

University of New Haven Digital Commons @ New Haven

Civil Engineering Faculty Publications

Civil Engineering

12-2013

Immobilization of Lead in Contaminated Firing Range Soil Using Biochar

Deok Hyun Moon Chosun University

Jae-Woo Park Hanyang University

Yoon-Young Chang *Kwangwoon University*

Yong Sik Ok Korea University

Sang Soo Lee Kangwon National University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.newhaven.edu/civilengineering-facpubs

C Part of the <u>Bioresource and Agricultural Engineering Commons</u>, <u>Civil Engineering Commons</u>, and the <u>Environmental Engineering Commons</u>

Publisher Citation

Moon, D.H., Park, JW., Chang, YY. et al. Immobilization of lead in contaminated firing range soil using biochar. Environ Sci Pollut Res (2013) 20(12): 8464-8671. December 2013.

Comments

This is the authors' accepted version of the article published in *Environmental Science and Pollution Research*. The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-013-1964-7.

Authors

Deok Hyun Moon, Jae-Woo Park, Yoon-Young Chang, Yong Sik Ok, Sang Soo Lee, Mahtab Ahmad, Agamemnon Koutsospyros, Jeong Hun Park, and Kitae Baek

1	Immobilization of lead in contaminated firing range soil using biochar
2	
3	Deok Hyun Moon ^{a,*} , Yoon-Young Chang ^b , Yong Sik Ok ^c , Sang Soo Lee ^c , Mahtab Ahmad ^c ,
4	Agamemnon Koutsospyros ^d , Jeong-Hun Park ^e , Kitae Baek ^f
5	
6	^a Department of Environmental Engineering, Chosun University, Gwangju 501-759, Korea
7	^b Department of Environmental Engineering, Kwangwoon University, Seoul 139-701, Korea
8	^c Department of Biological Environment, Kangwon National University, Chuncheon 200-701, Korea
9	^d Mechanical, Civil and Environmental Engineering, University of New Haven, West Haven, CT 06516, USA
10	^e Department of Environmental Engineering, Chonnam National University, Gwangju 500-757, Korea
11	^f Department of Environmental Engineering, Chonbuk National University, Jeonju 570-752, Korea
12	
13	* Corresponding author. Tel.: +82 62 230 7870; fax: +82 62 230 6628.
14	E-mail address: dmoon10@hotmail.com (D.H. Moon).
15	
16	
17	
18	
19	

1 Abstract

2	Soybean stover derived biochar was used to immobilize Pb in military firing range soil at a mass application rate
3	of 0 to 20 wt% and a curing period of 7 days. The toxicity characteristic leaching procedure (TCLP) was
4	performed to evaluate the effectiveness of the treatment. The mechanism responsible for Pb immobilization was
5	evaluated by scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and X-ray
6	absorption fine structure (XAFS) spectroscopy analyses. The treatment results showed that TCLP Pb leachability
7	decreased with increasing biochar content. A reduction of over 90% in Pb leachability was achieved upon
8	treatment with 20 wt% soybean stover derived biochar. SEM-EDX, elemental dot mapping and XAFS results in
9	conjunction with TCLP leachability revealed that effective Pb immobilization was probably associated with the
10	pozzolanic reaction products, chloropyromorphite and Pb-phosphate. The results of this study demonstrated that
11	soybean stover derived biochar was effective in immobilizing Pb in contaminated firing range soil.
12	Keywords Pb · Immobilization · Biochar · Soybean · Firing range soil
13	
14	
15	
16	
17	
18	Introduction

1	Lead (Pb), known as one of the most toxic elements to human health, represents a widespread contaminant in
2	military and civilian firing range sites. In 2006, more than 70,000 tons of Pb was used in the USA for ammunition
3	production including shots and bullets (USGS 2007). Pb can cause a variety of adverse effects that harm the brain,
4	red blood cells, blood vessels, kidneys and the nervous system (Lin et al. 1996; Long and Zhang 1998). Typical
5	military-grade bullets are mainly composed of Pb alloy slugs enclosed within Cu alloy jackets (Dermatas et al.
6	2004). Moreover, a bullet pellet typically consists of more than 90% Pb (Chrastný et al. 2010; Dermatas et al.
7	2006; Robinson et al. 2008; Sorvari et al. 2006). Pb concentrations in military firing range soils are often higher
8	than 1,000 mg kg ⁻¹ (Lin et al. 1995; Cao et al. 2003a) while levels well over 20,000 mg kg ⁻¹ have been reported
9	(Lin 1996; Stansley and Roscoe 1996; Dermatas et al. 2006). More than 3,000 and 1,400 active small arms firing
10	ranges are estimated to exist in the USA (USEPA 2005), and in Korea (MOE 2005), respectively. Bullet fragments
11	and Pb particulates originating from multiple impacts with berm surfaces during range operations can lead to
12	significant accumulations in military firing range soils. Remedial action for Pb contaminated military firing range
13	soils is imperative for preventing ground- and surface-water pollution, minimizing environmental risks (Craig et
14	al. 1999; Knechtenhofer et al. 2003) and preventing Pb from entering the trophic chain via plants and vegetative
15	matter growing in the vicinity of firing ranges (Cao et al. 2003b; Robinson et al. 2008).
16	In this study, a stabilization/solidification (S/S) process is applied as a remedial technique to immobilize Pb in
17	firing range soils. The S/S process has been widely used to immobilize heavy metals in contaminated particulate
18	matrices including soils, sediments, and sludges. By applying the stabilization process, Pb can be converted to
19	forms which are much less soluble, mobile and toxic. Also, Pb can be incorporated into a monolithic solid with

1	reduced surface area by employing the solidification process. A variety of S/S agents are used including cement,
2	lime, fly ash, etc In this study, biochar, also known as biomass-derived black carbon is used to immobilize Pb in
3	military firing range soil. Currently, biochar is recognized as a multifunctional material associated with various
4	applications including carbon sequestration, metal immobilization by cation exchange and fertilization in soils
5	(Awad et al. 2012; Chen et al. 2011; Uchimiya et al. 2010). Although the use of biochar as a S/S agent for Pb
6	immobilization is rather limited, its affordable cost makes it a very attractive option.
7	The objective of this study is to evaluate the Pb immobilization effectiveness in contaminated firing range soil
8	using biochar. The treatment effectiveness is evaluated using the toxicity characteristic leaching procedure (TCLP)
9	test following stabilization treatment. The Pb immobilization mechanism is investigated using scanning electron
10	microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and X-ray absorption fine structure (XAFS)
11	spectroscopy analyses.
12	
13	Experimental methodology
14	
15	Contaminated firing range soil
16	
17	Heavy metal contaminated soil from a military firing range was collected from Busan Metropolitan City in Korea
18	at a depth of 0-30 cm below the ground surface. The total Pb concentrations based on extraction by aqua regia [1
19	ml of HNO ₃ (65%, Merck) and 3 ml of HCl (37%, J.T. Baker)] were approximately 11,885 mg kg ⁻¹ . The TCLP

1	Pb concentration of the control sample was approximately 696 mg kg ⁻¹ . The initial pH value of the contaminated
2	soil was 6.94. The collected firing range soil was sieved through a #10 mesh (2 mm) to remove large particles and
3	improve soil homogeneity. Physicochemical characterization data for the contaminated firing range soil is
4	presented in Table 1. The elemental composition of the contaminated firing range soil was determined using X-
5	ray fluorescence (XRF) and the results are presented in Table 2.
6	
7	Stabilization agents
8	
9	Soybean stover was used as a raw feedstock to produce biochar. Soybean stover was collected from a local
10	agricultural field in Chungju-city, Korea. The raw feedstock was dried in an air-forced oven at 60 °C for 3 days
11	and grinded to a size less than 1 mm. The grinded soybean stover was placed in a ceramic crucible with a lid
12	and then pyrolyzed in a muffle furnace (MF 21GS, Jeio Tech, Seoul, Korea) at 7 °C min ⁻¹ under limited oxygen
13	conditions. Carbonization was performed at 700 °C for 3 hours followed by cooling to room temperature inside
14	the furnace. Subsequently, the resulting biochar was stored in air-tight containers. The initial pH of the biochar
15	was 10.5. The elemental composition of the biochar is listed in Table 2.
16	
17	Treatment conditions
18	

19 The contaminated military firing range soil was stabilized with soybean stover derived biochar at 1 wt% - 20 wt%

1	at a liquid to solid (L:S) ratio of 0.2. All the treated samples were prepared in duplicate and cured for 7 days. The
2	specific treatment conditions based on the percent biochar/soil ratio (dry basis) are presented in Table 3.
3	
4	Physicochemical analyses
5	
6	The soil and biochar pH values were obtained in accordance with the KST method (MOE 2002) at a liquid to solid
7	ratio of 5:1. The TCLP test, conducted in accordance with the U.S. EPA protocol (EPA 1992), was used to evaluate
8	the effectiveness of the stabilization treatment for the contaminated military firing range soil. In order to analyze
9	the total Pb concentration, soil samples (0.25 g) were mixed with aqua regia [1 ml of HNO ₃ (65%, Merck) and 3
10	ml of HCl (37%, J.T. Baker)] (Ure 1995). The mixture was then heated to 70°C, shaken for 1 hour, and diluted
11	with 6 ml of distilled water to obtain a final L:S ratio of 20:1 (Ure 1995). The extracted solution was then filtered
12	through a 0.45-µm micropore filter, after which the soluble Pb concentrations were analyzed by inductively
13	coupled plasma mass spectrometry (ICP-MS; Agilent 7500ce, USA). All sample analyses were performed in
14	triplicate and averaged values were reported only if the individual measurements were within an error of 10%.
15	Two control standards (sodium arsenite and sodium arsenate) and recovery spikes were used to monitor the
16	accuracy and performance of the equipment.
17	

- 18 SEM-EDX analyses

1	Prior to SEM analyses, untreated and treated air-dried sub-samples were prepared using double-sided carbon tape
2	coated with platinum (Pt). SEM analyses were performed using a Hitachi S-4800 SEM instrument equipped with
3	an ISIS 310 EDX system.
4	
5	X-ray absorption fine structure (XAFS) spectroscopy analyses
6	
7	The XAFS spectroscopy analyses were conducted in order to investigate the existence of different Pb species in
8	untreated and treated soil samples. The spectroscopic measurements were made at the beamline 7D at the Pohang
9	Accelerator Laboratory (PAL) in Korea. The selected soil samples were grinded to a size $<100 \ \mu$ m, and were
10	mounted on a sample holder using Kapton adhesive tape. The Pb L-III absorption edge at 13035 eV and a Si(111)
11	double crystal monochromator were used to collect the extended X-ray absorption fine structure (EXAFS) spectra
12	in fluorescence mode. A number of Pb reference standards were also analyzed at the same beamline. These Pb
13	references include massicot (PbO), plattnerite (PbO ₂), cerussite (PbCO ₃), hydrocerussite (Pb ₃ (CO ₃) ₂ (OH) ₂), Pb-
14	phosphate (PbHPO ₄), Pb-acetate ((CH ₃ COO) ₂ Pb), Pb-citrate (C ₁₂ H ₁₀ O ₁₄ Pb ₃), Pb-oxalate (PbC ₂ O ₄), Pb-hydroxide
15	(Pb(OH) ₂), chloropyromorphite (Pb ₅ (PO ₄) ₃ Cl), Pb sorbed to birnessite, gibbsite, goethite, humic acid and kaolinite
16	The EXAFS data were interpreted by the Athena software ver. 0.8.061 (Ravel and Newville 2005). After
17	normalization and background correction, the χ_k function was used to isolate the scattering portion of the spectra.
18	The EXAFS spectra were weighted to k_2 up to 10 Å ⁻¹ .

19 The linear combination fitting (LCF) analysis was performed on the k₂-weighted EXAFS spectra to determine

1	the quantitative estimation of the Pb species in soil samples. A fitting range of 2 to 8 Å ⁻¹ was used. The
2	effectiveness of the fit was evaluated by the normalized sum of the squared residuals of the fit (R-factor) and
3	reduced χ^2 values. At first, the complete dataset of Pb references was used to identify the Pb species in soil samples.
4	The Pb reference spectra were then narrowed down to a maximum of four based on the lowest R-factor value.
5	
6	Results and Discussion
7	
8	Stabilization of Pb in contaminated firing range soil
9	
10	The TCLP Pb leachability and associated pH results obtained from the samples treated with soybean stover derived
11	biochar are presented in Fig. 1. The TCLP Pb leachability of approximately 696 mg L^{-1} established for the
12	control sample decreased with increasing biochar content. A 50% reduction in TCLP Pb leachability was
13	observed for the sample treated with 10% biochar. However, a drastic reduction of greater than 91% in TCLP Pb
14	leachability (corresponding to 57.67 mg L ⁻¹) was attained for the sample treated with 20% biochar. The treatment
15	pH of the 20% biochar treated sample was about 10.2. Elevated pH would induce the solubilization of Al and
16	Si from the clay in the sample (Keller 1964), which would be available to form cementious hydrates (pozzolanic
17	reaction products) such as calcium aluminum hydrate (CAH) and calcium silicate hydrate (CSH) (Gougar et al.
18	1996). Therefore, the formation of CSH/CAH at the high pH condition induced by the high content of biochar
19	may play a key role in immobilizing Pb in the contaminated soil. It has been reported that Pb could be incorporated

1	within the CSH structure based on the hydration of tricalcium silicate which is a main compound in Portland
2	cement (Rose et al. 2000). Moulin et al (1999) also suggested that Pb can be retained through the Si-O-Pb bond.
3	On the other hand, studies where soils are subjected to phosphates have showed that Pb immobilization proceeds
4	via the formation of lead phosphate compounds such as pyromorphite-like phases (Pb ₅ (PO ₄) ₃ X, X=F, Cl, OH)
5	(Cao et al. 2002; Scheckel and Ryan 2002; Zhang and Ryan 1999). Therefore, the phosphate content of biochar
6	may play a key role in Pb immobilization. In fact, it may be theorized that Pb immobilization in soil samples
7	treated with a biochar content in the range of 1 - 10 wt% and treatment pH values of 7.42 to 9.61 may be controlled
8	by the formation of lead phosphate compounds. Moreover, in the case of the soil sample treated with a higher
9	biochar content (20 wt%) where the treatment pH is high (10.2), the formation of pozzolanic reaction products
10	may be responsible for effectively immobilizing Pb. Therefore, the drastic reduction in TCLP Pb leachability upon
11	20 wt% biochar treatment was most probably caused by the combinatory effect of lead phosphate precipitation
12	and pozzolanic stabilization.
13	The TCLP pH values increased in the range of 3.6-4.2 with increasing biochar content. The highest TCLP pH
14	value of 4.2 was obtained for the sample treated with 20% biochar.
15	
16	SEM-EDX analyses
17	
18	SEM-EDX results for the control sample presented in Fig. 2a indicate a lack of Phosphorus (P). However, P is
19	clearly evident in the sample treated with a 20 wt% biochar content (Fig. 2b). The elemental dot map results show

1	that Pb immobilization was strongly associated with P (Fig. 2c). This indicates that pyromorphite-like phases may
2	be the key compounds responsible for effective Pb immobilization (Zhang and Ryan 1999; Cao et al. 2002;
3	Scheckel and Ryan 2002). Moreover, Fig. 2d shows that Pb is associated with Al, Si and O which is indicative of
4	the key role of pozzolanic reaction products such as CSH/CAH in the immobilization of Pb under high pH
5	conditions. Therefore, pyromorphite-like phases and pozzolanic reaction products may have simultaneously
6	contributed to the immobilization of Pb in the sample treated with 20 wt% biochar, where significant reduction in
7	TCLP Pb leachability was obtained.
8	
9	Lead LIII XAFS spectroscopy
10	
11	The quantitatively computed proportions of different Pb species in the untreated and biochar treated military firing
12	range soil are presented in Fig. 3. The LCF analysis demonstrated the transformation of Pb species in the treated
13	soils. The results indicate that Pb in the untreated soil is mainly present as Pb sorbed to humic acid (31.5%)
14	followed by hydrocerussite (23.3%) and Pb-sorbed to ferrihydrite (19.0%). In the sample treated with 1% biochar,
15	the hydrocerussite proportion increased to 50.7%, while Pb sorbed to humic acid decreased to 21.6% compared
16	to the control sample. Likewise, for the sample treated with 5% biochar, the hydrocerussite portion increased to
17	40.4% compared to the control sample. This increased proportion of hydrocerussite may be related to its relatively
18	high stability in soil under alkaline conditions (pH 7.7 to 10.1; Cao et al., 2003). Additionally, Pb-hydroxide
19	(21.5%) and chloropyromorphite (19.0%) are predicted in the 5% biochar treated soil sample. Precipitation of Pb-

1	hydroxide under alkaline soil conditions is commonly reported (Ahmad et al., 2012; Ok et al., 2011). Formation
2	of chloropyromorphite, which is one of the most stable Pb species in soil, is attributed to the presence of phosphate
3	in biochar as indicated by the XRF analysis (Table 2). By increasing the application of biochar to 10%, the
4	proportion of hydrocerussite is decreased to 19.3%, compared to the samples treated with 1% and 5% biochar,
5	probably due to Pb-phosphate (22.4%) formation. The increased phosphate content of the sample treated with 10%
6	biochar facilitates the formation of Pb-phosphate and chloropyromorphite. Several studies have also reported the
7	formation of stable chloropyromorphite in P-treated soils (Hashimoto et al. 2009; Cao et al. 2002). Biochar
8	addition results in an increase in soil pH that also favored the sorption of Pb to kaolinite. Grafe et al. (2007)
9	pointed out that Pb can form polymeric complexes via edge sharing to the more negatively charged kaolinite under
10	increased pH conditions (Puls et al. 1991).
11	The molecular level spectroscopic investigations in conjunction with TCLP leachability indicate that the
12	formation of chloropyromorphite and the precipitation of Pb-phosphate in soil treated with biochar may result in
13	the immobilization of Pb in military firing range soil, thereby contributing to the low leachability and
14	bioavailability of Pb.
15	
16	Conclusions
17	
18	Biochar derived from soybean stover was used for the immobilization of Pb in contaminated firing range soil. The
19	effectiveness of immobilization is evaluated using the TCLP test. The Pb immobilization mechanism is

1	investigated based on SEM-EDX, elemental dot mapping and XAFS analyses. The treatment results show that a
2	reduction of more than 90% in TCLP Pb leachability is obtained upon a treatment regimen of 20% soybean derived
3	biochar. The SEM-EDX, elemental dot mapping and XAFS results in conjunction with TCLP leachability indicate
4	that pozzolanic reaction products, chloropyromorphite and Pb-phosphate formation may simultaneously
5	contribute to the immobilization of Pb in the sample treated with 20 wt% soybean stover biochar. This study
6	showed that the soybean stover derived biochar treatment was effective in immobilizing Pb in contaminated firing
7	range soil.
8	
9	Acknowledgement
10	
11	This study was supported by the Korea Ministry of Environment as The GAIA (Geo-Advanced Innovative Action)
12	Project (No. 173-111-040). This study was also partly supported by the Basic Science Research Foundation
13	through the National Research Foundation (NRF) of Korea, funded by the Ministry of Education, Science and
14	Technology (2012R1A1B3001409).
15	
16	References
17	
18	Ahmad M, Hashimoto Y, Moon DH, Lee SS, Ok YS (2012) Immobilization of lead in a Korean military shooting
19	range soil using eggshell waste: an integrated mechanistic approach. J Hazard Mater 209-210:392-401

1	Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y (2012) Effects of polyacrylamide, biopolymer and biochar on
2	decomposition of soil organic matter and plants residues as determined by 14C and enzyme activities. Eur J
3	Soil Biol 48:1-10
4	Ball DF (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J Soil
5	Sci 15:84-92
6	Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003) Weathering of lead bullets and their environmental
7	effects at outdoor shooting ranges. J Environ Qual 32:526-534
8	Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003a) Lead transformation and distribution in the soils of
9	shooting ranges in Florida, USA. Sci Total Environ 307:179-189
10	Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003b) Weathering of lead bullets and their environmental
11	effects at outdoor shooting ranges. J Environ Qual 32:526-534
12	Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry
13	at a contaminated site. Environ Sci Technol 36:5296-5304
14	Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry
15	at a contaminated site. Environ Sci Technol 36:5296-5304
16	Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate.
17	Bioresour Technol 102:716-723
18	Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting
19	range. Environ Monit Assess 162:37-46

2	range. B Environ Contam Tox 63:312-319
3	Dermatas D, Cao X, Tsaneva V, Shen G, Grubb DG (2006) Fate and behavior of metal(loid) contaminants in an
4	organic matter-rich shooting range soil: Implications for remediation. Water Air Soil Poll 6:143-155
5	Dermatas D, Menouno N, Dutko P, Dadachov M, Arienti P, Tsaneva V (2004) Lead and copper contamination in
6	small arms firing ranges. Global Nest J 6:141-148
7	FitzPatrick EA (1983) Soils: Their formation, classification and distribution. Longman Science & Technical,
8	London, pp 353
9	Gougar MLD, Scheetz BE, Roy DM (1996) Ettringite and C-S-H Portland cement phases for waste ion
10	immobilization: A review. Waste Manage 4:295-303
11	Gräfe M, Singh B, Balasubramanian M (2007) Surface speciation of Cd(II) and Pb(II) on kaolinite by XAFS
12	spectroscopy. J Colloid Interf Sci 315:21-32
13	Hashimoto Y, Matsufuru H, Takaoka M, Tanida H, Sato T (2009) Impacts of chemical amendments and plant
14	growth on lead speciation and enzyme activities in a shooting range soil: an X-ray absorption fine structure
15	investigation. J Environ Qual 38:1420-1428.
16	Keller WD (1964) Processes of origin and alteration of clay minerals. In C. I. Rich & G. W. Kunze (Eds.), Soil
17	clay mineralogy (pp. 3-76). Chappel Hill: University of North Carolina
18	Knechtenhofer LA, Xifra IO, Scheinost AC, Flührer H, Kretzschmar R (2003) Fate of heavy metals in a strongly
19	acidic shooting range soil: Smallscale metal distribution and its relation to preferential water flow. J Plant Nutr

Craig JR, Rimstidt JD, Bonnaffon CA, Collins TK, Scanlon PF (1999) Surface water transport of lead at a shooting

- 1 Soil Sc 166:84-92
- 2 Lin SL, Cross WH, Chian ESK, Lai JS, Giabbai M, Hung CH (1996) Stabilization and solidification of lead in
- 3 contaminated soils. J Hazard Mater 48:95-110
- 4 Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Orebro County, Sweden.
- 5 Environ Geol 27:370-375
- 6 Lin Z, Comet B, Qvarfort U, Herbert R (1995) The chemical and mineralogical behaviour of Pb in shooting range
- 7 soils from central Sweden. Environ Pollut 89:303-309
- 8 Long RP, Zhang X (1998) Treating lead-contaminated soil by stabilization and solidification. Transp Res Rec
- 9 1615:72-78
- 10 MOE (2002) The Korean Standard Leaching Test (KSLT) Methods for soils (p. 225). Gwachun, Kyunggi: Korean
- 11 Ministry of Environment (in Korean)
- 12 MOE (2005) The development of hybrid electrokinetic remediation technique using solar energy on shooting
- 13 range soils contaminated by heavy metals, pp 40-63.
- 14 Moulin I, Stone WE, Sanz J, Bottero JY, Mosnier F, Haehnel C (1999) Lead and zinc retention during hydration
- 15 of tri-calcium silicate: a study by sorption isotherms and 29Si nuclear magnetic resonance spectroscopy.
- 16 Langmuir 15:2829-2835
- 17 Ok YS, Lim JE, Moon DH (2011) Stabilization of Pb and Cd contaminated soils and soil quality improvements
- 18 using waste oyster shells. Environ Geochem Hlth 33:83-91
- 19 Puls RW, Powell RM, Clark D, Eldred CJ (1991) Effects of pH, solid/solution ratio, ionic strength, and organic

1	acids on Pb and Cd sorption on kaolinite. Water Air Soil Poll 57-58:423-430
2	Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using
3	IFEFFIT, J Synchrotron Radiat 12:537-541
4	Robinson BH, Bischofberger S, Stoll A, Schroer D, Furrer G, Roulier S, et al. (2008). Plant uptake of trace
5	elements on a Swiss military shooting range: Uptake pathways and land management implications. Environ
6	Pollut 153:668-676
7	Rose J, Moulin I, Hazemann J-L, Masion A, Bertsch PM, Bottero J-Y, Mosnier F, Haehnel C (2000) X-ray
8	absorption spectroscopy study of immobilization processes for heavy metals in calcium silicate hydrates: 1.
9	case of lead. Langmuir 16:9900~9906
10	Scheckel KG, Ryan JA (2002) Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite.
11	Environ Sci Technol 36:2198-2204
12	Sorvari J, Antikainen R, Pyy O (2006) Environmental contamination at Finnish shooting ranges-the scope of the
13	problem and management options. Sci Total Environ 366:21-31
14	Stansley W, Roscoe DE (1996) The uptake and effects of lead in small mammals and frogs at a trap and skeet
15	range. Arch Environ Con Tox 30:220-226
16	Uchimiya M, Wartelle LH, Lima IM, Klasson KT (2010) Sorption of deisopropylatrazine on broiler litter biochars.
17	J Agric Food Chem 58:12350-12356
18	Ure AM (1995) In: Alloway BJ (ed) Heavy metals in Soils, Glasgow. Chapman & Hall, Boca Raton
19	USEPA (2005) Best management practices for lead at outdoor shooting ranges, EPA-902-B-01-001

1	USEPA (1986) Cation-exchange capacity of soils (Sodium acetate), method, vol 9081, Washington DC
2	USEPA (1992) Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, third ed., Method
3	1311, U.S. EPA, Washington DC
4	USGS (2007) Lead in April 2007. Mineral industry surveys. US Geological Survey
5	Yuan J-H, Xu R-K, Wang N, Li J-Y (2011) Amendment of acid soils with crop residues and biochars. Pedosphere
6	21:302-308
7	Zhang P, Ryan JA (1999) Transformation of Pb(II) from cerrusite to chloropyromophite in the presence of
8	hydroxyapatite under varying conditions of pH. Environ Sci Technol 33:625-630
9	
10	
11	

Table 1 Physicochemical properties of the contaminated firing range soil

Soil properties	Firing range soil
Soil pH	6.94±0.22
Organic matter content (%) ^a	5.94
Cation exchange capacity (meq 100mg ⁻¹) ^b	7.92
Composition (%) ^c	
Sand	85.07
Silt	12.28

	Clay	2.87
	Texture ^d	Loamy sand
1	^a Organic matter content (%) was calculated fr	rom measured loss-on-ignition (LOI) (Ball 1964; FitzPatrick 1983)
2	^b Cation exchange capacity (CEC) measured b	y USEPA method 9081 (USEPA 1986)
3	°Sand, 50-2,000 $\mu m;$ silt, 2-50 $\mu m;$ clay, $<2~\mu$	m
4	^d Soil texture suggested by the United States D	Department of Agriculture (USDA)
5		
6		
7		
8		
9		
10		
11		

Table 2 Elemental composition of firing range soil and soybean stover derived biochar

Element	Firing range soil (wt%)		Soybean stover derived biochar (wt%)	
SiO ₂	60.15	С	85.3	
Al_2O_3	15.9	Na	0.0314	
TiO ₂	0.40	Mg	0.9	
Fe ₂ O ₃	4.31	Al	0.149	
MnO	0.09	Si	0.436	
MgO	0.44	Р	0.914	
CaO	1.32	S	0.244	
Na ₂ O	0.72	Cl	0.075	
K ₂ O	4.37	Κ	6.63	
P_2O_5	0.06	Ca	4.63	
SO_3	0.22	Fe	0.199	

	Sample ID	Firing range soil	Soybean stover derived biochar (wt%)	L:S ratio
	Control	\checkmark	0	0.2
	Soy biochar1	\checkmark	1	0.2
	Soy biochar2	\checkmark	2	0.2
	Soy biochar3	\checkmark	3	0.2
	Soy biochar4	\checkmark	4	0.2
	Soy biochar5	\checkmark	5	0.2
	Soy biochar10	\checkmark	10	0.2
1	Soy biochar20	\checkmark	20	0.2
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				

Table 4 Proportions of the Pb species in the firing range untreated soil (control) and treated with soybean derived biochar (BC) as determined by linear combination fittings

(LCF) on EXAFS s	pectra.
------------------	---------

	Hydrocerussite	Pb-humic acid	Pb-	Pb-kaolinite	Pb-	Chloro-	Pb-	Total	\mathbf{R}^{\dagger}
			ferrihydrite		hydroxide	pyromorphite	phosphate		
				%					
Control	23.3	31.5	19.0	-	-	-	-	73.8	0.33
1% BC	50.7	21.6	-	14.9		-	-	87.2	0.17
5% BC	40.4	-	-	9.4	21.5	19.0	-	90.3	0.13
10% BC	19.3	-	-	12.3		11.3	22.4	65.3	0.14

 $^{\dagger}\,Normalized$ sum of the squared residuals of the fit

Fig. 1 TCLP Pb leachability and TCLP pH results for the contaminated firing range soil upon treatment with soybean stover derived biochar

Fig. 2 SEM-EDX results of the control (a), 20 wt% biochar treated sample (b) and SEM elemental dot maps of 20 wt% biochar treated sample, showing that Pb is associated with P and O (c) and SEM elemental dot maps of the 20 wt% biochar treated sample, showing that Pb is associated with Al, Si and O (d)

Fig. 3 Pb L-III edge EXAFS spectra for firing range untreated soil (a, control) and treated soil with biochar derived from soybean stover with an application rate of 1% (b), 5% (c) and 10% (d), along with standards giving the best linear combination fit (LCF). Circles: LCF fit.

Fig. 1

(a)

Element	Atomic%
O K	77.21
Mg K	0.28
Al K	5.97
Si K	14.85
K K	0.87
Fe K	0.73
Pb M	0.08

(b)

Element	Atomic%
C K	76.73
O K	18.75
Mg K	0.38
Al K	0.22
Si K	0.57
P K	0.71
K K	0.90
Ca K	1.51
Fe K	0.13
Pb M	0.10

(d)

(c)

Fig. 3

