPClT buffer 

(mixed with 0.5% tween 20).  Slides were dried with a flow of nitrogen then used or 

stored at 4°C. 

 

2.3.3. Reproducibility and visualization of patterns of immobilized                       

antibody 
 
  The reproducibility of pneumatic sprayed antibody pattern was determined after 

establishing spray parameters. Ten slides were sprayed and treated with reporter antibody 

against the immobilized goat anti-E. coli O157:H7 antibody to illuminate the spray 

patterns.  Pneumatic spray prepared slides were placed horizontally on a slide holder and 

1 mL of 5 µg/mL AF647 donkey anti-goat antibody solution was added to the top surface 

of the slide and allowed to incubate for 15 min at 27°C.  Slides were rinsed with NaPClT 

buffer and air dried. The visualization of antibody patterns was performed via fluorescent 

microscopy.  PS and avidin-biotin bridge prepared slides were processed for visualization 

of antibody patterns. One milliliter of a 5 µg/mL Rhodamine red anti-goat IgG solution 

was added to each slide and incubated for 15 min at 21˚C.  Slides were then rinsed three 

times (0.5 mL each time) with NaPClT buffer using a transfer pipette and allowed to dry.  

Slides were interrogated with a 635 nm laser and visualized with a CCD camera.  

Visualization was performed using an Olympus BX60 Epifluorescent microscope 

(Olympus America Inc., Center Valley, PA) with a UPlanFl 10x and a UIS2 LUCPlan 

FLN 40x objectives.  Digital images were obtained with an attached SPOT Flex color 

CCD camera (Diagnostic Instruments Inc., Sterling Heights, MI).  Image adjustments and 
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ruler measurements were done with the SPOT Advanced version 4.6 software 

(Diagnostic Instruments Inc., Sterling Heights, MI). 

 

2.3.4 Testing capture efficiency, specificity and shelf life of immobilized 

antibody 

 
 Pneumatic spray and avidin-biotin bridge prepared slides were assayed with GFP-

E. coli O157:H7 to determine the immobilized antibody’s functionality.  Five assay 

replicate experiments were done in which each experiment consisted of 3 slides of each 

deposition method (total of 6 slides) with one sample concentration (105, 106, 107 

cells/mL) per slide.  Slides were warmed to 21˚C and placed inside acrylic holders with 

silicon gaskets.  The gaskets had a 17.4 x 16.8 mm open area (292.32 mm2) for sample 

application.  One hundred microliters of sample was added to the 292.32 mm2 area and 

incubated for 30 min at 21˚C on the Belly Dancer shaker (Stovall Life Science, 

Greensboro, NC).  Slides were then rinsed three times (0.5 mL each time) with NaPClT 

buffer using a transfer pipette.  One half of one milliliter of 10 µg/mL AF647 anti-E. coli 

O157:H7 detector solution was added and incubated for 15 minutes at 21˚C on the Belly 

Dancer shaker.  Slides were rinsed three times (0.5 mL each time), removed from the 

acrylic holder and air dried.  Slides were then interrogated with a 635 nm laser and 

visualized with a CCD camera thereafter and viewed under fluorescent microscopy to 

determine GFP cell counts and calculate percent capture efficiencies. Slides from 3 

different experiments (3 sets) were then subjected to the procedure for visualization of 

antibody patterns via fluorescent microscopy as mentioned above. 
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 To determine if the immobilized antibody was still specific for E. coli O157:H7, 

pneumatic spray and avidin-biotin bridge prepared slides were assayed with non-target 

bacteria. E. coli K12, E. coli O124:H7, S. enterica Typhimurium, S. flexneri, S. aureus, 

and GFP- E. coli O157:H7 (positive control) suspensions at 107 cells/mL were added to 

slides (one bacterial strain per slide) following the same procedure performed for the 

functionality of immobilized antibody experiments found in the previous paragraph. 

Slides were interrogated with a 635 nm laser and visualized with a CCD camera.  Data 

analyses were done on the resulting images. To estimate the shelf-life of PS slides, 

twelve slides were prepared via the PS process on the same day (day 0) and stored at 4˚C.  

On day 1 (24 h after slide prep) one slide was assayed with a GFP-E. coli O157:H7 

sample at 107 cells/mL following the procedure done for the functionality of immobilized 

antibody experiments. Thereafter, one slide was assayed each week for 12 weeks.  Slides 

were interrogated with a 635 nm laser, visualized with a CCD camera and thereafter 

viewed under fluorescent microscopy to determine GFP cell counts and calculate percent 

capture efficiencies. Data analyses were done on images. 

 

2.3.5 Testing sensitivity of immobilized antibody films  
 
 Images captured with the CCD camera were analyzed using the HLAB 5000 

analysis software (Hanson Technologies, Inc., Carlisle, PA).  A 6 x 6 array grid was used 

to read the target areas (the antibody rows at the center of the slide), termed region of 

interest area (ROI, ~4.37 mm2), as well as non-target areas to the left and right of the 

ROIs, termed the left and right background areas (LBA, RBA ~1.09 mm2 each) see 

Figure 10.  Signal to noise ratios (SNRs) were determined by subtracting the background 
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fluorescent intensity (mean of LBA and RBA) from the mean intensity of the ROI and 

then dividing by the background standard deviation (LBA and RBA).  Antibody rows 

with SNRs ≥ 3 were evaluated as positive for detection in the GFP-E. coli O157:H7 

assays. 

 

 Percent capture efficiencies of each ROI were determined by placing each GFP-E. 

coli O157:H7 assayed slide on the Epifluorescent microscope containing a UIS2 

LUCPlan FLN 40x objective and generating a digital image.  The total area of the image 

was 0.09486 mm2.  GFP-E. coli O157:H7 and the cells on the images were counted using 

DIME 1.31 software[66].  The calculation of percent capture efficiency is performed by 

dividing the number of GFP cells counted per image by the theoretical number of GFP 

cells per image and multiplying by 100.  Theoretical number was calculated by dividing 

the number of cells applied by the antibody pattern area in contact with cell sample.  

Each antibody pattern row created by the pneumatic spray was approximately (based on 

mask dimensions) 16.80 mm2 and the area for the avidin-biotin bridge was estimated to 

be 14.94 mm2. The unpaired t-test or the Mann-Whitney test for sample groups with non-

Gaussian distributions (GraphPad InStat v3.0, GraphPad Software, Inc., La Jolla, CA) 

was used to estimate the differences in fluorescent intensity values, SNRs, and percent 

capture efficiencies for pneumatic spray and avidin-biotin bridge techniques. Differences 

were considered statistically significant for P being less than or equal to 0.05 (95% 

confidence level). 
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2.3.6 Equipment (ellipsometry, UV/vis spectroscopy and ATR-FTIR)   
 

For the ellipsometry measurements silicon, in the form of a wafer, was chosen as 

the substrate to perform the antibody deposition instead of glass due to the transparent 

characteristics of the antibody film. Wafers were cut to 2.5 cm by 4 cm then immersed in 

a solution of 10% KOH in methanol and incubated for 30 min followed by extensive 

rinsing with deionized water and drying with nitrogen. Ten silicon samples were 

pneumatically sprayed with goat anti-E. coli O157:H7 as described in section 2.3.2. Each 

sample was sprayed using different deposition times (from 2 min to 14 min) per 

duplicate. For comparison purposes, antibody was immobilized via the avidin-biotin 

bridge following the same process described on section 2.3.2 onto two silicon samples.  

The thickness of the deposition layer was analyzed by the ellipsometer (Null point 

Ellipsometer Rudolph AutoEL III) with a single wavelength of 632.8 nm and a resolution 

of 3-10 Å at a fixed angle of 70º. A clean silicon sample without immobilized antibody 

was kept as a reference for the two film making techniques. 

 

After thickness measurements were performed (using ellipsometry) the slides 

were rinsed with 3 mL of PBS per slide. The rinsed solution was collected and measured 

using Uv/vis spectroscopy (Thuramed T60 UV/VIS spectrophotometer version 1.10) at a 

wavelength of 280 nm for protein detection with wavelength accuracy of +/- 1nm, a 

photometric range of absorbance -0.3-3Abs (Louisville, KY). The rinsed slides were 

dried with nitrogen flow and again measured on the ellipsometer to obtain the difference 

in thickness after washing.  Glass slides were cut into 7 x 7 mm squares, cleaned and 

pneumatically sprayed as described in section 2.3.2 with a deposition time ranging from 
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2-14 min. Each sample was placed inside the UV/vis cuvette filled with 3 mL of buffer 

solution and measured for a period of time (0-48 h) to detect any desorption of the protein 

from the surface. Each deposition time was performed in triplicate. To analyze the 

samples using the ATR-FTIR a zinc selenide (ZnSe) crystal was cleaned with methanol 

and dried by a flow of nitrogen. Antibodies were deposited on the ZnSe crystal at each 

deposition time using the same parameters described on section 2.3.2. After each 

deposition the film deposited on the crystal was measured and then removed by rubbing 

the surface with a wipe soaked with methanol before the next deposition. Experiments for 

each deposition time were made in duplicate.  The ATR-FTIR equipment used was a 

Nicolet 6700 spectrometer from Thermo Electron (Madison, WI) equipped with the ATR 

accessory and a ZnSe ATR crystal. The spectra were analyzed using the OMNIC 

software version 7.2.a (Thermo Electron Corporation). The spectrometer was purged with 

nitrogen continuously to reduce contamination form H2O and CO2 vapors. 

 

2.3.7 Equipment (AFM, XPS and contact angle) 

 

For AFM analysis, glass slides were cleaned then pneumatically sprayed (both 

procedures described in section 2.3.2). Every deposition was done in triplicate and each 

deposition was scanned in three different areas. The AFM measurements were performed 

using a Digital Instruments - Dimension 3100. The AFM was operated under tapping 

mode with a piezoelectric scanning probe microscope head and silicon probe tip. The thin 

film samples were examined at a scan rate of 1 Hz over an area of 50 μm × 50 μm and 1 

μm x 1 μm.  
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For XPS analysis, silicon wafers were cut into 10 mm x 10 mm squares and 

cleaned with a solution of 10% KOH/Methanol for 30 min and then dried with nitrogen. 

Each slide was pneumatically sprayed according to procedure described on section 2.3.2. 

The XPS measurements were taken using a SPECS UVS 10/35 ultraviolet source and a 

SPECS XR 50 X-ray gun. The X-ray emission line used for standard core level XPS was 

the Mg KR (hν = 1235.6 eV), with a 20 mA emission current. The calibration was carried 

out to yield the standard Cu 2p3/2 line at 932.66 eV and the Cu 3p3/2 line at 75.13 eV. 

All the data obtained was analyzed using Igor Pro software (WaveMetrics, Inc.).  

 

For the contact angle measurement a 250 µl syringe was filled with deionized 

water and clamped above the location of the test slide. Each glass slide was cleaned and 

pneumatically sprayed with an antibody film as described in section 2.3.2 then positioned 

under the water drop system. To find the contact angle of all the antibody films, an in-

house physical water-drop system apparatus (Figure 22) was built, a digital microscope 

camera (Amscope MD 600, v 3.0.12, Irvine, CA) was attached to the system to image the 

drop. The free open source image processing software program ImageJ and the plugin, 

dropSnake, was used to analyze the images of the drops[83]. The syringe plunger was 

controlled manually by pressing down to release a single drop of water 15µl in volume. 

After each drop an image was taken using the Amscope MD600 camera, and then the 

contact angle was calculated using the ImageJ software. Each deposition sprayed in 

duplicate and three drops per slide were performed.  
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Figure 22. Schematic of an in-house physical water-drop apparatus to measure 

contact angle on solid surfaces. 
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CHAPTER 3: ANTIBODY IMMOBILIZATION USING PNEUMATIC SPRAY: 

COMPARISON WITH THE AVIDIN-BIOTIN BRIDGE IMMOBILIZATION 

METHOD 

 
 This chapter summarizes the results of the publication “Antibody immobilization 

using pneumatic spray: Comparison with the avidin-biotin bridge immobilization 

method”. Results were published in the Journal of Immunological Methods and can be 

found in the appendix B. 

 

3.1 Introduction 
 
  The detection of pathogens in the food industry, the detection of biological 

molecules that can be used in bioterrorism, or the detection of biomarkers for medical 

diagnostics have been a topic of growing interest in the scientific community in the past 

years. Biosensors are the preferred tool to achieve those tasks due to their ability to detect 

biomolecules selectively. Many biosensors use selectively bonding biological molecules 

(i.e. antibodies, oligonucleotides, enzymes) to enhance the selectivity of the device.1-4. 

One of the most sensitive and reliable devices currently used in the detection of 

biomolecules is the evanescent wave biosensor5. This type of sensor is usually used with 

antibodies as the detecting entity due to their high specificity for targeting biomolecules.   

 

 The immobilization of the detector entity (i.e. antibody) is a crucial step in the 

preparation of biosensors for the recognition of the captured biomolecules. Many 
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different methods to immobilize the antibody onto a solid surface (while preserving bio-

sensitivity) have been developed in recent decades leading to a variety of choices for 

immobilization. Among the most common methods to immobilize biomolecules onto 

solid surfaces are direct covalent attachment, attachment through an intermediate layer 

and physical adsorption.6,7  

  

 The direct covalent attachment procedure immobilizes antibodies on a glass 

surface via silanes, which provide a chemical interface that is easily adapted for specific 

molecules. The attachment of the silanes can be done through amine-and thiol terminated 

silane groups. The antibody is immobilized directly to the silane group8-11 via an 

intermediate layer which is the most common technique to immobilize antibodies on 

solid surfaces. One example for an intermediated layer is the Avidin-Biotin Bridge 

(ABB) where a protein (i.e. avidin) is the intermediate molecule to immobilize the 

antibody. This method of immobilization is very efficient due to the high degree of 

orientation of the antibody that can be achieved during the immobilization process. 

However, this technique involves many intricate and complicated steps leading to a long 

multi-step process which is prone to errors. These issues lead to losses in materials and 

time due to an inheriting slow feedback loop for the detection of unsuccessful steps12-14. 

  

The physical adsorption method has not been very popular among researchers due 

to the perceived issues such as non-specific adsorption, chemical instability interaction at 

low or high pH16-18 and the probability that adsorbed proteins can leach or wash off from 

the surface if the coated substrate is exposed to a liquid flow19. Some studies also 
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suggested that the adsorption of proteins can lead to denaturation of the biomolecule 

through surface-protein interaction5,20,21 producing non-specific binding of the antibodies. 

Despite these potential issues the simplicity of the physical adsorption technique also 

offers advantages22,23. The results of this study show that physically adsorbed films 

deposited via pneumatic spray are compatible with the requirements of biosensor, 

suggesting that physical adsorption is a viable alternative for the immobilization of 

antibodies. 

  

  The presented research explores the immobilization of affinity purified, goat anti 

E. coli O157:H7 antibody on glass using a low flow concentric nebulizer. The spray 

apparatus nebulizes the solution into microscopic droplets. This enables an almost dry 

deposition of the antibody on the surface.  This process creates a compact antibody thin 

film of high density, which increases the capture efficiency. The spray process offer 

advantages that include the fast fabrication of patterns, an almost chemical free process, 

consistent coverage of the sprayed surface, easy set up, and low cost and maintenance of 

the equipment, which makes the pneumatic spray an inexpensive and efficient 

immobilization technique.  

 

 The results obtained during these experiments for comparison purposes of both 

deposition techniques, showed a lower sensitivity for the sprayed slides which was not 

related to a decrease in functionality of the films but rather to the spraying process. For 

the specificity, shelf life and capture efficiency results suggested no significant 

differences for both techniques. The thickness for both types of deposited films were 
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similar, but the thickness of the spray slides is based only on antibody while the avidin-

biotin technique used cross linkers and intermediates before the antibody.  

 

3.2 Results  

 
The first step for the comparison of both deposition techniques was to determine 

the pattern reproducibility of the pneumatic spray films on glass and its use for 

immunoassays. Figure 23 shows representative images (A-C) of the antibody 

immobilization patterns of pneumatic spray slides assayed for repeatability; for 

comparison purposes an avidin-biotin bridge immobilization pattern was also included 

(D). All slides have well defined patterns with at least 6 usable rows for immunoassays.  

The mechanical stability of the films was tested by rinsing the slides with buffer solution 

(as performed during immobilization protocol) which did not lead to a degradation of the 

pneumatic spray patterns. Two of the slides showed a higher background as shown by the 

resulting fluorescence between the rows of each slide (Figure 23 C). Some of the 

antibody patterns were slightly off-centered (apparatus set-up was adjusted to center 

patterns in preceding experiments) and some of the rows were slightly wider than others 

due to the custom made metal mask used.  Overall, all slides had defined multi-row 

patterns suitable for the testing of the functionality of the patterns. 
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 A  B 

   
 
 
 C  D 

      
 
Figure 23. Representative images (A-C) of the ten slides sprayed with established 

parameters of 200 µg/mL goat anti-E. coli O157:H7 IgG with 60 PSI N2 outflow, 7 

min spraying time, 30 mm distance from slide to nebulizer, and slide rotation at 12 

RPM.  Slides were 
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Figure 24. Comparison of mean (A) fluorescent intensities, (B) background relative 

fluorescent units, (C) signal to noise ratios, and (D) percent capture efficiencies for 

multiple samples of E. coli O157:H7. ROI denotes region of interest, RFU is relative 

fluorescent units. 

 

  The sensitivity of the deposited films created via spray and covalent bonding was 

tested by the analysis of fluorescence intensities and signal to noise ratio. Figure 24 A 

and B display the mean fluorescent intensity values as relative fluorescent units (RFU) 

obtained for E. coli O157:H7 samples assayed on pneumatic and avidin-biotin bridge 

prepared slides.  The mean RFU values at 5 log10 cells/mL were similar for both slide 
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immobilization processes with no significant difference (P=0.1581) but were 

significantly different at 6 log10 cells/mL (P=0.0072) and 7 log10 cells/mL (P=0.0104) in 

which the avidin-biotin bridge slides had higher values.  Mean SNR values (Figure 3C) 

yielded no detection at 5 log10 cells/mL for pneumatic spray and avidin-biotin bridge 

slides, 0% and 40% detection at 6 log10 cells/mL and 60% and100% detection at 7 log10 

cells/mL for pneumatic spray and avidin-biotin bridge, respectively.  There was no 

significant difference (P=0.1175) between the 5 log10 cells/mL mean SNR but there were 

significant differences (P<0.0001) at the 6 and 7 log10 cells/mL concentrations where 

avidin-biotin bridge slides had higher values. The lower ROI (Figure 24 A) and higher 

background RFU values (Figure 24 B) in comparison to avidin-biotin bridge slides 

caused the low pneumatic spray slides SNR values. 

 

  The main characteristic of a waveguide used in a biosensor is the ability of the 

immobilized antibody films to capture antigens. These characteristic is tested by 

calculating its capture efficiency. The mean percent capture efficiencies (Figure 24D) 

were similar for both slide immobilization processes at each concentration.  There were 

no significant differences between the two techniques at 5 (P=0.5600), 6 (P=0.1673), or 7 

log10 cells/mL (P=0.9964). The specificity experiments yielded no detection of any of 

the non-E. coli O157:H7 strains tested.  The mean SNR values of all pneumatic spray and 

avidin-biotin bridge assayed slides were ≤ 0.2 ±2.  In comparison, the E. coli O157:H7 

positive control yielded a mean SNR of 15.2 ±10.5 for the pneumatic and 14.6 ±6.4 for 

the avidin slides. 
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  To test the shelf life of the pneumatic sprayed films some slides were deposited 

and stored for a set period of time. Figure 25 displays the mean fluorescent intensities, 

SNR values, and percent capture efficiencies for pneumatic spray slides stored for 

different number of days at 4˚C and then assayed with GFP-E. coli O157:H7 at 7 log10 

cells/mL.  RFUs (Figure 25A) were similar to those generated by the antibody 

functionality experiments (Figure 24A) at the same concentration with no significant 

difference (P=0.7155).  Mean SNR values (Figure 25C) yielded positive detection of E. 

coli O157:H7 at 7 log10 cells/mL; showing that there was no loss of detection for the 

pneumatic spray slides stored up to 100 days.  There was a significant difference 

(P<0.0001) between the SNR values for the stored slides and the antibody functionality 

experiments (Figure 24C). 

 

  The SNRs for the stored slides were higher.  This was due to the lower 

background RFUs (Figure 25B) achieved for the stored slides in comparison to the 

significantly higher (P<0.0001) values for the antibody functionality experiment slides 

(Figure 24B).  The mean background RFU values were between 1400-2500 in the first 3 

slides but then went down to 900-1700 range for the rest of the slides (Figure 25B).  

Mean percent capture efficiencies against time stored ranged from 11 - 73% with the 

median range at 10 - 40 % (Figure 25D).  There was no significant difference (P=0.6599) 

between these percent capture efficiencies and those generated by the antibody 

functionality experiments (Figure 24D).  The slides had defined multi-row patterns until 

day 71 when loss of pattern approximately 1/3 of a row for 1-3 rows was observed 

(images not shown). 
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Figure 25. Mean (A) fluorescent intensities, (B) signal to noise ratios, and (C) 

percent capture efficiencies for PS slides stored for different number of days at 4°C 

and then assayed with E. coli O157:H7 at 7 log10 cells/mL.   
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A B C 

   
D E F 

   
 
Figure 26. Epifluorescent microscopy representative images of (A, B, D, E) 

immobilized antibody patterns visualized by treatment with Rhodamine Red 

donkey anti-goat IgG and (B, C, E, F) captured GFP-E. coli O157:H7 cells. Images 

on the left are (A) pneumatic and (D) avidin-biotin immobilized goat anti-E.coli 

O157:H7 patterns with no cells using a 535-550 excitation filter.  Images in the 

middle are (B) pneumatic spray and (E) avidin-biotin immobilized goat anti-E.coli 

O157:H7 patterns with GFP-E. coli O157:H7 cells using a 535-550 excitation filter.  

Images on the right (C, F) are the corresponding areas of (B) and (E) but using a 

470-490 excitation filter to view the GFP cells (fluorescing green dots). 

  

  

The purpose of this experiment was to visualize the morphology of the antibody 

film through labeling the deposited antibodies with a fluorophore (Rhodamine Red) 

tagged IgG antibody, which selectively binds to the deposited goat IgG (i.e. goat anti-E. 

coli O157:H7) on the slides. This allows the visualization and identification of the 

immobilized antibody on the surface.  The pictures above (Figure 26) are a representative 
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of the fluorescent microscopy images of immobilized antibody patterns measured on 

glass. In these experiments GFP-E. coli O157:H7 cells were captured on the pre-treated 

immobilized goat anti-E. coli O157:H7 antibody surfaces and treated with Rhodamine 

Red donkey anti-goat IgG. Comparison of the pneumatic spray and the avidin-biotin 

bridge patterns (Figure 26, A and B to D and E) showed that the spray deposited patterns 

were less homogeneous than the  patterns generated with the standard wet-chemical 

method. These films exhibited a more homogeneous fluorescent signature. Similar 

measurements were performed on slides that were assayed with GFP-E. coli O157:H7 

cells, and similar results were obtained.  However, an interesting observation was made 

when assayed slides (i.e with cells present) were viewed after tagging with Rhodamine 

Red IgG:  The GFP-E. coli O157:H7 cells that had been captured (showing green 

fluorescence in Figures 26 C and F) showed up as fluorescent red dots on the Rhodamine 

Red tagged images (Figure 26B) of the sprayed slides, while they are not visible on 

standard  slides (Figure 26E).  Since the Rhodamine Red  IgG only tags the antibody, this 

suggests that some antibody on the sprayed slides dislodged during the incubation 

process and bonded to the immobilized E. coli O157:H7 cells during sample incubation, 

making them visible through Rhodamine Red  IgG tagging. Note that these slides did not 

have primary reporter antibody (AF647 conjugated goat anti-E.coli O157:H7 IgG) added 

prior to pattern visualization. 

 

Fluorescent microscopy was used to visualize the immobilized antibody and 

captured GFP bacteria on the deposited films. Images showing the area between rows 

were included to describe the differences between the two immobilization techniques.  
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Images on slides treated with the reporter antibody are shown in Figure 27.  These slides 

were incubated with GFP-E. coli O157:H7 at 7.4 log10 CFU/mL followed by addition of 

primary reporter antibody (AF647 conjugated goat anti-E. coli O157:H7 IgG) and then 

treated with Rhodamine Red donkey anti-goat IgG.  Rhodamine Red IgG bound to the 

immobilized antibody on the surface and to primary reporter antibody on the surface of 

the cells.  Another observational difference was that the pneumatic spray slides had 

“blotchy” fluorescence observed at the surface of the slide with the captured bright red 

cells (Figure 27B).  The blotchy signature is due to the formation of antibody aggregation 

during the spraying process which created an inhomogeneous morphology.  This was not 

seen on the avidin-biotin bridge slides which had minimal fluorescence at the slide 

surface (Figure 27D).  This indicates that there is less immobilized antibody than what is 

on the pneumatic spray slides.  

 

 The analysis of the film thickness for the two deposition techniques used in these 

experiments and the potential influence in the capture ability was performed using 

ellipsometry. A linear relationship between the thickness of the film and the deposition 

time using the spray method was found based on the ellipsometer data. A linear 

regression yielded of 0.9874. The standard deposition time of 7 min for the pneumatic 

spray process showed an average thickness of 155.25 ± 11.78 Å, while the average 

thickness calculated for the avidin-biotin bridge method was 183.16 ± 8.54 Å. The 

corresponding mass for the deposited antibody was calculated to be around 9.05 ng/mm2 

for the pneumatic spray slides while the deposited mass for the covalent technique 

avidin-biotin bridge was reported to be between 2.2 ng/mm2 12,21 and 4.74 ng/mm2 15,18. 
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A B 

  
C D 

  
 
Figure 27. Epifluorescent microscopy representative images of slides immobilized by 

pneumatic spray and avidin-biotin bridge. All the slides were treated with 

Rhodamine Red conjugated donkey anti-goat IgG. Pneumatic spray slides (A) had 

immobilized antibody and captured cells in between the pattern rows (B) 

immobilized E. coli O157:H7 on goat anti-E. coli O157:H7 IgG .  Avidin-biotin 

bridge slides (C) no cell detected between rows and (D) immobilized E. coli O157:H7 

on goat anti-E. coli O157:H7 IgG. 
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3.3 Discussion 

Two immobilization methods were investigated in this study. Spray based dry 

physical adsorption was compared against the standard covalent attachment method using 

several quantitative parameters. 

 The stability and durability of the film strongly depends on what happens to the 

adsorbed protein at the surface but there is still no agreement among researchers 

regarding that matter. It appears that most reports can be divided into two groups who 

either claim that physical attachment leads to denatured films or show in contrast that 

physical attachment works well.  Moulin et al., for example, mentions low stability of 

films and the denaturation of the adsorbed protein at the surface21 as a disadvantage for 

the immobilization method of physical adsorption. However, other studies showed that 

adsorption of antibodies onto glass in the monolayer region let the antibody conserve 

their native structure with minor perturbations, 27,28 allowing the antibody to keep its 

specificity and reactivity towards a target. Similarly, Rabbany et al. concluded that 

increasing the density of the immobilized antibody at the surface reduces the apparent 

dissociation rate29 giving more stability to the antibody. 

 

  The results presented here suggest good chemical and biological characteristics 

for the pneumatic spray films. This is supported for example by the retention of the 

capture efficiency even after a long storage period, i.e. the sprayed (physical absorption) 

and the wet-chemical (covalently attached) films have both comparable shelf lifes. 
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Another sign for high stability of the sprayed films is their excellent stability during the 

applied vigorous rinsing process during the film fabrication protocol. 

 

  Another important result demonstrating the viability of the spray method is the 

outcome of a specificity test where the two immobilization techniques were tested on 

different bacteria commonly found in water and food samples30-33 . Both techniques 

yielded substrates that showed no significant cross reactivity. The negative detection for 

the non-E. coli O157:H7 bacteria on all of the slides immobilized by both techniques, and 

the positive detection with the E. coli O157:H7 (used as reference) clearly demonstrate 

that the antibodies do not suffer significant damage through the spray process nor are 

they harmed by the physical adsorption on the glass surface, which intrinsically, is prone 

to non-specific binding to a range of types of bacteria.   

 

  It is interesting to compare the thicknesses of the active films on both sprayed and 

covalent-attachment films.  Ellipsometry measurements on both types of films showed 

that the thickness of both films was similar. However, it must be considered in this 

context that the thickness of the sprayed slides corresponds entirely to sprayed antibody, 

whereas in the case of the covalently attached films, the thickness is a result of the multi-

layer molecular buildup during the covalent attachment process (i.e. silane linker, avidin-

biotin bridge plus the capping antibody layer). This may explain the very close 

performance of both film types despite the principally different attachment strategy. 

While the random orientation of the sprayed antibody likely disables a certain percentage 

of the antibody on the surface, their higher density compensates for this disadvantage. 
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This hypothesis is supported by results presented by Peluso et al. who found that the 

oriented antibody immobilization achieved with the covalent attachment method usually 

results in a collateral decrease of the surface coverage when compared with random 

attachment. 

 

 Another aspect of the presented results is that the sprayed patterns exhibited a 

higher background signal than the wet chemically prepared slides. During the 

standardized evaluation of the measured intensities during the assay this phenomenon 

lead to a lower signal-to-noise ratio for the sprayed films compared to the wet chemically 

prepared ones. The reason for this difference, however is not intrinsic to the spray 

process, it is rather an artifact resulting from the masking technique used in these 

explorative experiments. The mask that was used did not fully conform to the glass 

substrate since it was made from aluminum, which slightly deformed during the 

machining process. This resulted in some degree of penetration of sprayed antibody 

aerosol underneath the masked area. This caused a low-density antibody coating in these 

areas with resultant antigen capture capability during the tests. A solution in future 

experiments will be to employ rubberized masks or similar to prevent this artifact from 

happening. It can be expected that this will completely alleviate this issue, and that 

comparable signal-to-noise ratios to the covalent attachment method will be seen.  

 

  A comparison of the absolute intensities between the sprayed and wet-chemically 

deposited films yielded a slightly higher intensity on the standard covalently attached 

antibody layers. The data shown in Fig. 26 B/E suggests an explanation for this 
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phenomenon. The images in Fig. 26 demonstrate that cells immobilized on sprayed 

substrates are coated by a certain amount of antibody during the assay. This has most 

likely the consequence that a number of bonding locations on their surface are blocked by 

antibody, preventing the reporter antibody used to tag immobilized antigens from 

attaching. This phenomenon appears absent on assays prepared on covalently attached 

films, i.e. more reporter antibody per number of cells can be attached. Hence, the 

observed intensity will be higher. However, at this point this is only a qualitative 

observation and further experiments will need to be performed to quantify this process.   

 

  With regard to capture efficiency the presented data shows that both techniques 

have similar performance. This is most likely the result of a compensatory process 

between antibody orientation and antibody density. The above discussed film thickness 

analysis clearly suggests that the sprayed films have a higher density than the wet-

chemically attached ones. This is not surprising since the spray process is a non-

equilibrium technique, while the covalent attachment in solution is equilibrium 

controlled. In other words the spray technique can load the surface with antibodies 

practically without limit, while the chemical attachment in solution has a maximum 

density that is governed by the rate constants of the participating chemical reactions. 

However, there is a limit with regard to increasing the antibody layer thickness to 

increase the capture efficiency since buried antibodies do not participate in the capture 

process. Separate experiments (not shown here) confirmed this by demonstrating that 

there is a thickness threshold for the spray method after which no further improvement 

can be achieved through thickness increase. 
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  While at a disadvantage with regard to antibody density, the wet-chemically 

prepared films clearly have a higher degree of orientation9. Results by Smyth et al. 26 and 

Xu et al.,35,36 for example support this hypothesis. They showed that random orientation 

reduces the ability of the antibody to react with the antigen due to the impact of steric 

hindrance generated by the arbitrary alignment of the antibodies. In the same vein, Peluso 

et al. found an average increase of 33% in binding activity for specifically oriented 

antibodies when compared with randomly oriented antibodies38 with the same antibody 

density at the surface. However, Spitznagel et al. suggested that despite the favorable 

orientation of the antibody at the surface of covalently attached films, molecular 

crowding can denature the Fab region making it necessary to find an optimal maximal 

coverage, which is not necessarily achieved by the wet-chemical method37. In summary, 

it appears that oriented attachment represents an advantage, but a disadvantage results 

from the need of a covalent attachment scheme that usually does not yield an optimum 

coverage.    

 

   The inhomogeneous morphology of the sprayed films is a result of the spray 

process. The spray head creates an aerosol containing small droplets of antibody solution. 

These droplets decrease in size with the distance traveled from the nebulizer to the 

surface of the glass as the solvent evaporates. This increases the concentration of 

antibody in the droplet. In the extreme, this process can even result in dry antibody 

clusters before they reach the substrate surface.  The films for the presented experiments 

were prepared in a mode where it was ensured that some solvent was still present during 

surface contact to enable some mobility for the antibodies on the surface to smoothen the 
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resulting film. Nonetheless, the random distribution of droplets across the surface clearly 

causes an inhomogeneous coverage formed by overlapping droplet residues. This is 

clearly visible in the Rhodamine Red IgG images shown in Fig.26 where the sprayed film 

yielded a spotty image, while the covalently attached film produced a much more 

homogeneous result. 

 

  The morphology of the sprayed films is important since not only the number of 

available antibodies is crucial for good capture efficiency, but also their microscopic 

environment. This is supported by the results of several groups:  Xu et al. noted that 

having a dense antibody surface reduces the structural unfolding and thereby increases 

the antigen binding capacity39. Kamyshny et al. suggests that the formation of aggregates 

can favor the adsorption at the surface and that an increase in antigen binding activity is 

expected with a denser antibody layer40. Cui et al. developed a layer-by-layer (LBL) film 

composed of avidin-biotin labeled antibody and concluded that as the number of layers of 

ABB increase from one to three, the amount of antigen that can be captured increases as 

well enhancing the binding ability compared with the covalently immobilized monolayer 

antibody15. In light of these results the high density of the antibody films created by the 

spray technique clearly has the potential to increase the stability of antibody films and it 

potentially also results in an increased shelf life. However, further experiments are 

needed to demonstrate these hypotheses. 

 

 



72 
 

3.4 Conclusions 

The immobilization of antibodies on silica surfaces using cross-linkers it is a well-

known method providing stability through a covalent attachment to the surface. However, 

the process is long, tedious and is achieved with the use of several different and 

hazardous chemicals. Protein adsorption as a method of immobilization of antibodies was 

not fully developed before because of the belief that there was a partial denaturation of 

the antibodies in addition to a low attaching force that caused the antibodies  to leach off  

during the process[17]. The results presented in this report suggested that a simple 

method using pneumatic spray can be employed to effectively immobilize antibodies to 

silica surfaces without any prior chemical treatment and give equal or better results than 

the avidin-biotin bridge method. The capture efficiency for both methods were in 

comparable ranges however, intensities for the pneumatic spray were lower because 

mask/surface seal issues. This issue can likely be corrected by using masks with a gasket 

seal.  The specificity test proved that no significant denaturation occurred during the 

spray process leaving the antibody intact and able to bind specifically to the bacteria. The 

shelf life results showed that the thin films were essentially stable over time when stored 

properly. The optimized thickness of the pneumatic spray film is comparable with avidin-

biotin bridge process films. The pneumatic spray film was also able to resist the strong 

rinsing process suggesting that the thin film created by the pneumatic spray technique is 

attached to the surface by an irreversible adsorption. The high reproducibility of the 

spraying method, the good stability and capture efficiency of the film, and the enormous 

reduction in preparation time and material cost makes this new technique a valid, useful 

and efficient way to produce bio-assays for commercial biosensor devices.  
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CHAPTER 4. CHARACTERIZATION OF FULLY FUNCTIONAL SPRAY-ON 

ANTIBODY THIN FILMS 

 
This chapter summarizes the results of the publication “Characterization of fully 

functional spray-on antibody thin films”. Results will be published in a scientific journal 

and can be found in the appendix C. 

 

 4.1 Introduction 
 

The authors’ previous work demonstrated that sprayed antibody films can have a 

similar capture efficiency as films deposited using chemical bonding based avidin-biotin 

bridge films methodology [84]. This result warranted an investigation of the structural 

properties of sprayed films in comparison to covalently bonded ones with the goal to 

better understand the origin of their remarkable performance. Understanding the 

morphological characteristics of the films is especially important as surface properties 

strongly influence the immobilization of biomolecules onto solid surfaces and cell 

adhesion[85, 86]. 

 

Proteins (i.e. antibodies) immobilized on solid surfaces are commonly used for 

analysis and detection of specific target molecules using biosensors[87]. The IgG 

antibody is an immunoglobulin protein that has been widely used as a capture agent for 

detection of pathogens with sensor devices[88]. The immobilization method used to 

attach proteins to solid surfaces can vary with the type of analysis performed. There are 



74 
 

two principal approaches to these immobilization techniques: covalent boding and 

physical adsorption (Figure 28). The immobilization technique applied to the substrate as 

well as chemical and mechanical characteristics of the film (i.e. hydrophobic/hydrophilic, 

roughness, surface density) directly influence the morphology of the resulting surface and 

structural stability of the films. 

  

Covalent bonding (i.e. avidin-biotin bridge) is the most widely used method, 

where chemical reactions attach the biomolecule via chemical bonds. This method is an 

equilibrium controlled process that limits the amount of molecules deposited on the 

surface. In the case of antibodies this can produce a film with a high degree of oriented 

molecules, high levels of coverage and a homogeneous surface resulting in chemical and 

mechanical stability[12, 89]. Physisorption on the other hand uses physical interaction 

(i.e. no chemical bonding occurs) to immobilize biomolecules to the solid surface. The 

pneumatic spray adsorption process is a non-equilibrium physisorption technique that can 

load the surface with a tunable antibody density. However this type of immobilization 

produces a randomly oriented antibody surface. Random orientation is often cited as the 

main reason for the poor mechanical stability and protein denaturation (chemical and 

biological alteration) in physisorbed films[1, 90].  In difference to incubation (covalent 

bond) based immobilization techniques, spray deposition offers a variety parameters that 

can be controlled for the optimization of film thickness and morphology. Ambient 

temperature, flow rate, emitter-to-substrate distance and carrier gas pressure can be 

varied to control the solvent content at the substrate and the spray coverage area while 

adjustments of the deposition time allows for the control of the surface density. 
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 This chapter aims to identify and establish the influence of morphological and 

chemical characteristics of the pneumatically sprayed films on the overall performance 

and capture efficiency. Sandwich immunoassay, fluorescent microscopy and ellipsometry 

were used to determine the influence of the thickness of the pneumatic spray films on 

capture efficiency[91, 92]. The chemical and mechanical stability of  the deposited films 

were studied by ellipsometry, UV-Vis spectrometry and ATR-FTIR [93, 94],[95, 96]. 

Surface wettability, coverage and a possible film-growth method for the pneumatic spray 

films were studied by contact angle, atomic force microscopy and XPS[97, 98],[99, 

100],[101, 102]. 

 

 
Figure 28. Pneumatic spray set-up for deposition of antibody onto glass slides. The 

nebulizer used was model DS-5.  
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4.2 Results 

 

4.2.1 Ellipsometry, UV-Vis spectroscopy and ATR-FTIR 
 

The thicknesses, mechanical and chemical stability of the pneumatically sprayed 

films were analyzed by ellipsometry, UV-Vis and infra-red spectroscopy. The 

ellipsometry data showed a linear relationship between the thickness of the film made by 

pneumatic spray and the deposition time with a linear regression of 0.9935. The average 

thickness determined for the avidin-biotin bridge technique was 183.16 ± 8.54 Å. After a 

minimum deposition time of 2 min, the pneumatic spray films had a similar cell capture 

performance as the avidin-biotin samples. A 2 min deposition corresponds to an average 

thickness of 55.62 ± 4.35 Å. The corresponding antibody surface density was calculated 

to be approximately 9.05 ng/mm2, which is close to double the amount reported for the 

avidin-biotin bridge technique (4.74 ng/mm2 )[54]. The calculations were based a 

deposited diameter of 15 mm. The results shown in Figure 29 show that only about 5% or 

less of the antibody film was lost during the rinsing process.  

 

The greatest percentage loss occurred on the 7 minute deposition sample. No 

protein was detected in the wash solutions by UV-Vis spectroscopy.  This may be due to 

the fact that the diluted antibody solution had a concentration that was below the effective 

detection limit of the instrument. The 7-minute deposition had a total deposited antibody 

amount of 5.6 µg with a maximum antibody loss of approximately maximum of 5%. 

According to these results 0.28 µg was removed in the wash solution. The volume of the 

wash solution was 3 mL resulting in a concentration of 0.093 µg/mL an amount that is 

below the detection limit of the calibration curve (0.1 µg/mL). A different analytical 
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technique may have to be used in the future to better assess the amount of antibody 

concentration in the wash solution. 

Figure 29. Film thickness change after rinsing process. Different deposition times of 

goat-E. coli O157:H7 antibody films by pneumatic spray followed by rinsing using 

PBS. Thickness determined by ellipsometry before and after rinsing. 

 

ATR-FTIR spectra analysis was performed on pneumatically sprayed antibody 

films with varying deposition times of 60, 50, 40, 30, 20, 14, 10, 7, 4, and 2 minutes.  The 

region shown in Figure 30 displays the infra-red absorbance between the wavelengths of 

1540 and 1720 cm-1. The amide I band has wavelengths in the range between 1600 and 

1700 cm-1 [94]. The amide I peak position (average 1640.66 ± 0.51 cm-1) did not change 

with the increased deposition time. The baseline spectra obtained from the bulk antibody 
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solution showed the amide I band at 1639.5 cm-1. This is very close to the peak observed 

with the pneumatic spray films, suggesting that the deposited antibodies are still intact. 

 

 

Figure 30. ATR-FTIR spectra of  goat-E.coli O157:H7 antibody  pneumatically 

sprayed at different deposition times. The deposition times are 

(2,7,10,14,20,30,40,50,60 min) from bottom to top in the same order. Amine band I 

vibration at 1640.66 ± 0.51 cm
-1

 average. 

 
 
 

Amine band I 
Average 1640.66 ± 0.51 cm-1 

60 min 

2 min 
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 4.2.2  AFM, XPS and contact angle measurements 

The surface morphology of the antibody films was studied by atomic force 

microscopy (AFM), the confirmation of the antibody deposited material performed by X-

ray photoemission spectroscopy (XPS) while surface wettability was studied by contact 

angle measurements. 

 

The AFM images in Figure 31 show the surface morphology for representative 

pneumatic spray and avidin-biotin films at 1 and 50 µm2 scan sizes. The pneumatic spray 

film was deposited for 7 minutes (image a) whose appearance is similar to the avidin-

biotin film (image c) when the scanned surface was 1 µm2. Images of same samples but 

at different scan size (50 µm2) can be seeing in (b) pneumatic spray and (d) avidin-biotin 

which showed particle formations. The images suggested that the avidin-biotin bridge 

slides have a similar roughness Rq (root mean square average) like the pneumatic spray 

films when the scan was 1 µm2 size. The wet chemistry films show residues with an 

average diameter of 3 to 5µm; therefore, the small area scanned was performed in area 

where those formations were not present. To reveal the morphology of the flat areas, a 

large area scans were performed over 50µm2. Areas of the films of the avidin-biotin 

bridge showed a higher roughness (Figure 31b) in comparison to the pneumatic spray 

film.  
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Figure 31. AFM images of pneumatic spray film and avidin-biotin bridge film. (a, b) 

Pneumatic spray film at 7 minutes deposition time, (a)1 µm scan size, Rq= 1.379±0.2 

nm and (b) 50 µm scan size, Rq= 3.318±0.6 nm (c, d) ABB film, (c) 1 µm scan size, 

Rq= 2.657±0.4 nm and (d) 50 µm scan size, Rq= roughness root mean square 

average. 

 
The optical images of representative pneumatic spray films and avidin-biotin 

bridge films. These features clearly show that aggregates form in the avidin-biotin bridge 

films appeared after the addition of the avidin to the intermediate layer. However, no 

aggregates formation was observed on the corresponded pneumatic spray samples ( 

Figure 32). The corresponding AFM data confirms these observations (see figure 

31 d) 
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Figure 32. Optical image of deposited goat-anti E. coli O157:H7 on glass slide using 

two deposition techniques. (a) Pneumatic spray deposition technique, smooth film 

with not visible patterns at the surface. (b) ABB deposition technique, particle 

formation at the surface.  

 

The avidin-biotin deposition process was divided in 5 stages with the goal to 

identify at what step of the avidin-biotin bridge process the aggregates starting to form. 

Each of the stages represented a set of steps that are associated with a main reaction step. 

The first stage is the cleaning of the surface with (KOH), the second stage is the 

silanization of the surface, the third stage is the cross-linking of the surface, the fourth 

stage is the addition of the protein (avidin), and the final stage is the addition of the 

antibody to the surface. The results of the contact angle analysis (Figure 333) of samples 

after each of the stages show that the surface transitioned from hydrophilic for the 

cleaned surface ( 11.35º ± 3.62) to hydrophobic after the silanization and cross-linker 

stages (70.88º±5.81 and 67.38º±2.98). When the avidin was added the hydrophobicity 

a b 
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was reduced again to 45.81º±4.46 and finally hydrophilicity (10.53º±1.13) returned after 

the final step of adding the antibodies. 

Figure 33.  Optical images and contact angle analysis of each stage of the avidin-

biotin bridge process. 

 

The analysis of the surface composition using X-ray photoemission spectroscopy 

(XPS) confirmed and quantified the presence of antibody on the surface for both 

deposition techniques. In these experiments key element emissions are used as indicators 

for antibody immobilization. The broad C1s spectrum (Figure 34) is composed of three 

main peaks that are related to functional molecular groups. The three components can be 

identified as C-C  bond related (first peak at lower binding energy), C-N bond related 
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(center peak) and R-C=O bond related (peak at the highest binding energy)[99, 100, 103-

106].  

 

Figure 34. Deconvolution of XPS spectra C1s of pneumatic spray deposition of  

goat-anti E. coli O157:H7 antibody.  

 
The peak related to the C-N as well as the N1s showed an increase in intensity 

from the one minute deposition (PS) to the 7 minute and then remained constant for the 

10 and 14 minute deposition. The  neutravidin-antibody (ABB film) showed an intensity 

increase of 43% relative to a film only coated with Neutravidin, which confirm the 

presence of antibody (Figure 35). The N1s emissions can be fitted to one component at 

400 eV, which is typical for the amide nitrogen atom in the HN-C=O bonding 

configuration in the peptide bonds[107]. The offsets to higher binding energy observed 

on all XPS spectra for the PS films were due to charge building-up in the poorly 

conductive films. 
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Figure 35. XPS analysis of N1s of pneumatic spray deposition of  goat-anti E. coli 

O157:H7 antibody at different deposition times. Avidin (no antibody attached), 

avidin-biotin bridge film (ABB). 

 
Figure 36 shows a graph relating contact angle to film thickness. It is obvious that 

the contact angle remained constant after one minute of deposition. The contact angle 

measurement reached at 1 minute was 60 ± 1.1. In comparison the contact angle 

measured on avidin-biotin bridge film was 12 ± 2.7.  
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Figure 36. Contact angle measurements of pneumatic spray of goat-E.coli O157:H7 

antibody films on glass slides using different deposition times. Error bars on the 

graphics represent the standard deviations of replicates. 

 

4.2.3 Capture cell performance and fluorescent microscopy 

 
 Fluorescent microscopy was used to characterize the lateral distribution and 

localization of the analyte immobilization. In these experiments a set of pneumatic spray 

and avidin-biotin bridge samples was incubated with a solution of E. coli O157:H7 then 

the captured cell counted for each deposited film. Table 1 shows the concentration per 

area of the captured cells. The data suggested that the deposition time has no statistically 

significant influence on the capture density (P > 0.05; Dunn’s multiple comparisons test),  
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Table 1. Assays on sprayed slides to determine the relationship of deposition time 

and capture cell counts. Captured E. coli O157:H7 cell counts on glass slides 

pneumatically sprayed with goat anti- E.coli O157:H7 IgG at different deposition 

times. 

 
Deposition 

Time 

(minutes) 

Total cell 

captured average 

 

Concentration 

(cells/mm
2
) 

0.25 482 565.06 ± 12.62 
0.50 326 382.18 ± 12.64 
0.75 704 825.32 ± 13.22 

1 461 540.44 ± 8.87 
2 693 812.42 ± 15.79 
4 532 623.68 ± 12.91 
7 538 630.71 ± 17.78 
10 606 710.43 ± 16.74 
14 556 651.81 ± 9.79 

The counts were performed in 3 slides per deposition time and in 3 different areas per 
slide (9 data per deposition time). 
 

 

Figure 37 shows fluorescent microscopy images of representative pneumatic 

spray and avidin-biotin bridge samples. Image A show the deposition pattern of 

pneumatic spray droplets after reaching the surface and evaporating. The circular pattern 

left by each droplet impacting the surface indicates that the antibody is located mainly at 

the edge of the droplets. The same image also revealed cluster formation throughout the 

imaged surface as shown in Figure 37. The aggregates grew to up to 10 µm diameter over 

the different deposition times. The bacteria (green color) E. coli O157:H7 was 

immobilized on anti E. coli O157:H7 antibody (red color) with no clear pattern towards 

any specific area of the slide.  
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Figure 37. Fluorescence microscopy. (A) Image of pneumatic sprayed film (B) 

Avidin biotin bridge film. Images of immobilized GFP transformed  E. coli O157:H7 

(green particles) immobilized on a goat anti E. coli O157:H with Rhodamine red 

donkey anti-goat IgG.  

 

4.3. Discussion 
 

In the described experiments the surface morphology of representative pneumatic 

spray and avidin-biotin bridge samples were analyzed to gain understanding of the 

chemical and physical properties. The influence of the deposition technique used to 

immobilize antibodies on glass not only affects the stability of the film, but also the 

morphological properties of the surface like roughness, cluster formation and wettability. 

Furthermore, each step of the deposition technique influences the final surface structure 

and the overall capture cell performance. 

 

A B 
Aggregates 
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  4.3.1 Surface morphology, physical characteristics and capture activity 
 

Physical adsorption of the antibodies was achieved via pneumatic spray which is a 

non-equilibrium deposition technique. The evaporation of the solvent from the droplet 

during the spray process increases with the distance from the tip of the nebulizer. Hence, 

the solute (i.e. antibody) concentration increases within the drop, which can potentially 

lead the antibody to form clusters prior to reaching the surface. However, the droplets are 

not completely free of solvent before reaching the surface, which allows the antibody to 

retain some mobility upon initial contact with the substrate. The fluorescence microscopy 

images confirm that the antibodies are still mobile by showing accumulation of IgG on 

ring-like formations throughout the films[108, 109] suggesting the evaporation of 

droplets after hitting the surface. As the deposition time increases, incoming droplets 

deposit on the top of previously deposited incompletely evaporated droplets at the 

surface, creating a new arrangement of the antibodies via surface diffusion processes. 

 

The formation of aggregates or clusters at the surface via spray deposition is an 

unavoidable result of antibody-antibody interaction. The high concentration of antibodies 

in the drop before it deposits on the surface and the mobility after contact with the surface 

are the main factors influencing the morphology. The aggregates can be seen in the 

representative pneumatic spray and avidin-biotin films (Figure 37), which are randomly 

distributed through the entire covered surface[110]. Schramm et al. suggested that 

antibodies form aggregates or clusters regardless of the immobilization method and that 

formation is mainly caused by the properties of the antibody and not by the surface 

properties[111]. Large aggregate formations are visible after the 2 minute deposition in 
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the pneumatic spray films and these aggregates increase in diameter due to the 

rearrangement of antibodies at the surface. In comparison, the fluorescent microscopy 

images of the avidin-biotin bridge slides also showed aggregate formation at the surface. 

Optical microscopy images do not show the presence of aggregates on the pneumatic 

spray slides, but were clearly seen for the avidin-biotin bridge, result that can be explain 

by the low resolution of the optical microscope (both deposition techniques form 

aggregates). Further investigation of the avidin-biotin films (Figure 33) showed that the 

big particle formation was due to avidin aggregation before the biotinylated antibody was 

added to the surface and increase in size after the antibody is attached.  Temur et al. 

suggested that the avidin protein forms clusters when immobilized at a solid surface[97] 

supporting the results found in this research. The surface roughness obtained from AFM 

of both sprayed and covalently immobilized antibody films showed that the avidin-biotin 

bridge deposited surface is magnitudes rougher than the sprayed surfaces, potentially 

affecting the wettability (contact angle) and the cell capture performance. Roughness and 

contact angle have been reported to have an inverse correlation[112, 113]. Data showed 

an avidin-biotin bridge surface with a roughness more than 30 times greater than 

pneumatic spray surface. Hence, the avidin-biotin bridge film showed a more hydrophilic 

surface and therefore a lower contact angle. 

 

  The results obtained from the assay of different deposition times against capture 

activity of the pneumatic spray films suggested that the cell capture ability of the films 

does not change noticeably with deposition time. In addition, the data showed that after 2 

minutes deposition time the amount of antibody necessary to capture bacteria reach a 
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maximum, and no further cell capture improvements can be achieved with longer 

deposition times. Those results indicate that only the outer surface antibody layer 

participates in the capture process and that the antibodies in the inner layers can be 

regarded insignificant for capture purposes.  

 

Fluorescent microscopy images were analyzed to determine the influence of the 

aggregates on the capture activity. Another focus was to see whether any patterns or 

trends in the immobilization of the bacteria would be influenced by the type of deposition 

method used. Pneumatically sprayed and avidin-biotin bridge slides (Figure 37) showed 

that the bacteria were immobilized randomly across the surface suggesting that the 

aggregates do not have a major influence in the cell capture ability of the films. This also 

suggests that despite the rough appearance, the entire surface is evenly coated with a 

homogeneous antibody surface. The low immobilization of bacteria on the aggregates can 

be attributed to steric hindrance produced by the crowding of antibodies, which can block 

some binding sites of the antibody, thereby decreasing the chances to interact with the 

antigen[114, 115].  

 

The wettability of the surface (hydrophobic/hydrophilic interactions) depends on 

factors such as heterogeneity, density and composition of the surface[81]. The contact 

angle method was used to analyze the wettability of the surfaces of both immobilization 

methods. A set of antibody films at different deposition times was used to determine the 

influence of the amount of antibody at the surface on the wettability of the film. The 

contact angle of an avidin-biotin bridge slide and a glass slide were used as references for 
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comparison with the pneumatic spray samples. The data show that the contact angle of 

the pneumatic spray slides increased with deposition time. This indicates that the amount 

of the antibody changes the surface tension of the film. After one minute of deposition, 

the film reached the highest contact angle value making the film more hydrophobic than 

the avidin-biotin bridge film. Date show that when the pneumatic spray films reach a 

critical surface coverage point (in this case 1 minute) the contact angle reaches a plateau 

from 59.58 ± 2.79 to 63.39± 3.21 and no further increase in hydrophobicity was achieved 

by increasing the deposition time. On the other hand, the avidin-biotin bridge reference 

slide showed a contact angle similar to clean glass despite the fact that the sample was 

antibody covered.  

 

These observations may be related to the orientation of the antibody at the surface 

and their surface density. Antibodies have two main regions (fragments) where one is 

more hydrophobic than the other (the Fc region is more hydrophobic than the Fab 

region[116]).  Depending on the orientation of the molecule the fragment either can be 

preferentially exposed. The combination of randomly oriented antibodies at the surface of 

the sprayed films (which increased the amount of exposed Fc regions) and the higher 

surface density (which reduced the liquid penetration) resulted in hydrophobicity increase 

of the films[117].  

 

4.3.2 Chemical and mechanical properties 
 

The chemical and mechanical stability of the sprayed films are important factors 

to be analyzed to further understand the similar capture cell characteristics when 
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compared with the avidin-biotin bridge method. Chemical stability refers to the ability of 

the antibody to retain its chemical structure (protein secondary structure) unaltered. For 

the antibody to keep its biological activity and selectivity its secondary structure must be 

preserved during the immobilization process. The sprayed films were analyzed by ATR-

FTIR (amide I region) which can detect any conformational changes via band shift [19, 

20, 118, 119]. The results show that over the entire range of deposition times the amide I 

region vibration did not change significantly. This shows that the pneumatic spray 

procedure does not lead to denaturation of the physisorbed antibodies.   

 

The mechanical stability summarizes the capacity of the film to keep its physical 

structure during rinsing and other mechanical stresses. The mechanical stability of the 

film was studied by determining the amount of antibody lost during rinsing process with 

UV-Vis spectrometry and ellipsometry. No protein was identified in the rinsing solution 

using the UV-Vis spectrometer and a low loss of antibody was detected by ellipsometry 

measurements (approximately 5% of the amount deposited on the surface). These results 

suggest that the films created by the spray have significant mechanical stability. Baszkin 

et al. mentioned in his study that after rinsing adsorbed IgG on polyethylene with buffer 

solution, the film showed minimal loss from the substrate due to attractive interaction 

with the surface[120], which is in accordance with the results obtained in our study. 

Another factor that plays an important role in the mechanical stability of the films is the 

amount of material immobilized. The surface densities calculated for the sprayed films 

were almost double of the value for the avidin-biotin bridge[2]. Consequently, the high 

surface density calculated for the sprayed antibody film and the cluster or aggregate 
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formation at the surface (which are more difficult to be removed from the surface as they 

increase in size[121]) can also be factors that influence the mechanical stability of the 

pneumatic spray films.  

 

  4.3.3 Film thickness and growth 

 
The thickness of the pneumatically sprayed films was studied to understand the 

thin film growth mechanism in comparison with avidin-biotin bridge based films. The 

smallest thickness measured in the experiment was obtained at the 2 minute deposition 

time (55.62 ± 4.3 Å). In comparison the dimensions of an IgG molecule is approximately 

85 Å x 145 Å x 40 Å[122-124]. This suggests that the deposited films consist of a 

mixture of antibodies in flat-on (the largest surface lying flat on the substrate) and tilted 

orientation (with any of the three antibody fragments tilted opposite to the surface) as was 

suggested by Xu et al. for antibodies adsorbed on silicon[125]. The thickness of the 

avidin-biotin bridge film which has oriented antibodies[14] was calculated to be 183.16 ± 

8.5 Å. This value includes the cross-linkers layer plus the antibody. In comparison the 

pneumatic spray film thickness is purely related to the deposition of antibodies. The 

thickness of the films increases proportionally with the deposition time, suggesting that 

the pneumatic spray builds a multilayer film that grows uniformly with time.  As a result 

the pneumatic spray can create a denser antibody film. This most likely compensates for 

the lack of antibody orientation via a large number of antibodies available at the surface 

resulting in comparable capture ability to the avidin-biotin bridge films. Vijayendran et 

al. tested 5 different immobilization techniques and found that randomly oriented 

antibodies have a surface density that is greater than achieved by techniques that produce 
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oriented attachment while showing comparable specific activity[126], which is in 

agreement with the results presented in this document. 

 

The X-ray photoemission spectroscopy (XPS) method was used to confirm the 

presence of immobilized antibodies at the surface, and to elucidate the film growth mode 

for the pneumatic spray slides. The detection of the N1s peak in the pneumatic spray 

films and (increment of N1s peak) for the avidin-biotin bridge verify and quantify the 

presence of antibodies in both immobilization techniques. On the avidin-biotin based 

slides the N1s emission were present before the immobilization of the antibody due to the 

nitrogen content in the cross linker and the avidin protein. For the pneumatic spray films, 

the direct correlation in surface coverage with the deposition time was confirmed by the 

attenuation of the Si 2p emission from the substrate relative to the increase of the 

antibody-related N1s emission. The N1s peak intensity became constant after 7 minutes 

deposition time. That suggest that at this point thickness of the film after 7 minutes 

deposition time is larger than the scape depth of 70-150 Å [127] of the photoelectrons. 

Based on the XPS data can be reasoned that the pneumatic spray films grow as flat 

layers. This conclusion is supported by the ellipsometry and ATR-FTIR data, which 

measured similar film grow thickness.   
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4.4 Conclusions 
 
            The results of the surface characterization of the spray deposited antibody films 

suggests that the high capture activity of the films is related to the higher surface density 

of the antibodies that can be achieved in comparison with conventional avidin-biotin 

antibody films. This likely compensates for the random orientation of the antibodies in 

the sprayed samples. The mechanical stability of the films is also on par with the avidin-

biotin prepared films. The films are able to withstand mechanical stresses with minimal 

loss of material. The pneumatic spray deposition technique is a non-equilibrium process, 

which allows loading the surface with as much antibody as desired. The higher 

hydrophobicity characteristic of the pneumatic spray film can be explained by their 

randomly oriented antibody, high surface density (thus low liquid penetration) and the 

low surface roughness.  The hydrophobicity of the spray film is possibly aiding factor in 

the capture cell performance of the pneumatic sprayed films due to the trend of bacteria 

to attach to the more hydrophobic surfaces. 

 

The antibody surface thickness has no mayor effect in the capture cell ability for 

the pneumatic spray films since only the outer layer is involved in the capturing process. 

In summary, the presented results show that pneumatic spray films have chemical and 

mechanical functional properties comparable to avidin-biotin based films, which make 

the technique a good alternative for immobilizing antibodies on solid surfaces. 
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