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Background

Bioethanol, biomethanol, biodiesel, etc. known as biofuels are an alternative energy 

source that will likely become more prevalent in the future (Nigam and Singh 2011). In 

the past, bioethanol has been made from plants that produced high amounts of natu-

ral sugar—such as sugar cane or corn. Unfortunately, the increased demand for these 

products increases the competition and therefore the price of food products from these 

sources. Cellulose is one of the most abundant polysaccharide in the nature. Its sources 

include agricultural and forestry residues, portion of municipal solid waste, and herba-

ceous and woody crops (Lynd et al. 1991). Bioethanol from cellulose, is therefore a very 

promising avenue of biofuel as it does not compete with food products (Kemppainen 

and Shonnard 2005; Sticklen 2008). Producing ethanol from cellulose usually contains 

two steps. First, the hydrolysis of cellulose to glucose; and second, its fermentation to 

ethanol. Although the first process can be performed by either chemical or enzymatic 

process, the later one is preferred because it is cleaner and the process can be controlled 

by adjusting the reaction conditions easily (such as pH, temperature, etc.) (Mabee and 

Saddler 2010).

Abstract 

Cellulase was immobilized onto silica gel surfaces pretreated with (3-aminopropyl) 

triethoxy-silane (3-APTES), and glutaraldehyde (GA) was used as a cross-linker. A 

carboxymethyl cellulose sodium salt (CMC) solution was used for activity experiments. 

Protein assay was performed to determine the mass immobilized and compare with 

free enzyme. Cellulase was successfully demonstrated to be immobilized on the modi-

fied silica gel surface, and no detectable amount of enzyme was stripped off during 

the hydrolysis of the CMC solution. The specific activity of the immobilized cellulase is 

7 ± 2 % compared to the similar amount of free cellulase. Significant activity over mul-

tiple reuses was observed. The seventh batch achieved 82 % activity of the initial batch, 

and the fifteenth batch retained 31 %. It was observed that the immobilized cellulase 

retained 48 % of its initial activity after 4 days, and 22 % even after 14 days.
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Cellulase refers to a class of enzymes which can catalyze the hydrolysis of cellulose to 

glucose. It is usually composed of three enzymes: endoglucanase (EC 3.2.1.4), cellobio-

hydrolase (EC 3.2.1.91) and cellobiase (EC 3.2.1.21) (Percival Zhang et al. 2006). Endo-

glucanase and cellobiohydrolase are responsible for decreasing degree of polymerization 

of cellulose to produce cellobiose, which are further hydrolyzed to glucose by cellobiase 

(Ortega et al. 2001). Unfortunately, difficulty of separation and recovery of free cellulase 

from the solution after the hydrolysis process limits the reusability of the enzyme which 

highly precludes the scales of this application because of the high cost of the enzyme 

(Cerveró et al. 2010). Enzyme immobilization is one effective way, which allow enzyme 

to reuse, and therefore, reduce the cost of bioethanol production (Sheldon 2007).

�e immobilization methods and immobilized carriers are two important factors 

that significantly influence the properties of biocatalysts. Generally, the immobilization 

methods can be classified into physical adsorption and covalent binding (Chibata 1978). 

Physical adsorption is one of the earliest immobilization methods reported in the litera-

ture, which can be further categorized into adsorption (by electrical binding, hydrogen 

binding, and hydrophobic adsorption), entrapment (inside polymer matrix) (Cass and 

Ligler 1999). It is still widely used, due to its simple and economical process, and limited 

loss of enzymatic activity (Zhang et al. 2015). �e major advantage of physical adsorp-

tion is high retention of enzymatic activity. Zhang et al. (2015). demonstrated that cel-

lulase immobilized on modified Fe3O4 magnetic nanosphere by electrostatic binding can 

retain 87 % native activity. Mubarak et al. (2014) reported that the specific activity of the 

immobilized cellulase on functionalized multiwall carbon nanotubes by hydrogen bind-

ing was even higher than that of free cellulase. �is high retention of immobilized cellu-

lase is reportedly due to the weak interaction between carriers and cellulase molecules, 

which minimize the change of conformational structure and active center of cellulase 

molecules (Cass and Ligler 1999). However, this weak interaction also causes enzyme 

desorption and poor reusability of immobilized cellulase, which are the major disadvan-

tages of physical adsorption (Cass and Ligler 1999). Mishra and Sardar (2015) reported 

that, with 30 min incubation in CMC for each cycle, the immobilized cellulase on nano-

silver and gold can be reused 6 times with 73–78 % initial activity retained. �e retained 

activities of the immobilized cellulase on functionalized multiwall carbon nanotubes by 

Mubarak et al. (2014) were 52 % for the 6th recycle and 26 % for the 8th recycle. �e 

majority of literature for physical absorption immobilization of enzymes do not report 

reusability (Takimoto et  al. 2008; Chang et  al. 2011; Hartono et  al. 2010; Zhang et  al. 

2015; Tebeka et al. 2009; Safari Sinegani et al. 2005).

Covalent bonding is the second main method of enzyme immobilization. �e main 

drawback of this method is major loss of immobilized enzyme activity, due to the sta-

ble nature of the covalent bounds between the carriers and the cellulase molecules. �e 

decrease in activity is likely due to changes in the conformational structure of cellulase 

molecules and decrease in the degree of movement of the cellulase molecules (Cass and 

Ligler 1999). �e typical specific activity of immobilized cellulase by covalent binding is 

below 52 % (Li et al. 2007, 2013; Wang et al. 2015). However, the stable covalent binding 

also leads to very high reusability of immobilized cellulase (Wang et al. 2015; Li et al. 

2013; Qi et al. 2015; Zang et al. 2014). �is major advantage make covalent binding very 

promising in industrial applications.
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Selection of immobilized carriers plays an important role in enzyme immobiliza-

tion. Preferred characteristics of an enzyme carrier include chemical stability, physical 

strength, and cost effectiveness (Brena and Batista-Viera 2006). Researchers applied 

many kinds of materials as carriers for immobilization of cellulase, such as nano-silver 

and gold particle (Mishra and Sardar 2015), functionalized multiwall carbon nanotubes 

(Mubarak et al. 2014), copolymers (Tata et al. 2015), silicate clay minerals (Safari Sin-

egani et al. 2005), modified Chitosan Beads (Dinçer and Telefoncu 2007), modified acti-

vated carbon (Anuradha Jabasingh and Valli Nachiyar 2011). Recently, Fe3O4 magnetic 

nanoparticle have been paid much attention by researchers for immobilization of cel-

lulase, due to its easy separation from the hydrolysis solution when applying magnetic 

field (Xu et al. 2011; Zhang et al. 2015; Li et al. 2013; Qi et al. 2015; Zang et al. 2014). 

Unfortunately, the preferred pH condition for immobilized cellulase is slightly acidic 

(5) dissolving the Fe3O4 back to Fe2+ and Fe3+. Also, the aggregation of Fe3O4 magnetic 

nanoparticle was commonly found in research, which decreases the mass transfer rate 

in solution (Zang et al. 2014, 2015). Silica gel has been widely used in immobilization of 

enzymes (Han et al. 2005; Díaz and Balkus 1996; Yiu et al. 2001; Yiu and Wright 2005; 

Lei et al. 2006; Qiao et al. 2005, 2006; Budi Hartono et al. 2009). Its advantages of low 

cost, chemical stable in acid environment, good dispersion in solution and large surface 

area make it more favorable than Fe3O4 magnetic nanoparticle for immobilization of cel-

lulase. Physical adsorption has been applied for immobilization of cellulase on silica gel 

(Takimoto et al. 2008; Chang et al. 2011; Hartono et al. 2010; Dragomirescu et al. 2012; 

Ungurean et al. 2013). �is immobilization technique utilizes the porous property of sil-

ica gel, and entraps cellulase molecules into pores. Takimoto et al. (2008) varied the pore 

size of silica gel to achieve to highest specific activity of the immobilized cellulase. Har-

tono et al. (2010) modified silica gel with different kinds of organosilanes to increase the 

electrical charge of the surface or the hydrophobic affinity of the surface, and therefore 

increase the immobilized cellulase loading and activity. Others like Dragomirescu et al. 

(2012) and Ungurean et al. (2013) entrapped the cellulase molecules into sol–gel matrix. 

However, because of the weak carrier-molecule interaction, which is the inherent defect 

of physical adsorption, reusability of the immobilized cellulase was rarely reported.

�e application of covalent bonding enzyme immobilization with a silica gel car-

rier provides an opportunity of significantly improving the reusability of a carrier that 

is low cost, a density closer to the slurry mixture and high surface area. Hartono et al. 

(2010) modified silica gel with 3-APTES to form amino group terminated surface for 

immobilization of cellulose. Amide bonds were formed between carboxylic acid func-

tional groups of cellulase molecules and amino group terminated surface. However, the 

carboxylic acid functional groups come from the aspartic and glutamate acid residues 

from cellulase are the active sites responsible for hydrolysis of cellulose. Huge loss of 

the specific activity of immobilized cellulase were observed by Hartono’s (2010) group.

�erefore, a new immobilization scheme applying the covalent binding need to avoid 

the active sites of cellulase. Glutaraldehyde was widely used as a crosslinker for immo-

bilization of enzymes (Sheldon 2011). It aims the α-amino groups of cellulase, which are 

not the active sites for hydrolysis of cellulose (Tata et al. 2015). Few paper has reported 

on immobilization of cellulase on silica gel by covalent binding with glutaraldehyde as a 

crosslinker. In this present work, silica gel with active primary amino group was formed 
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after pretreatment of 3-APTES (Hartono et al. 2010; Alahakoon et al. 2012). Glutaral-

dehyde was used as a crosslinker for changing the binding functional group of cellulase. 

It also acts as a spacer molecule between the carriers and the enzyme to prevent the 

steric constraints (Tata et al. 2015). Because the final goal of cellulase immobilization is 

to recycle the enzyme to reduce the cost, reusability is the key factor for immobilization. 

However, most of the prior studies investigate and optimize the hydrolysis conditions 

(such as pH, temperature) using immobilized cellulase to achieve the highest enzymatic 

activity. In this paper, the reusability behavior under different hydrolysis conditions was 

studied. It was found that the reusability of the immobilized cellulase was low at the con-

dition in which the highest activity was reached. �erefore, the optimal working condi-

tion was balanced between the enzymatic activity and the reusability of the immobilized 

cellulase. Also, enzyme desorption from the carriers while hydrolysis of substrates was 

observed from many enzyme immobilization, and it is one of the reasons that the activ-

ity of immobilized enzyme decreases according to cycles (Mubarak et al. 2014). With the 

strong carrier-molecule covalent binding and the entrapment effect caused by pores of 

silica gel, it is successfully demonstrated that no cellulase desorption during the hydroly-

sis of cellulose using the immobilized cellulase on modified silica gel.

Results and discussion

Nitrogen adsorption analysis and enzyme loading of modi�ed silica gel

Nitrogen adsorption/desorption analysis was used to characterize the porous structure 

of immobilization carrier. Figure 1 shows the nitrogen adsorption/desorption isotherms 

for silica gel, 3-APTES modified silica gel, and glutaraldehyde crosslinked 3-APTES 

modified silica gel. According to IUPAC classification, they can be classified as type 

IV isotherms with H2 hysteresis loops, which are characteristic of mesoporous materi-

als with a cage-like structure (Matos et al. 2003). Figure 2 shows the pore size distribu-

tions which are calculated from nitrogen desorption branch by Barrett–Joyner–Halenda 

Fig. 1 Nitrogen adsorption/desorption isotherms of silica gel, 3-APTES modified silica gel, and glutaralde-

hyde crosslinked 3-APTES modified silica gel
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(BJH) method. It can be seen that the pore size of silica gel decreases from 10.6–16.2 to 

7.7–10.6 nm after 3-APTES and glutaraldehyde pretreatment. Table 1 shows the sum-

mary of pore volume and surface area. �e pore volume of pretreated silica gel was 

0.6 cm3/g, calculated by BJH method. �e (Brunauer–Emmett–Teller) BET surface area 

of pretreated silica gel was 175.5  m2/g. �e immobilized cellulase on glutaraldehyde 

crosslinked 3-APTES modified silica gel was 18.8 mg protein (cellulase)/g silica gel.

Characterization of immobilized cellulase

�e Fourier Transform Infrared (FTIR) spectra of silica gel, 3-APTES modified sil-

ica gel, 3-APTES modified glutaraldehyde crosslinked silica gel, and cellulase immo-

bilized silica gel are given in Fig.  3. For silica gel, the Si–O–Si asymmetric stretching 

vibration at 1000–1250  cm−1, OH bending vibration at 800  cm−1 appeared (Vansant 

et  al. 1995; Michau and Barboiu 2009). After 3-APTES modification, a new band at 

2917 cm−1 represented C-H stretching vibration (Vansant et al. 1995). �e new peaks 

at 1563 and 1489  cm−1 were attributed to the formation of an aminebicarbonate salt 

[–NH3
+(HCO3)−], which was because of drying 3-APTES modified silica gel in room 

environment (Vansant et al. 1995). �e new peak at 1644 cm−1 appeared after glutaral-

dehyde crosslinking suggested imine bond (C=N) vibration, which was formed between 

glutaraldehyde and 3-APTES layer (Saini et  al. 1993; Marin et  al. 2012). After cellu-

lase immobilization, the characteristic bands of protein at 1645 and 1539  cm−1 asso-

ciated with C=N vibration at 1644 cm−1 appeared in the spectrum (Zang et al. 2014). 

�e broad band at 3400 cm−1 after immobilization of cellulase was due to association 

Fig. 2 Pore size distribution obtained from nitrogen desorption branch by BJH method

Table 1 Properties of silica gel after immobilization steps

BET surface area (m2/g) Pore volume (cm3/g)

Silica gel 251.9 1.15

Silica gel + 3APTES 159.9 0.78

Silica gel + 3APTES + GA 175.5 0.60
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intermolecular bonds from O–H stretching vibration with N–H stretching vibration in 

the cellulase molecules, which confirmed successfully immobilization of cellulase onto 

pretreated silica gel (Rangnekar et al. 2007).

Modi�cation of immobilization steps

In the immobilization process, the factors that affected the activity of the immobilized 

cellulase included the saturation and the thickness of the 3-APTES layer. 3-APTES 

exhibited a fast adsorption on silica gel surface. �e monolayer of 3-APTES reached 

equilibrium within minutes on the silica gel surface (Vandenberg et al. 1991). Organic 

solvent (toluene) was chosen for 3-APTES in order to control further adsorption and the 

hydrolysis of 3-APTES (Vansant et  al. 1995). �e activity of the immobilized cellulase 

was observed no change for 20–24 h’s immobilization of 3-APTES in toluene. �erefore, 

24 h was sufficient time for 3-APTES to saturate the silica gel surface.

�e curing process after 3-APTES immobilization has a significant impact on the 

activity of the immobilized cellulase as shown in Fig. 4. �e activity of the immobilized 

cellulase after curing was 1.7 times higher than a similar experiment without curing. 

�e curing process in air environment can cause hydrolysis and possible oligomeriza-

tion of 3-APTES immobilized. �e oligomerization can decrease the thickness of the 

3-APTES layer and minimize the changes of pore size of the silica gel (Vandenberg et al. 

1991). �erefore curing will increase the cellulase loading on the modified silica gel, and 

increase the overall activity of the immobilized cellulase.

E�ect of initial concentration of cellulase solution on immobilized cellulase

Figure 5 shows the results of enzymatic activity versus the protein concentration of the 

cellulase solution for immobilization. �e non-linear increasing curve trend is due to 

the Langmuir adsorption isotherm, as well as the mass transfer of produced glucose and 

Fig. 3 FTIR spectra of silica gel, 3-APTES modified silica gel, 3-APTES modified glutaraldehyde crosslinked 

silica gel, and immobilized cellulase
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CMC. �is figure suggests that although the undiluted cellulase solution for immobiliza-

tion would produce the highest absolute activity, the efficiency of utilization of enzyme 

is higher at lower dilutions due to losses at the immobilization step (consuming more 

enzyme) and the hydrolysis step (low mass transfer coefficient caused by cellulase immo-

bilized deep in the pores). �erefore, the optimal dilution of the cellulase solution for 

immobilization appears to be five. �e reusability of the immobilized cellulase by differ-

ent protein concentrations of cellulase solution is shown in Fig. 6. �e activity does not 

change after 4 batches of hydrolysis of CMC. �is indicates that all the cellulase is firmly 

immobilized on the silica gel surface, and it is independent of the protein concentration 

of the cellulase solution for immobilization.

Fig. 4 Effect of curing process after 3-APTES modification on the activity of the immobilized cellulase

Fig. 5 Activity versus protein conc. of cellulase solution for immobilization
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Activity of the immobilized cellulase

Cellulase was immobilized on 3-APTES and glutaraldehyde pretreated silica gel surfaces 

as described. �e activity was determined by testing the produced glucose in 1 % w/v 

(10 g/L) CMC solution dissolved in 10 ml pH = 6 acetate buffer (50 mmol/L) at 20 °C. 

One unit of cellulase activity was defined as nmol glucose produced per minute. �e 

activity of immobilized cellulase using 3-APTES and glutaraldehyde pretreatment is 

474 ± 20 U per unit gram of immobilized silica gel. �e activity of unit enzyme mass of 

immobilized cellulase is 24 ± 6 U/mg, while the one of the free cellulase is 352 ± 43 U/

mg. �at is: the specific activity of immobilized cellulase is 7 ± 2 % compared with the 

similar amount of free cellulase. �e denaturation of the immobilized cellulase was due 

to the decrease in degree of movement of the cellulase molecules after covalent bind-

ing, which was commonly found in the studies of immobilization of enzyme (Spahn and 

Minteer 2008).

Reusability of the immobilized cellulase

Reusability is an important issue for immobilized cellulase in industrial application 

(Dinçer and Telefoncu 2007; Alahakoon et al. 2012; Wu et al. 2012). �e reusability of 

immobilized cellulase on modified silica gel was shown in Fig. 7. �e relative activity 

of the immobilized cellulase retained 100–82  % initial activity from 1st to 7th cycle, 

60–48 % from 8th to 13th cycle, and 36–23 % from 14th to 26th, respectively. In com-

parison, the immobilized cellulase was applied to hydrolyze CMC solution 3 h for each 

cycle, which is longer than previously reported (Mubarak et al. 2014; Mishra and Sardar 

2015; Wang et  al. 2015; Qi et  al. 2015; Anuradha Jabasingh and Valli Nachiyar 2011; 

Abraham et al. 2014; Gokhale et al. 2013; Verma et al. 2013). �e immobilized cellu-

lase exhibits remarkable reusability up to 13 recycles. Table  2 shows the comparison 

of reusability with other studies. Cellulase entrapped in a MeTMOS/TMOS (3:1 molar 

ratio) made sol–gel matrix can be reused 6 times with 20  % initial activity retained 

Fig. 6 Effect of initial concentration of cellulase solution on the immobilized cellulase
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(Ungurean et  al. 2013). Mubarak et  al. (2014) reported that cellulase immobilized on 

acid pretreated MWCNTs by physical adsorption retained 26 % initial activity for the 

8th recycle. In another study, 55  % initial activity was retained after 4 recycles when 

cellulase covalently bound to magnetic graphene nanoparticles (Gokhale et  al. 2013). 

Cellulase immobilized on magnetic nanoparticles via covalent binding can be reused 6 

recycles with 40 % initial activity retained (Abraham et al. 2014). �e possible reasons 

of activity loss after each cycle might be immobilized enzyme loss during separation 

Fig. 7 Reusability of immobilized cellulase according to batches

Table 2 Cellulase immobilization carriers, techniques, and reusability of the current work 

and other researches

Immobilization 
carrier

Immobilization 
technique

Reusability Refs.

Times Time for each 
cycle

Residual activity 
(%)

Sol–gel matrix Sol–gel entrap-
ment

6 24 h 20 Ungurean et al. 
(2013)

Sodium alginate 
gel beads

Sol–gel entrap-
ment and 
crosslinking

7 N/A 58.37 Wang et al. (2015)

Functionalized 
multiwall carbon 
nanotubes

Physical adsorption 8 30 min 26 Mubarak et al. 
(2014)

Ultrafine Eri silk 
microparticles

Physical adsorption 8 10 min 50 Verma et al. (2013)

Magnetic porous 
terpolymers

Covalent binding 6 30 min 48.2 Qi et al. (2015)

Magnetic graphene 
nanoplatelets

Covalent binding 4 1 h 55 Gokhale et al. (2013)

Magnetic nanopar-
ticles

Covalent binding 6 30 min 40 Abraham et al. 
(2014)

Modified silica gel Covalent binding 10 3 h 60 Current work
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and washing processes after each cycle, enzyme denaturation, and enzyme leak (des-

orption) (Zang et al. 2014).

Enzyme leak (desorption) is a crucial issue for immobilization of enzyme, and it 

was observed by many researchers for immobilization of cellulase (Zang et al. 2014; 

Hartono et al. 2010; Ungurean et al. 2013; Spahn and Minteer 2008). Hartono et al. 

(2010) found that up to 7  % of immobilized cellulase was desorbed from silica in 

citrate buffer after 14 day’s storage at 4  °C. Compared with cellulase leak in buffer 

solution (in washing and storage processes), it is expected that desorption during 

the hydrolysis of CMC would be more severe, since the binding between immobi-

lized cellulase and CMC provide another driving force to pull the cellulase off the 

immobilized carrier. The cellulase leak (desorption) in hydrolysis of CMC can make 

the measured activity and reusability of immobilized cellulase inaccurate (Zang 

et al. 2014). Because free cellulase is more active than immobilized cellulase, a small 

amount of cellulase leaked (desorbed) would result in a high enzyme activity. Linear 

enzyme activity loss of immobilized cellulase was observed according to number of 

recycles in many prior studies, which suggests leaked (desorbed) cellulase strongly 

contributed to the activity and the lack of reusability of immobilized cellulase 

(Mubarak et al. 2014; Wang et al. 2015; Qi et al. 2015; Ungurean et al. 2013). In order 

to test the enzyme leak (desorption) of immobilized cellulase during hydrolysis of 

CMC, the immobilized cellulase was centrifuged from the CMC solution after 6  h 

and then the reactor was kept running. Figure 8 depicts that the immobilized silica 

gel in 8.8  mg/ml cellulase solution and 4.4  mg/ml cellulase solution, the produced 

glucose concentration never increased after centrifuging the immobilized silica gel. 

This strongly indicates that there is no enzyme desorption during the hydrolysis of 

CMC regardless of the protein concentration of the cellulase solution for immobili-

zation. This was likely due to the entrapment of cellulase molecule in silica gel pore 

Fig. 8 Hydrolysis time versus produced glucose concentrations
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structure and the strong covalent bound between the cellulase molecule and the sil-

ica gel surface, which make the specific activity low but maximize the reusability.

Since there was no enzyme leak from the immobilized silica gel, the activity loss could 

be attributed to denaturation of the immobilized cellulase. �e immobilized cellulase 

exhibited 3 stages of the activity loss in reusability, i.e., the first stage which was from 

1st to 7th cycle (the activity retained 100–82 %), the second stage which was from 8th 

to 13th cycle (the activity retained 60–48 %), and the third stage which was from 14th 

to 26th cycle (the activity retained 36–23 %). A possible explanation of this behavior is 

that the immobilized cellulase outside the pores of silica gel was denatured after the first 

stage, while the one near the pores of silica gel was denatured after the second stage. �e 

porous structure of the silica gel lowered the biological activity of the immobilized cel-

lulase, however it also likely protected the cellulase molecules immobilized in the pores 

from the conformational structure shifting (Luckarift et al. 2004). �erefore, the activity 

of immobilized cellulase remained stable after the 13th cycle. �is is also confirmed by 

Fig. 9, which shows that the activity of immobilized cellulase barely decreases after 5th 

day up to 14th days (from 14th cycle to 26th cycle).

�e storage stability of an enzyme is another important factor that limit its applica-

tions. �e immobilized silica gel was operated first batch and then washed by DI water. 

After centrifuging and removing supernatant, the deposition (immobilized silica gel) 

was sealed and kept at 4  °C in the refrigerator for 38 days. �e second activity experi-

ment was performed after the 38 day incubation period and the immobilized enzyme on 

the silica gel still retained 92.4 % of its initial activity.

E�ect of temperature on the immobilized cellulase

Temperature is an important factor for hydrolysis reaction by enzymes. �e activities of 

the free and immobilized cellulase at different temperatures are shown in Fig. 10. �e 

results show that the activities of both the free and immobilized cellulase have the same 

Fig. 9 Reusability of immobilized cellulase according to days
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trend: the activity increases from 20 to 50  °C and deceases after 50  °C, which is con-

sistent with many other studies (Yu et al. 2012; Li et al. 2015). �e immobilized cellu-

lase on modified silica gel exhibited better relative enzymatic activity than free cellulase 

below 50 °C. Compared with free cellulase, an increase of 18–27 % relative activity was 

observed for immobilized cellulase from 20 to 40 °C, respectively.

Reusability of immobilized cellulase was performed at 40, 50, and 60  °C, since the 

activities of both immobilized cellulase and free cellulase in this range exhibited peak 

area in Fig. 10. Figure 11 shows that the activities decrease to 24 and 59 % of the initial 

Fig. 10 Activity of the immobilized and free cellulase according to temperatures for hydrolysis of CMC

Fig. 11 Reusability of the immobilized cellulase at different temperatures
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activities for the third batch at 50  °C and the second batch at 60  °C, respectively. At 

40 °C, 66.5 % of the initial activity was retained after 3 recycles. And the specific activ-

ity of the immobilized cellulase at 40 °C was larger than the one at 50 and 60 °C after 3 

recycles. �e possible reason is that the immobilized cellulase at high temperature, i.e., 

50 and 60 °C, appears to denature relatively rapidly. Other researchers also observed the 

same thermal effect (Mao et al. 2006; Wang et al. 2015). Figure 12 clearly shows that the 

produced glucose concentration linearly increases at 20 to 40 °C for at least 2 h; however, 

it rapidly reaches its plateau at 50  °C. �is behavior is even more obvious at 60  °C, at 

which the glucose concentration reaches its plateau at 30 min. �erefore, although the 

initial activity at 50  °C is the highest, 40  °C appears to be the optimal temperature for 

hydrolysis of CMC using immobilized cellulase.

E�ect of pH on immobilized cellulase

�e pH for hydrolysis of CMC solution was also studied. �e 17.5 mg/ml cellulase solu-

tion in DI water was used for immobilization. �e CMC solution was prepared in pH 

4, 5, 6 acetate buffer (50 mmol/L) respectively for hydrolysis at 20 °C. Figure 13 shows 

the results. �e activity of the immobilized cellulase reached highest at pH 5, which was 

about 4 times higher than the one at pH 6 for the first cycle. However, the reusability at 

pH 5 was low. �e activity of the third cycle rapidly decreased to 58 % compared to the 

first cycle. �e reusability at pH 4 was even worse. Only 14 % activity retained after the 

fifth batch. �e possible reason was that the enzyme rapidly desorbs at pH 4 and 5. �us, 

the high activity for the first batch was due to the free cellulase in the CMC solution, 

since the specific activity of the immobilized cellulase was only 7  % compared to the 

same amount of the free cellulase. �erefore, considering the reusability, although the 

cellulase was slightly activated at pH 4 and 5, pH 6 was the optimal pH for hydrolysis of 

CMC.

Fig. 12 Time-dependent curve of the immobilized cellulase
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Conclusions

In this study, cellulase was immobilized covalently on silica gel modified by 3-APTES 

using glutaraldehyde as a cross-linker. Although the specific activity of the immobilized 

silica gel was 7 ± 2 % of free cellulase, a very high reusability was observed over a period 

of 2 weeks (up to 26 different batches in 14 days). No enzyme desorption was observed 

during the hydrolysis of CMC solution at the optimized conditions of pH 6 acetate 

buffer. �e immobilized cellulase exhibited enzymatic activity higher than free cellulase 

for temperatures below 50 °C. Silica gel was demonstrated to be an excellent substrate 

for immobilization, due to the close density to the slurry and protective characteristics 

of the pores. Covalent bonding of the cellulase to the silica gel was necessary for the out-

standing reusability observed.

Methods

Chemicals

Cellulase (Accellerase 1500 from Danisco US Inc., Genencor Division) was centrifuged 

and the supernate was used for further testing because the micro-particles in the origi-

nal solution released proteins which did not have activity but affected the protein assay. 

Silica-Amorphous precipitated, (3-aminopropyl) triethoxy-silane (3-APTES), toluene 

(anhydrous, 99.8 %), glutaraldehyde (GA) solution (grade I, 50 %), carboxymethylcellu-

lose sodium salt (CMC), sodium acetate trihydrate, and fluorescamine were purchased 

from Sigma.

Pretreatment of silica gel

Modi�cation of silica gel

Silica gel involved in this project was modified by 3-APTES to get amino-group termi-

nated surface. 0.06 g silica gel was incubated with 10 % v/v 3-APTES prepared in tol-

uene at 30  °C for 24  h in incubator shaker (Innova™ 4000, New Brunswick Scientific) 

with 300 rpm shaking speed. �e modified silica gel was followed by a washing step with 

Fig. 13 Reusability versus pH for hydrolysis of CMC solution
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1.2 ml toluene for 4–5 times to remove the unbound 3-APTES. �en the modified silica 

gel was cured on hot plated at 40 °C for 24 h. �e modified silica gel is stable for months 

if sealed (Vansant et al. 1995).

Crosslinking modi�ed silica gel

Glutaraldehyde was used as a crosslinker and a space arm between the 3-APTES layer 

and the cellulase layer. �e 3-APTES modified silica gel was immerged into 2  % v/v 

glutaraldehyde solution which was prepared with pH =  6 acetate buffer (50  mmol/L) 

for 30 min at room temperature. After this step, an aldehyde terminated silica gel sur-

face was formed. �en modified silica gel was washed by 1.2 ml DI water 4–5 times to 

remove the unbound glutaraldehyde.

Immobilization of cellulase

0.06 g modified silica gel was immersed into 1 ml of 5× diluted cellulase with DI water 

(17.5 mg protein/ml) for 24 h at room temperature in incubator shaker with 300 rpm 

shaking speed. �e incubator shaker utilized for immobilization of 3-APTES and cel-

lulase was to make the silica gel uniformly distributed in the solution and kept a certain 

temperature. After remove the residue immobilization solution, the immobilized silica 

gel was washed 5 times with DI water. Only 0.1 % of cellulase was detected in the super-

nate of the fifth wash suggesting that no further washes were required. Figure 14 shows 

the mechanism of immobilization with 3-APTES. �e cellulase solution after immobili-

zation and the water waste were kept together in a 100 ml volumetric bottle for protein 

assay in order to determine the amount of immobilized cellulase.

Characterization methods

�e Fourier Transform Infrared Spectroscopy (FTIR) was used for recording the 

chemical composition of the samples. �e samples were prepared by 100  % pure sil-

ica, 3-APTES modified silica, 3-APTES modified glutaraldehyde crosslinked silica gel, 

and cellulase immobilized silica, respectively. �e spectra were recorded at room tem-

perature in the 400–4000 cm−1 range using �ermo Scientific NICOLET IR100 FT-IR 

Spectrometer. �e pore size and pore volume were calculated by nitrogen adsorption 

and desorption using the Barrett–Joyner–Halenda (BJH) method using NOVA 2000 

High-Speed Surface Area and Pore Size Analyzer. �e surface area was calculated by 

Brunauer–Emmett–Teller (BET) method.

Protein assay to determine the amount of cellulase

Fluorescamine protein assay was used to determine the amount of immobilized cellu-

lase, in which 5 mg/ml bovine serum albumin (BSA) stock was prepared for a standard 

curve. Table  3 shows the standard curve. One ml of 5× diluted cellulase solution for 

immobilization was added into a 100 ml volumetric bottle, and diluted with DI water. 

�ree ml of the diluted solution was used for protein assay. �e samples were measured 

using fluorescence spectrometer at excitation wavelength 390  nm and emission wave-

length 460 nm. �e amount of immobilized cellulase was calculated by:

Mass of immobilized cellulase = CiVi − CfVf



Page 16 of 20Zhang et al. SpringerPlus  (2016) 5:48 

where Ci is the initial protein concentration, Vi the initial volume of cellulase solution, 

Cf the final protein concentration after immobilization, Vf the final volume of cellulase 

solution after immobilization (water washes included). �e maximum percentage error 

of Ci and Cf ranged from 3 to 4  %. �e magnitude of measured difference of enzyme 

mass before and after the immobilization step was 11–14 %.

Activity of hydrolysis of CMC by the immobilized and the free cellulase

Activities of the immobilized and free cellulase were determined by hydrolysis of 1  % 

w/v (10  g/L) CMC solution dissolved in pH  =  6 acetate buffer (50  mmol/L). 0.06  g 

Fig. 14 Mechanism of immobilization with 3-APTES

Table 3 Standard curve of �uorescamine protein assay

Protein conc. (mg/ml) BSA stock (ml) Water (ml) Fluorecamine (ml) Incubation (min)

0 0 3.000 0.05 30

0.025 0.015 2.985 0.05 30

0.050 0.030 2.970 0.05 30

0.100 0.060 2.940 0.05 30

0.200 0.120 2.880 0.05 30

0.300 0.180 2.820 0.05 30
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immobilized silica gel was immersed into 10 ml CMC solution and stirred well in the 

reactor, which maintained temperature of 20  °C in a water bath. Samples were taken 

after 1, 2, and 3 h, which were centrifuged for 5 min at 10,000 rpm. �e supernate was 

collected, and its glucose concentration was tested by YSI 7100 MBS (Multiparameter 

Bioanalytical System from YSI Life Sciences).

Reusability of immobilized cellulase

�e reusability of immobilized cellulase was studied by hydrolysis of 10 g/L CMC solu-

tion in pH = 6 acetate buffer at 20 °C. �e CMC assay, samples taking and testing were 

similar as described in “Activity of hydrolysis of CMC by the immobilized and the free 

cellulase” section. For each cycle, the hydrolysis of CMC by immobilized cellulase took 

3  h. After each cycle, the immobilized cellulase was centrifuged and washed by DI 

water. �e immobilized cellulase was then collected by centrifuging, and dispersed in 

fresh CMC solution for the next cycle. �e initial concentration of cellulase solution for 

immobilization of silica gel was 17.5 mg/ml (5× diluted). �e first cycle was recognized 

as the control group, and its activity was defined as a relative activity of 100 % (Mubarak 

et al. 2014).

In order to study the activity’s decay of immobilized cellulase according to days, 2–3 

cycles’ hydrolysis of CMC by immobilized cellulase were performed on each day. �e 

immobilized cellulase was collected and washed after each cycle as that stated above. 

�e immobilized cellulase was washed and stored at 4  °C in refrigerator at night. �e 

daily activity of immobilized cellulase was calculated by averaging the activities of each 

cycle on that day. �e activity of the first day was recognized as the control group, and 

defined as a relative activity of 100 %.

E�ect of initial concentration of cellulase solution on immobilized cellulase

�e activities of immobilized cellulase from different time-diluted cellulase solutions for 

immobilization were tested. Silica gel was modified by 3-APTES and crosslinked by glut-

araldehyde as described in “Pretreatment of silica gel” section. �en the pretreated silica 

gel was immerged in 20×, 10×, 5× diluted and undiluted cellulase solution, respectively. 

�e protein concentrations of the diluted cellulase solutions for immobilization meas-

ured by flourescamine protein assay, were 4.4, 8.8, 17.5, 87.5 mg/ml for 20×, 10×, 5× 

diluted and undiluted cellulase solution, respectively. �e activity of the immobilized 

cellulase was determined by CMC assay as stated in “Activity of hydrolysis of CMC by 

the immobilized and the free cellulase” section.

E�ect of temperature on immobilized cellulase

�e effect of temperature on both free and immobilized cellulase was examined in 10 g/L 

CMC solution in pH 6 acetate buffer (50 mmol/L) by altering the reaction temperature 

to 20, 30, 40, 50, and 60 °C. Methodology of samples taking and testing was similar as 

“Activity of hydrolysis of CMC by the immobilized and the free cellulase” section. �e 

initial concentration of cellulase solution for immobilization of silica gel was 17.5 mg/

ml (5× diluted). �e highest activities of free and immobilized cellulase were considered 

as control groups for each series of experiments, respectively, and defined 100 % relative 

activity (Qi et al. 2015).
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E�ect of pH on immobilized cellulase

�e effect of pH for hydrolysis of CMC on immobilized cellulase was examined by 

altering the acetate buffer to pH 4, 5, 6 in the CMC assay in “Activity of hydrolysis of 

CMC by the immobilized and the free cellulase” section. �e immobilized cellulase was 

performed as stated in “Pretreatment of silica gel” and “Immobilization of cellulase” 

sections.
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