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The review articles on cell immobilization have been published since 1980 and reflect the general 
interest in this topic. Immobilized microbial cells create opportunities in a wide range of sectors 
including environmental pollution control. Compared with suspended microorganism technology, cell 
immobilization shows many advantages, such as resistance to toxic chemicals. This review presents 
the potential of immobilized microbial cells for treatment of toxic pollutants in industrial wastewater, the 
fundamentals, history and advantages of immobilized cells compared with suspended cells, 
characteristics of support materials and the principal methods of immobilization, with special emphasis 
for natural immobilization by cell adsorption. 
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INTRODUCTION 
 
Large-scale production of wastewater is an inevitable 
consequence of all contemporary societies. Most 
wastewaters are usually hazardous to human populations 
and the environment and must be treated prior to 
disposal into streams, lakes, seas, and land surfaces 
(Zhou et al., 2008; Bashan and Bashan, 2010). Although, 
the field of environmental biotechnology has been around 
for decades, starting in the early 20th century, the 
introduction of new technologies has enabled engineers 
and scientists to tackle the more contemporary environ-
ment problems such as detoxification of hazar-dous 
wastes through the use of living organisms (Chen et al., 
2005). 

Traditional biological treatment processes can eliminate 
a large fraction of biodegradable organic compounds 
existed in wastewater. Moreover, the biological treatment 
cost  is  much lower  than  that  of  physical and  chemical  

methods (Kumar et al., 2011). However, many hazardous 
compounds are poorly removed in conventional biological 
processes due to their toxicity. Furthermore, they also 
have adverse impact on the composition and activities of 
microorganism communities in activated sludge flocs, 
thus reducing the overall performance of these facilities. 
The removal of these compounds is a real challenge for 
waste treatment engineers and scientists (Wang et al., 
2002). 

Immobilization of microbial cells has received 
increasing interest in the field of waste treatment 
(Winnicki et al., 1982; Westmeier and Rehm, 1987; 
Heitkamp et al., 1990; Hallas et al., 1992; Cohen, 2001; 
Ahmad et al., 2012). Compared with conventional sus-
pension system, the immobilized microorganism tech-
nology offer a multitude of advantages, such as high bio-
mass, high metabolic activity and strong resistance to
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toxic chemicals (Cassidy et al., 1996; Freeman and Lilly, 
1998; Velankar and Heble, 2003; Junter and Jouenne, 
2004; Wang et al., 2005; Wang et al., 2006; Zhou et al., 
2008; Cai et al., 2011; Liu et al., 2012). Moreover, 
immobilized microorganisms could be cost effective since 
they can be used several times without significant loss of 
activity (Rhee et al., 1996; Devi and Sridhar, 2000). 
Therefore, immobilized microorganism technology has 
been explored as promising for wastewater treatment in 
the past few decades and in the near future (Zhou et al., 
2008). 
 
 
CELL IMMOBILIZATION 
 
Immobilization is a general term describing a wide variety 
of the cell or the particle attachment or entrapment 
(Lopez et al., 1997). It can be applied to basically all 
types of biocatalysts including enzymes, cellular orga-
nelles, animal and plant cells. Currently, different kinds of 
immobilization have found wide applications not only in 
the field of biotechnology, but also in pharmaceutical, 
environmental, food and biosensor industries (Peinado et 
al., 2005).  

The cell immobilization emerged as an alternative for 
enzyme immobilization (Cheetham et al., 1979; 
Parascandola and Scardi, 1980; Woodward, 1988). 
Immobilization of cells containing specific enzymes has 
further advantages such as elimination of long and 
expensive procedures for enzymes separation and 
purification and it is vital to expand their application by 
enabling easy separation and purification of products 
from reaction mixtures and efficient recovery of catalyst 
(Junter and Jouene, 2004; Stolarzewicz et al., 2011). In 
comparison with immobilized enzymes, immobilized cells 
provide new possibilities since they can be used as 
natural, water-insoluble carriers of required enzyme 
activities (Vojtisek and Jirku, 1983).  

In the case of the immobilization of microbial cells, their 
field of application spreads from industrial to environ-
mental process. Microorganisms retained on a carrier can 
be used in continuous and semi-continuous production 
processes allowing for significant cost decrease, as the 
biocatalyst does not need to be refilled (Wada et al., 
1979; Park and Chang, 2000; Mrudula and Shyam, 
2012).  

Cell immobilization has been defined as the phy-sical 
confinement or localization of viable microbial cells to a 
certain defined region of space in such a way as to limit 
their free migration and exhibit hydrodynamic charac-
teristic which differ from those of the surrounding 
environment while retaining their catalytic activities for 
repeated and continuous use (Dervakos and Webb, 
1991; Freeman and Lilly, 1998; Covizzi et al., 2007; 
Amim et al., 2010).  

Since the early 70s, when Chibata’s group announced 
successful  operation  of  continuous  fermentation  of  L- 
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aspartic acid (Coughlan and Kierstan, 1988), numerous 
research groups have attempted various microbial 
applications with immobilized cells (Ramakrishna and 
Prakasham, 1999). Environmental applications of immo-
bilized microbial cells are reported by Bettmann and 
Rehm (1984), Anselmo et al. (1985), Sahasrabudhe et al. 
(1988), Oreilly and Crawford (1989), Beunink and Rehm 
(1990), Balfanz and Rehm (1991), Stormo and Crawford 
(1992), Cassidy et al. (1996), Wang et al. (1997), Wang 
et al. (2002), Wang et al. (2007), Zhang et al. (2007), 
Zhou et al. (2008), Bazot and Lebeau (2009), Wang et al. 
(2010), Ahmad et al. (2012) and Nickzad et al. (2012). 
 
 
SUPPORT MATERIALS  
 
The support selection is one of the crucial decisions to be 
made in the course of preparation of the immobilization 
process (Zacheus et al., 2000). For treatment of 
wastewater, support materials need to meet the following 
criteria: insoluble, non-biodegradable, non-toxic, non-
polluting, light weight; flexibility in overall shape, high 
mechanical and chemical stability, high diffusivity, simple 
immobilization procedure, high biomass retention, mini-
mal attachment of other organisms and preferably a low 
cost price (Leenen et al., 1996; Zacheus et al., 2000). 
Other criteria, such as physical characteristics (porosity, 
swelling, compression, material and mean particle beha-
vior), as well as, possibility for microbial growth and 
solubility, are more application specific (Górecka and 
Jastrzębska, 2011).  

The carriers are classified as inorganic material 
(zeolite, clay, anthracite, porous glass, activated char-
coal, and ceramics) and organic polymers. Inorganic 
carriers were selected to immobilize microorganisms 
because they can resist microbial degradation and are 
thermostable (Cassidy et al., 1996; Verma et al., 2006). 
The organic polymeric carriers are more abundant than 
inorganic carriers and can be natural and synthetic poly-
meric carriers (Cassidy et al., 1996).  

Several syn-thetic (acrylamide, polyurethane, polyvinyl, 
resins) and natural polymer derivatives of algal 
polysaccharides (alginate, carrageenan, agar, agarose), 
and chitosan, an amino polysaccharide derived from 
chitin, has been experimentally used. The most com-
monly used polymers are the natural polymers alginate 
and carrageenan but these natural polymers are less 
stable in wastewater than synthetic polymers (Bashan, 
1998; Arica et al., 2004; Moreno-Garrido, 2008; 
Stolarzewicz et al., 2011).  

Alginates (polymers made of different proportions and 
sequences of mannuronic and guluronic acids extracted 
from brown algae) are easy to handle, nontoxic to 
humans, the environment, and the entrapped microor-
ganisms, legally safe for human use, available in large 
quantities, and inexpensive. From a physiological pers-
pective, a major advantage of alginate is that immobilized  
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cells do  not suffer extreme  changes in  physicochemical 
condition during the procedure of immobilization and the 
gel is transparent and permeable (Bashan and Bashan, 
2010). However, this substance cannot be maintained for 
a long period in aqueous solution because the encap-
sulation immobilized microorganism can easily be broken 
during the operation (Cassidy et al., 1996). 

Chitosan is inexpensive, non-toxic property and 
possesses potentially reactive amino functional groups 
which can enhance the affinity of the carrier with the 
microorganisms. However, the mechanical stability of the 
carrier would decrease because of the biodegradability in 
the course of usage.  

Other natural gels, such as agar, collagen andagarose, 
also can be used as microbial encapsulation carriers 
(Zhou et al., 2008). Some natural polymers are more 
vulnerable to environmental degra-dation by microbes. 
However, diffusivity is higher in natural polymers and they 
are less hazardous to produce (Leenen et al., 1996; 
Cassidy et al., 1996). 

Synthetic polymeric supports are not easily biode-
gradable and have much better mechanical performance 
compared with nature carrier. Materials, such as poly-
acrylamide (PAM), polyvinyl alcohol (PVA), polyethylene-
glycol (PEG) and polycarbamoyl sulphonate (PCS) were 
synthesized as encapsulation carriers (Leenen et al., 
1996).  

In order to improve the stability of gel carrier, various 
synthetic plastics, for example polypropylene (PP), 
polyethylene (PE), polyvinylchloride (PVC), poly-urethane 
(PU) and polyacrylonitrile (PAN) have been explored 
extensively as immobilized microorganism carriers more 
recently (Zacheus et al., 2000).  

Among the various extensively used plastics carriers, 
polyurethane (PU) is one kind of outstanding carrier for 
entrapping microorganisms in piloted applications in 
practical wastewater treatment (Guimarães et al., 2002). 
Martins et al. (2012) reported potential of the Gram-
negative bacterium Serratia marcescens and the yeast 
Candida rugosa to immobilization on polyurethane foam. 
 

 
METHODS FOR IMMOBILIZATION OF MICROBIAL 
CELLS 
 
Immobilization of microbial cells in biological processes 
can occur either as a natural phenomenon or through 
artificial process (Ramakrishna and Prakasham, 1999). 
Different immobilization types have been defined: 
covalent coupling/cross linking, capture behind semi-
permeable membrane or encapsulation, entrapment and 
adsorption (Mallick, 2002). The types of immobilization 
can be grouped as ‘‘passive” (using the natural tendency 
of microorganisms to attach to surfaces-natural or 
synthetic, and grow on them) and ‘‘active” (flocculant 
agents, chemical attachment and gel encapsulation) 
(Cassidy et al., 1996; Cohen, 2001; Moreno-Garrido, 
2008).  

 
 
 
 
Covalent bonding/Cross linking 
 
The mechanism involved in this method is based on 
covalent bond formation between activated inorganic 
support and cell in the presence of a binding 
(crosslinking) agent. For covalent linking, chemical 
modification of the surface is necessary. Covalent 
attachment and cross-linking are effective and durable to 
enzymes, but it is rarely applied for immobilization of 
cells. It is caused mainly by the fact that agents used for 
covalent bonds formation are usually cytotoxic and it is 
difficult to find conditions when cells can be immobilized 
without any damage (Ramakrishna and Prakasham, 
1999). 

There are few reports of successful covalent binding of 
the cells and most of them concern yeast. Navarro and 
Durand (1977) published an article describing a 
successful way of covalent binding of Saccharomyces 
carlsbergensis on porous silica beads. Two years later, 
there was another publication concerning yeast 
(Saccharmyces cerevisiae, Saccharomyces amurcea) 
immobilization with this method on borosilicate glass and 
zirconia ceramics (Messing et al., 1979). 
 
 

Entrapment 
 
Entrapment is an irreversible method, where immobilized 
cells are entrapped in a support matrix or inside fibers. 
This technique creates a protective barrier around the 
immobilized microbes, ensuring their prolonged viability 
during not only processing but also storage.in polymers 
(Górecka and Jastrzębska, 2011). Entrapment is the 
most method extensively studied in cell immobilization. 
The matrices used are agar, alginate, carrageenan, 
cellulose and its derivatives, collagen, gelatin, epoxy 
resin, photo cross-linkable resins, polyacrylamide, 
polyester, polystyrene and polyurethane (Lopez et al., 
1997; Ramakrishna and Prakasham, 1999). 

Entrapment of the microorganisms in porous polymer 
carrier was often used to capture the microorganisms 
from suspended solution and then obtain the immobilized 
microorganisms. The polymer matrix used in this method 
confining microorganisms has porous structure, and thus 
the pollutant and various metabolic products could easily 
diffuse through into the matrix. In this method, a lot of 
porous polymers can entrap microorganisms under 
ambient conditions (Verma et al., 2006). 

As a rule, the entrapment methods are based on the 
inclusion of cells within a rigid network to prevent the 
cells from diffusing into surrounding medium while still 
allowing penetration of substrate. Entrapment of cells in 
alginate gel is popular because of the requirement for 
mild conditions and the simplicity of the used procedure. 
Several reports are available employing alginate gel 
(Kierstan and Bucke, 1977). 

Entrapment   allows   high   mechanical   strength,   but 
contains  some  disadvantages,  such   as,  cell   leakage, 



 
 
 
 
costs of immobilization, diffusion limitations, and 
deactivation during immobilization and abrasion of 
support material during usage. Another disadvantage is 
low loading capacity as biocatalysts have to be 
incorporated into the support matrix (Krekeler et al., 
1991; Song et al., 2005; Gao et al., 2010; Stolarzewicz et 
al., 2011). 
 
 
Encapsulation 
 
Encapsulation is another irreversible immobilization 
method, similar to entrapment. In this process, bioca-
talysts are restricted by the membrane walls (usually in a 
form of a capsule), but free-floating within the core space 
(Górecka and Jastrzębska, 2011). The membrane itself is 
semi-permeable, allowing for free flow of substrates and 
nutrients (when cells are used as a biocatalyst), yet 
keeping the biocatalyst inside. The factor determining this 
phenomenon is the proper pore size of the membrane, 
attuned to the size of core material. This limited access to 
the microcapsule interior is one of the main advantages 
of microencapsulation, for it protects the biocatalyst from 
the harsh environmental conditions. As most immobi-
lization method, it prevents biocatalyst leakage, increas-
ing the process efficiency as a result (Park and Chang, 
2000).  

The encapsulation method was used to enclose the 
microorganisms in a polymer-gel by Jen et al. (1996) and 
is one of the most frequently used in laboratory experi-
ment up to now and there is far away engineering appli-
cation for wastewater treatment (Lozinsky and Plieva, 
1998).  

However, even though in encapsulation, high cell 
loading can be achieved, but the capsules are still very 
weak (Song et al., 2005). The diffusion limitation is one of 
the inevitable drawbacks associated with encapsulation 
method (Lozinsky and Plieva, 1998).  
 
 
Adsorption 
 
The immobilization passive or adsorption natural of 
microorganisms onto porous and inert support materials 
is similar to the adsorption of colloid particles (Araujo et 
al., 2010). Apparently, it is the first example of cell 
immobilization and probably is the simplest method of 
reversible immobilization (Monsan et al., 1987; Klein and 
Ziehr, 1990).  

This technique is based on the physical interaction 
between the microorganism and the carrier surfaces, 
while frequently reversible is simple, cheap and effective. 
The immobilization of microorganisms on properly 
chosen adsorbents stimulates microbial metabolism, 
protects cells from unfavorable agents, and preserves 
their physiological activity (Nikovskaya, 1989; Kozlyak et 
al., 1991, 1993). 
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Different from the inherent problems associated with 

cell entrapment, cell immobilization through adsorption 
provides a direct contact between nutrients and the 
immobilized cells thus, eliminating such concerns 
(Braschler et al., 2005). This cell immobilization tech-
nique involves the transport of the cells from the bulk 
phase to the surface of support (porous and inert support 
materials), followed by the adhesion of cells, and subse-
quent colonization of the support surface (Kilonzo and 
Bergougnou, 2012). 

Adsorption is based on weak forces, however, still 
enabling an efficient binding process. Usually in bonds 
formation, several forces are involved: van der Waals 
forces, ionic and hydrophobic interactions and hydrogen 
bonds. Both electrostatic and hydrophobic interactions 
govern the cell-support adhesion, which is the key step in 
controlling the cell immobilization on the support (Hsu et 
al., 2004, Górecka and Jastrzębska, 2011).  

In contrast to ceramics, wood chips and straw, fibrous 
matrices provide adequate supporting surfaces for cell 
adsorption (Talabardon et al., 2000; Chu et al., 2009) due 
to their high specific surface area, void volume, mecha-
nical and permeability, low pressure drop, diffusion 
problems and toxicity, maximum loading, biodegradability 
and durability and low cost and high availability (Huang 
and Yang, 1998). Their natural configuration also allows 
them to trap more cells than other materials (Yang and 
Shu, 1996; Yang and Lo, 1998) 
 
 
Polyurethanes foams for immobilization by 
adsorption 
 
Polyurethanes (PU) are one of the most versatile 
materials in the world today. They are known for being a 
perfect material for footwear, machinery industry, 
coatings and paints, rigid insulation, elastic fiber, soft 
flexible foam, medical devices (Romaškevič et al., 2006). 
Some time ago PU was found to be applicable in the 
biochemical and biotechnological fields and flexible 
polyurethane foams have gained relevance as microbial 
carriers for their good mechanical properties, high 
porosity, large adsorption surface, resistance to organic 
solvents and microbial attack, easy handling, regene-
rability and cost effectiveness (Patil et al., 2006). In 
general, the high rates of sorption of positive charge and 
hydrophobic character of the polyurethane foam, allow 
interaction with most microbial cell surfaces (Afghan et 
al., 1984; Wang et al., 2009). They are inexpensive and 
easily regenerated by extraction or washing with solvents 
(Belyakova and Schevchenko, 1986). 

The microbial immobilization in polyurethane, combined 
with the use of bioreactors improved significantly the 
biodegradation process of phenols and derivatives (Pai et 
al., 1995). The highest efficiency in the degradation of o-
phthalate by cells Bacillus-spp. immobilized in poly-
urethane foam, in relation to alginate was reported by
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Table 1. Factors affecting the microbial cell adsorption. 
 

Material support Environmental factor Microbial cell surface  

Texture or roughness 

Hydrophobicity 

Surface charge 

Flow velocity  

pH 

Temperature 

Cations 

Antimicrobial agents 

Hidrofobicity 

Extracelular appendices 

Extracellular polymeric substances 

 

Source: Donlan (2002) and Kilonzo and Bergougnou (2012). 
 
 
 

Patil et al. (2006). Chanthamalee; Luepromchai (2012) 
described the efficiency of the Gordonia sp immobilized 
in polyurethane foam in removing lubricants boats, while  
Silva et al. (2006) have described that the immobilization 
of bacteria in polyurethane foam increased resistance to 
high concentrations of sulphate. 
 
 

Factors affecting microbial cell adsorption 
 

There are many factors (such as the age and the 
physiological state of cells) that influence the sorption of 
microbial cells. The surface structures of bacterial cells 
(flagella and other appendages), superficial charges and 
hydrophobicity also play an important part in the cell 
adherence to solid surfaces (Donlan, 2002; Chae et al., 
2006; Oulahal, et al., 2008). The composition of the 
medium, its pH, and environmental conditions 
considerably influence the adsorption of cells by 
changing their electrokinetic potential (Stanley, 1983; 
Fletcher and Pringle, 1986; Kilonzo and Bergougnou, 
2012).  
The surface properties of adsorbents also affect the 
process of cell immobilization (Busalmen and Sanchez, 
2001, Ubbink and Schar-Zammaretti, 2007). The degree 
of cell immobilization depends on the structure and the 
size of adsorbent pores (Arinbasarova et al., 1982). The 
nature of adsorbents is also important. Organic adsor-
bents are chemically stable and show a great variety of 
surface properties and pore structures, whereas inorga-
nic adsorbents are resistant to biological degradation are 
affordable, and can be easily regenerated. The disadvan-
tage of inorganic adsorbents is that they are soluble in 
alkaline solutions (Samonin and Elikova, 2004). The 
principal factors affecting the microbial cell adsorption are 
presented in Table 1. 
 
 

CONCLUSIONS 
 
Immobilized microbial systems currently offer various 
advantages over free systems. One of the most 
promising areas of research is using this technology to 
reduce environmental pollutions through biodegradation 
of many harmful compounds. The application of immobi-
lization technology to environmental area is in its preli-
minary stages, but the results seen so far are promising.  

The immobilized cells will be useful to treat the waste to 
convert the toxicant into nutrient, biomass and CO2 via 
biodegradation through their intermediates. Better biode-
gradation rate was observed in immobilized cells due to 
absence of internal and external mass transfer resis-
tance. An immobilized cell is one of the approaches for 
incorporating fungal biomass into an engineering pro-
cess. The advantage of the process based on immobi-
lized biomass include enhancing microbial cell stability, 
allowing continuous process operation and avoiding the 
biomass - liquid separation requirement. 
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