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The constant increase in the number of sustainable products

on the global markets demands new biotechnological process-

ing strategies such as the purification and recovery of biocata-

lysts. Superparamagnetic iron oxide nanoparticles exhibit ex-

cellent recovery properties as carrier materials in enzyme catal-

ysis. We present the simple and fast electrostatic assembly of

cellulase (CEL) and low-priced silica-coated magnetic nanopar-

ticles, which demonstrates stable enzyme bonding and excel-

lent colloidal stability. The high CEL loading (0.43 gg¢1), with-

out leaching of biocatalyst and high recovery yields (75%),

could be sustained over ten magnetic recycling steps. The

highlight of this study is the preservation of a high enzymatic

activity and, therefore, the outstandingly high lifecycle stability.

With global warming and dwindling fossil fuel resources, the

demand for sustainable energy has been increasing worldwide.

A promising possibility for the production of biofuels is the ap-

plication of biocatalysts for the conversion of regenerative

feedstocks.[1] One of the most abundant biological raw materi-

als is cellulose, which can be transformed into bioethanol via

disintegration of the polysaccharide to glucose and subse-

quent alcoholic fermentation. The industrial implementation of

biocatalysts is still in its infancy, owing to high production and

operation costs. Hence, enzyme immobilization has high eco-

nomic and ecologic potential in the development of sustaina-

ble and green bioprocesses.[2–6]

To date, only a few industrial applications of immobilized en-

zymes exist. One example is the isomerization of glucose to

fructose by immobilized glucose isomerase, which is already

processed industrially.[2] Other processing strategies beside

fixed bed reactors, such as fluidized bed reactors, simulated

moving bed reactors, and reactors with two impinging jets, are

being investigated for glucose isomerase; however, no indus-

trially applied process currently exists for high-molecular-

weight cellulose hydrolysis with immobilized cellulase.[2] An in-

teresting possibility for the implementation of such a process

is the concept of the magnetically stabilized bed reactor

(MSBR), which is already used for lipase immobilized on mag-

netic nanoparticles (MNPs).[7,8] In a MSBR, the principle of high-

gradient magnetic separation, where a magnetic field is ap-

plied perpendicularly to the process stream, is used to recover

the catalyst immobilized on MNPs.

Following this trend of developing appropriate enzyme re-

covery techniques for cost reduction in biocatalytic processes,

numerous immobilization strategies for enzymes have been re-

ported.[4,9] Typical strategies for immobilization are noncova-

lent adsorption, ionic interaction, covalent binding, the cross-

linking of enzymes, and encapsulation in gels or capsules.[10]

The accessibility of the substrate to the active center is a bot-

tleneck in enzyme technology.[6] Most immobilization methods

for enzymes in porous microcarrier materials and gel capsules

demonstrate diffusion limitations.[10] On the other hand, cross-

linked or covalently bound enzymes often encounter compara-

ble accessibility problems, owing to steric hindrance of active

sites.[5, 11] Although immobilization on or inside microcarriers is

usually used for the heterogenization of homogeneous cata-

lysts, enzymes on nanocarriers can be described as pseudo-ho-

mogeneous systems that are able to circumvent accessibility

problems.[7, 12,13]

For new process designs, magnetic nanoparticles are of spe-

cial interest, as they can be manipulated by a magnetic field

and, therefore, enable an easy recycling and separation

method for catalysts and biomolecules from high viscous li-

queurs and high-solid-content broths.[7, 12,14] Iron oxide nano-

particles, which demonstrate superparamagnetic behavior, are

nontoxic particles that can be synthesized cost-effectively

through the co-precipitation of iron salts.[12,15] Silica coating is

often used to stabilize magnetic particles in colloidal suspen-

sions, as the coating strongly affects the surface charge.

Here, we present an effective enzyme carrier system based

on superparamagnetic iron oxide nanoparticles, which can be

recycled and reused multiple times without loss of enzymatic

activity. In this context, Roth et al. have demonstrated an excel-

lent separation efficiency and recovery in highly viscous pro-

cess media of similar nanoparticles with a high-gradient mag-

netic separator.[16]

The focus of this investigation is the adsorption behavior

and the resulting enzymatic activity of cellulase (CEL) on two

different nanoparticle surfaces. Hence, we try to understand

the impact of the nanoparticle surface properties on the sur-

rounding protein corona for two industrially applicable bio-

nano systems. The synthesis of MNPs, the silica coating, the

CEL immobilization, and the enzymatic process are illustrated

in Scheme 1.

MNPs with defined and optimized physical properties were

synthesized by using a simple co-precipitation route based on

the Massart process.[15] Transmission electron microscopy (TEM)
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data (Figure 1a) indicate a particle-size distribution with a low

dispersity and an average diameter of 11 nm. TEM measure-

ments can be verified by X-ray diffraction (XRD) (Figure S1).

Approximation of the XRD data with the Scherrer equation

yields an average particle diameter of 10 nm. The MNPs were

further coated with silica through the Stçber process, utilizing

tetraethyl orthosilicate (TEOS) as a precursor. Optimization of

the process with respect to the TEOS dosing rate, temperature,

stirring speed, as well as concentration and ratio of MNPs to

TEOS yielded a uniform silica shell with a thickness of 2 nm

(Figure 1b). The presence of a silica shell was evidenced by

X-ray photoelectron spectroscopy (XPS) (Figures S2 and S3).

Furthermore, a strong Si¢O(Si) antisymmetric stretch vibration

band at 1080 cm¢1 was observed by using attenuated total re-

flection infrared spectroscopy (ATR–IR) (Figure S4).[17] Moreover,

the specific surface area was determined by nitrogen adsorp-

tion isotherms and is in a similar range for the MNPs

(99 m2g¢1) and silica-coated MNPs (MNP@SiO) (116 m2g¢1).

Surface modification with a silica coating shifts the point of

zero charge (PZC) from pH 7.8 for uncoated MNPs to pH 4.6

(Figure S5). This leads to a negative charge for MNP@SiO in the

pH range from 5 to 8, which is optimal for the highest enzy-

matic activity for most CEL species.[11] The zeta potential shifts

even more significantly than the PZC into a negative region

and emphasizes the change of electrostatic surface properties

upon coating (Figure S6a). CEL from Trichoderma longibrachia-

tum (EC 3.2.1.4) exhibits an isoelectric point (IEP) of 4.9.[11]

Hence, at pH 5, MNP@SiO and CEL are almost uncharged,

whereas the charge of uncoated MNPs is positive. Therefore,

a much stronger electrostatic interaction is suspected for the

immobilization of CEL on uncoated particles. Thus, the binding

affinity and maximum load (qmax) do not diverge significantly

(Figure 2). This behavior can be explained by stronger hydro-

phobic interactions of the MNP@SiO, which can result in differ-

ent binding domains of the CEL and, therefore, different

enzyme activities. The CEL binding affinity and qmax values

were screened from pH 4 to 8. The best conditions were found

at pH 5, and no influence of the incubation time between

5 min and 24 h was detected. The influence of temperature on

the binding affinity and qmax was investigated from 20 to 60 8C

at pH 5. Optimal conditions of 50 8C at pH 5 were employed

for further CEL immobilization experiments. Adsorption iso-

therms were investigated through photometric analysis of the

supernatant under equilibrium conditions. Sonication of the

Scheme 1. Schematic description of particle synthesis (red frame), silica coating (blue frame), cellulase immobilization (green frame), and the biocatalytic pro-

cess with recyclable NBCs (yellow).
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colloidal carrier materials before CEL immobilization yielded an

increased binding capacity. Therefore, qmax values of 0.37 and

0.43 gg¢1 could be reached for MNPs and MNP@SiO, respec-

tively. This load is ten times higher than comparable nanocarri-

er systems and is, therefore, the basis of a high-performance

enzyme catalysis process.[18] Furthermore, the binding con-

stants KD are in the same region for the MNPs (0.17 gL¢1) and

MNP@SiO (0.20 gL¢1), which enables an excellent comparison

of these nanoparticles when used as CEL carrier materials. In

the following text, the CEL–particle composites are referred to

as nano-biocatalysts (NBCs) and are distinguished according to

the carrier material as NBCMNP and NBCSiO.

XRD data (Figure S1) show that there is no change in the

crystal structure of the material and the crystallite size follow-

ing the coating and functionalization procedures. However, the

hydrodynamic diameter measured by dynamic light scattering

(DLS), which is an important parameter for protein adsorption,

changed significantly with the adsorption of CEL (Fig-

ure S6b).[19] Although the hydrodynamic diameter for the

MNPs is in the range of the particle diameter determined by

TEM, MNP@SiO demonstrates a significantly larger diameter

and a broader distribution (50 nm), which might be caused by

aggregation with the silica coating. The addition of CEL to the

nanoparticles leads to an increase in hydrodynamic diameter

of 25 nm. This behavior can be connected to the protein

corona formation of CEL around the particles.[20] The load of

immobilized CEL was determined by simultaneous thermal

analysis–mass spectrometry (STA–MS) of the dried samples. Re-

sults (Figure S7) show a distinct difference between the two

carrier materials: Bare MNPs undergo a weight loss of around

2%, which is attributed to bound water. Also, carbon dioxide

(CO2) was detected in the MS, owing to adventitious carbon.

Although a similar weight loss for MNP@SiO can be detected

in this temperature region, no endothermic signal was ob-

served at 500 8C. This emphasizes a comprehensive silica coat-

ing and, thus, protection from oxidative phase transition. Both

NBCs show a weight loss of around 50% that can be attributed

to to oxidation and desorption of CEL. Fragments could be de-

tected as CO2 signals by using MS (Figure S7). Both carrier ma-

terials demonstrate similar MS traces and exothermic desorp-

tion processes, as evidenced by differential scanning calorime-

try (DSC) at around 300 and 750 8C. Although the desorption

enthalpy for the MNP samples is around 5 mWmg¢1 at 750 8C,

the desorption enthalpy of MNP@SiO particles reaches a value

of over 100 mWmg¢1. This behavior suggests a different ad-

sorption mechanism of CEL on the surfaces of the respective

carrier materials.

The immobilization of CEL on both carrier materials is fur-

ther evidenced by XPS and ATR–IR (Figures S2–S4). XPS dem-

onstrates a distinct increase in the C1s region as well as the

N1s region for the NBCs (Figures S3b and S3d). The ATR–IR

spectra exhibit typical amide bands at 1640 and 1515 cm¢1.[21]

Furthermore, glycosylated protein sites are represented by

bands at 1070 cm¢1 (Figure S4).[22]

The enzymatic activity of NBCs was verified with a p-nitro-

phenol (pNP) assay. Compared to free CEL, the mass-specific

relative activity was determined as 38 and 19% for NBCSiO and

NBCMNP, respectively (Figure S8). This loss in activity plays

a minor role in the described NBC systems, as the enzyme load

is extremely high and considerable CEL conversion rates can

be achieved. The discrepancy in the enzyme activity can be

connected to different binding mechanisms of CEL on the dif-

ferently charged particle surfaces.[23]

The high enzymatic activity of immobilized CEL and the con-

venient handling of the NBCs provide enormous opportunities

for industrial applications. Furthermore, we could reach an ex-

cellent recyclability and enzyme stability over multiple cycles

Figure 1. a) TEM image of the synthesized MNPs. b) TEM image of MNP@SiO

with a 2 nm silica shell. c) Particle-size distribution as function of the

number count from the TEM data.

Figure 2. Adsorption isotherms at different cellulose concentrations with

1 gL¢1 MNPs or MNP@SiO at 50 8C for 10 h. Error bars were derived from

three incubation experiments and a photometric analysis in triplicate (�SD).
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of magnetic separation and NBC recovery. No leaching of

enzyme was detected by photometric detection and the activi-

ty loss could be ascribed to the deficiency of particles, which

was determined by using a phenanthroline assay. In a recovery

study of ten cycles, the relative enzymatic activity remained

high (Figure 3), but 26% (w/w) NBCSiO and 12% (w/w) of the

NBCMNP was lost during the recycling (Figure S9). The recyclabil-

ity is significantly higher than that observed for other nanocar-

rier systems, where only 20% of the enzyme activity could be

sustained after ten cycles.[24]

This high recovery rate can be connected to the extraordi-

narily high saturation magnetization (MS) for both NBC species.

The MS values in a magnetic field of 50000 Oe were 42 and

57 emug¢1 for NBCSiO and NBCMNP, respectively. Each of the car-

rier materials demonstrated superparamagnetic behavior at

room temperature (Figure S10). A further positive aspect of

CEL immobilization is the increase in long-term stability. After

30 days of storage, the relative enzymatic activity of the NBCs

remained at 76%, whereas the free CEL solution only demon-

strated 9% of its initial enzymatic activity. Analysis of pH and

temperature stabilities demonstrated no significant improve-

ment for the NBCs compared to free CEL (Figure S12).

Motivated by the ambitious goals of the biofuel sector, CEL

was chosen for enzyme immobilization to upgrade cellulose-

based ethanol to an economically competitive product. This

study demonstrates the successful combination of the unique

magnetic separation properties of cost-effective, easily pro-

ducible MNPs as a carrier material with the key benefits of

physical enzyme adsorption. The surface charge plays a critical

role in the protein adsorption and influences the protein

corona as well as the activity of bound enzymes. NBCs were

prepared from bare MNPs and MNP@SiO. The presented

NBCSiO outperforms comparable systems in terms of enzyme

loading and, beyond that, demonstrates high lifecycle stability

and recyclability. Furthermore, the magnetic and mechanic

properties of the support material offer the unique ability to

separate the NBCs magnetically from a solid-containing pro-

cess stream, for example, the insoluble lignin in cellulose hy-

drolysate, even in viscous media. As shown in the Supporting

Information, the bare magnetite surface is electrostatically flex-

ible and should also be able to serve as a carrier for other en-

zymes. A further improvement of these NBCs would be their

application in solid-containing straw lysates and the immobili-

zation of more active enzymes.

Experimental Section

All details about the synthesis, coating, functionalization, and

analysis can be found in the Supporting Information.
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