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Abstract: Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS)
agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the
progressive increase of ionic strength permitted its rapid immobilization under all studied pH values.
This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose
in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the
proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this
support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable
and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics
of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate
at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final
blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that
of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although
presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using
the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme
immobilization on this support.

Keywords: enzyme immobilization/stabilization; heterofunctional supports; multipoint covalent
attachment; immobilization optimization; multi-step immobilization; vinyl sulfone supports

1. Introduction

Enzymes have great relevance in the development of green and sustainable chemical
processes because of their high activity under mild conditions, and their high product
selectivity and substrate specificity [1–5]. However, enzymes are biological biocatalysts
unsuitable for many industrial requirements. The limited stability of many natural en-
zymes may be improved by different techniques, such as directed evolution [6,7] or site
directed mutagenesis [8–10], and these tools can also make up for their low activity with
substrates far different from their physiological ones [11–15]. Nowadays, researchers
may even produce enzymes with an additional artificial active center (the so-called plur-
izymes), that are biological or not [16–18]. Nevertheless, another enzyme limitation is
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the aqueous solubility of most enzymes, which makes their recovery and re-use com-
plex. The solution to enzyme recovery and reuse was the initial objective of enzyme
immobilization [19,20]. Researchers have shown that immobilization may also solve some
other enzyme limitations. Proper enzyme immobilization [21] can improve enzyme stability
by different methods (prevention of intermolecular interactions, rigidification of the enzyme
structure by multipoint covalent attachment, generation of an adequate nanoenvironment,
etc.) [22], and also alter enzyme activity, selectivity or specificity, reduce inhibitions or be
coupled to enzyme purification [23–31]. Immobilization may be a powerful tool in the
design of an industrial biocatalyst when adequately utilized [21].

The enzyme penicillin G acylase (PGA) from Escherichia coli is one of the first successes
of the use of enzymes as biocatalysis in pharma-industry, and is used to produce 6-amino
penicillanic acid by hydrolysis of penicillin G [32–34]. Curiously, its natural function is
still under debate [35]. The enzyme has the potential for use in many other applications,
such as thermodynamically or synthetically controlled synthesis of semi-synthetic beta-
lactamic antibiotics, resolution of racemic mixtures, and unblocking steps in different
synthetic processes, among others [36–44]. The enzyme is produced as a monomer that is
self-processed with two different subunits [45,46]. The enzyme undergoes a conformation
change induced by the interaction with the acyl donor substrate (phenyl acetic or an analog),
that exposes the catalytic group to the medium, otherwise the active center is not in contact
with the reaction medium [47]. The enzyme has been immobilized on many different
supports, and this has proved to be a critical point to widen its range of applications [48,49].

For example, PGA has been utilized in some pioneering works in enzyme immo-
bilization, such as the development of enzyme crosslinked aggregates by the group of
Professor Sheldon [50], the use of glyoxyl-agarose [51,52], epoxide-Eupergit [53] or epoxide-
Sepabeads [54] supports to stabilize enzymes via multipoint covalent attachment, and
the use of site-directed mutagenesis to improve the enzyme immobilization [55–58] by
the group of Professor Guisan. Multipoint immobilized biocatalysts of this enzyme have
been utilized to successfully produce antibiotics in the presence of high organic solvent
concentrations (conditions where not so stabilized PGA biocatalysts became quickly inacti-
vated) [59–61].

However, to date, PGA has not been immobilized/stabilized on supports activated
with vinyl sulfone groups. This immobilization support has been recently reported to
be very suitable for production of intense enzyme-support multipoint attachment [22,62].
In fact, it can involve not only primary amino groups of the lateral chain of Lys and
the protein terminal amino group(s) in the enzyme immobilization, but also thiols, im-
idazole or phenol groups of Cys, His or Tyr [62], similar to epoxy groups [58,63] but
improving the range of reactivity of glyoxyl groups, which only react with primary amino
groups [64]. The length of the spacer arm is larger than that of the glyoxyl groups, and
this has a double effect [22]. When the spacer arm is longer, it has more mobility and
can reach more groups in the enzyme, and can produce more intense multipoint covalent
immobilization [62,65]. However, this also has a negative effect, as each enzyme group
attached via this longer spacer arm has more mobility, so that each additional bond has
a smaller structure rigidification effect. Stabilization compared to glyoxyl supports de-
pends on the specific enzyme, although the number of enzyme-support bonds should be
higher [62,65]. As a reaction end point, a blocking step is required to eliminate the chemical
reactivity of the support. This permits a final tuning of enzyme features, as the blocking
step may determine the enzyme-support interactions, which conditions the final enzyme
structure [62,65–69] and the final properties of the immobilized enzyme. This includes not
only enzyme stability, specificity and activity [62,65–69], but also the inactivation pathway
that the enzyme follows during inactivation [70]. A layer of vinyl sulfone groups is hy-
drophobic enough to promote the immobilization of lipases on agarose-vinyl sulfone via
interfacial activation [65]. These enzymes have a special affinity by hydrophobic supports
due to their natural function [71], and this has been exploited to develop specific lipase
immobilization protocols [72,73].
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The preparation of the immobilization of an enzyme on vinyl sulfone support has
at least three steps [59,62–67]. The first is the immobilization conditions (usually the
immobilization pH value is studied), that are determined by where the enzyme is fixed to
the support. This establishes the orientation of the enzyme on the support, and the area that
will be involved in the enzyme-support reactions. The second is the incubation conditions,
where the already immobilized enzyme reacts with the support, which determines the
intensity of the enzyme-support multipoint attachment. The last step is the blocking step,
where the remaining vinyl sulfone groups react with different nucleophiles to prevent
undesired enzyme-support covalent reactions during operation. This step determines the
final enzyme-support interactions [59,62–67].

Our aim was to immobilize PGA from E. coli on agarose-vinyl sulfone (VS) and to
study the stabilization effects of this immobilization. Agarose beads were chosen because
they represent a hydrophilic and inert porous support, and the only groups able to interact
with the enzyme should be those introduced by the researcher, in this case vinyl sulfone [74].
Among the strategies to determine enzyme stability, we studied this measuring activity
loses under thermal stress conditions, considering that the enzyme was more stable when
these activity losses were smaller than those of the reference [75].

2. Results
2.1. Immobilization of PGA on VS Agarose Beads

In an initial trial, we tried to immobilize the enzyme on a VS and glyoxyl support in
a ratio of 1/10. This enzyme has been shown to be immobilized very rapidly in glyoxyl
agarose [52], even when this support requires the simultaneous establishment of several
enzyme-support bonds to fix the enzyme to the support [76]. Figure 1A shows the fast
immobilization of PGA on this support (all PGA activity was immobilized in the first
activity determination assay over a 30 min period). However, the immobilization on vinyl
sulfone-agarose was much slower at all the assayed pH values (including pH 10.0), with
immobilization yields under 10%, even after 24 h of immobilization (Figure 1B–E), in
contrast to the usual quick immobilization observed with other enzymes [62,65]. This
was an unexpected result, as glyoxyl only immobilizes the enzyme via a multi-reaction
with several non-protonated primary amino groups [76] and vinyl sulfone can immobilize
the enzyme via just one bond, involving many more groups (His, Tyr for example) in the
reaction with the support [65]. This agrees with other reports where enzymes that could
be immobilized on glyoxyl supports were not immobilized on VS supports [66,67,77], and
suggests that immobilization on VS-activated supports may be a more complex process
that just the covalent reaction between nucleophiles in the enzyme and the VS groups in
the support. In some cases, it was observed that the activity of the suspension slightly
increased during the first moments of the immobilization (e.g., at pH 7, Figure 1B), which
may be caused by distortions of the enzyme structure with positive effects on the enzyme
activity, as observed using this support with other enzymes [65,77].
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Figure 1. Immobilization courses of PGA (2.5 mg/g) on vinyl sulfone agarose at different pH values.
(A) Immobilization on glyoxyl agarose support at pH 10; (B): immobilization in VS-agarose at
pH 7.0; (C) immobilization in VS-agarose at pH 8.0; (D) immobilization in VS-agarose at pH 9.0; (E)
immobilization in VS-agarose at pH 10.0. Empty circles with dashed line: reference suspension. Full
triangles with solid line: suspension. Full squares with solid line: supernatant. Other specifications
are described in Methods.

To immobilize a higher percentage of enzyme activity and in order to have a high
enough activity to check at least the stability of the immobilized enzyme, we concen-
trated the enzyme and the support using an enzyme solution volume:support mass of 3:1
(Figure 2A–D). Using glyoxyl-agarose, the immobilization remained complete in the first
measure (Figure 2A). Under these conditions, the immobilization yield on vinyl sulfone
agarose reached a value of 50% after 1.5 h at pH 9, with lower immobilization yields at
pH 8 or 7.0 (Figure 2B–D). Immobilization was almost total after 48 h at pH 7.0 or after 24 h
at pH 8.0 and 9.0. Although the results were disappointing, the biocatalysts were blocked
using Gly and their stabilities were determined. The inactivation courses in Figure 3 show
very poor stability of the VS immobilized enzyme when compared to glyoxyl-PGA. All the
inactivation courses of vinyl sulfone immobilized PGA are superimposable irrespective of
the immobilization condition. This suggests that this strategy of immobilization was not
suitable to immobilize or stabilize PGA.
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Figure 2. Immobilization courses of PGA (2.5 mg/g) on vinyl sulfone agarose at different pH values
in the proportion of 1 g of support for 3 mL of enzyme solution. (A) immobilization on glyoxyl
agarose support; (B) immobilization in VS-agarose at pH 7.0; (C) immobilization in VS-agarose
at pH 8.0; (D) immobilization in VS-agarose at pH 9.0. Empty circles with dashed line: reference
suspension. Full triangles with solid line: suspension. Full squares with solid line: supernatant.
Other specifications are described in Methods.
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Figure 3. Thermal inactivation courses of PGA immobilized at different pH values. The enzyme
was immobilized, in the proportion of 1 g of support to 3 mL of enzyme solution. Incubation
was carried out in 50 mM sodium carbonate at pH 9.0 for 3 h and blocked with 2 M glycine at
pH 8.0 for 48 h. Empty circles with dashed line: glyoxyl agarose-PGA. Full triangles with solid line:
immobilization at pH 7.0. Full squares with solid line: immobilization at pH 8.0. Full circles with
solid line: immobilization at pH 9.0. Other specifications are described in the Methods.

At this point, the hydrophobic character of the VS layer, which created a problem
in immobilizing lipases [67], opened up a new opportunity. If this hydrophobicity is
high enough to permit the PGA hydrophobic adsorption (at least a partial adsorption)
on the support at an ionic strength where the enzyme remains soluble and active, a new
opportunity may be opened. The VS-agarose support may behave as a heterofunctional
support [66], permitting a first immobilization of the enzyme via hydrophobic interactions,



Molecules 2022, 27, 7587 6 of 19

and then permitting the covalent enzyme-support reaction. The use of supports activated
with vinyl sulfone and other moieties able to produce the previous adsorption of the enzyme
(e.g., octyl-VS, amino VS) have been successful in immobilizing enzymes that do not
immobilize on monofunctional VS supports [66,77]. To analyze if the previous adsorption
of the enzyme on the support surface could facilitate PGA covalent immobilization on
this support, the effect of the ionic strength on the PGA immobilization on VS supports
was studied.

2.2. Effect of the Ion Strength on PGA Immobilization on Vinyl Sulfone Agarose Beads

Figures 4–6 show the immobilization courses of PGA on VS-agarose at different con-
centrations of sodium sulfate, sodium phosphate and sodium chloride (using a relation of
1/10) at pH 8.0. This pH was chosen because it permits high immobilization rates with other
enzymes [62,65,67–70,77] while it is not deleterious to enzyme stability. The immobilization
rate increased with concentration of the salt. One hundred percent immobilization yield
was reached after just 30 min employing 1 M sodium sulfate or sodium phosphate, with a
less effective immobilization using 1 M NaCl. The figures show how the immobilization
rate of the enzyme on glyoxyl-agarose was almost unaffected by the use of 1 M of these
salts. Considering the activity of the final biocatalysts and the simplicity of preparing the
solutions, further studies were performed using 1 M sodium sulfate. The immobilization of
PGA was attempted at pH 7, 8 and 9 on VS-agarose (Figure 7). Under this sodium sulfate
concentration, PGA could be fully immobilized on VS-agarose even at pH 7 (Figure 7B). If
0.05% Triton X100 was added, immobilization once again became a very slow process when
using VS-agarose (results not shown), confirming that the first hydrophobic adsorption of
PGA was required on the support to produce the final covalent immobilization.
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Figure 4. Immobilization courses on glyoxyl agarose (A) and on vinyl sulfone agarose at different
concentrations of sodium phosphate at pH 8.0, 25 ◦C. (B) 25 mM; (C) 250 mM; (D) 500 mM; (E) 1 M.
Empty circles with dashed line: reference suspension. Full triangles with solid line: suspension. Full
squares with solid line: supernatant. Other specifications are described in Methods.
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Figure 5. Immobilization courses of PGA (2.5 mg/g) on glyoxyl agarose (A) and on vinyl sulfone
agarose at different concentrations of sodium chloride in 50 mM sodium phosphate at pH 8.0, 25 ◦C.
(B) 500 mM; (C) 1 M. Empty circles with dashed line: reference suspension. Full triangles with
solid line: suspension. Full squares with solid line: supernatant. Other specifications are described
in Methods.
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Figure 6. Immobilization courses of PGA (2.5 mg/g) on glyoxyl agarose (A) and on vinyl sulfone
agarose at different concentrations of sodium sulfate at pH 8.0, 25 ◦C in 50 mM sodium phosphate at
pH 8.0, 25 ◦C. (B) 100 mM; (C) 250 mM; (D) 500 mM; (E) 1 M; (F) 2 M. Empty circles with dashed
line: reference suspension. Full triangles with solid line: suspension. Full squares with solid line:
supernatant. Other specifications are described in Methods.

The covalent immobilization was so rapid after the PGA adsorption that when we try
to release the enzyme from the support, no enzyme could be released from the beginning
of the immobilization process (using even detergents).

This result seems to support the hypothesis that the enzyme was first immobilized
via hydrophobic interactions at high ionic strength, and then, a covalent reaction between
the enzyme and the support was produced. However, when we tried to release enzyme
from the support by incubating at low ion strength, no enzyme release could be observed.
This could be due to a very rapid enzyme-support covalent reaction after the adsorption at
pH 8. In any case, we tried to study the effects of the variables in the different steps on the
final features of this biocatalyst.
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Figure 7. Immobilization courses of PGA (2.5 mg/g) on glyoxyl agarose (A) and on vinyl sulfone in
1 M sodium sulfate at 25 ◦C at different pH values. (B) pH at 7.0; (C) pH at 8.0; (D) pH at 9.0. Empty
circles with dashed line: reference suspension. Full triangles with solid line: suspension. Full squares
with solid line: supernatant. Other specifications are described in Methods.

2.3. Effect of Different Experimental Conditions of the Different Steps of the PGA-VS-Agarose
Biocatalyst Preparation oniIts Final Features
2.3.1. Effect of the Immobilization pH

Considering that the first step of immobilization seems to be hydrophobic enzyme
adsorption on the support, it is possible that the effect of the immobilization pH on the final
enzyme performance may be lower than in other cases where this alteration of the reactivity
of the enzyme groups with the support may alter the final enzyme orientation [67]. For this
purpose, the enzyme was immobilized at pH 7.0, 8.0 or 9.0, maintaining the incubation step
at pH 9.0 in the presence of 100 mM phenyl acetic acid/30% glycerol (to minimize enzyme
inactivation) [59,78,79] for 3 h and blocking the biocatalyst with Gly. The incubation
step was identical for all three biocatalyst with the immobilization pH being the only
difference, allowing the same enzyme-support reactivity during the incubation (time and
pH value were identical) and using the same blocking agent (that also can affect the final
enzyme performance) Table 1 shows the results. In the immobilization step, the activity
was higher using pH 7.0 and decreased when increasing the pH (by around one third at
pH 9.0). The incubation, even in the presence of protector agents, decreased the activity by
approximately an additional 10% for all biocatalysts. The blocking of the biocatalysts with
Gly increased the activity of the biocatalysts, very likely by inducing some conformational
change of the enzyme that was positive for activity with this substrate.

Figure 8 shows the inactivation courses of the biocatalysts. They are much more stable
than the enzyme immobilized at low ionic strength (Figure 3), but they are still significantly
less stable than the PGA-glyoxyl biocatalyst [52–54]. Differences among the stabilities of all
biocatalysts were not very large, but the enzyme immobilized at pH 7.0 decreased its activity
in the slowest fashion, with the fastest inactivation that of the biocatalysts immobilized at
pH 9.0. The reactivity of the enzyme with the support during the immobilization step was
higher at pH 9.0 and lower at pH 7.0 [62], which could be related to a different orientation
of the enzyme on the support and not to a lower number of enzyme-support bonds. Even
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though the first event of the immobilization seemed to be a hydrophobic adsorption,
the immobilization pH played an important role in defining the final enzyme features.
Considering activity/stability parameters, immobilization at pH 7.0 was selected as the
best condition for this first step.

Table 1. Effect of the immobilization pH on the expressed activity of PGA immobilized on VS-
agarose. Biocatalysts were immobilized using 1 M sodium sulfate with 50 mM of each buffer; sodium
phosphate at pH 7.0, sodium phosphate at pH 8.0 and sodium carbonate at pH 9.0. Incubation was
carried out in 50 mM sodium carbonate at pH 9.0 (100 mM phenylacetic acid and 30% glycerol)
for 3 h and blocking with 2 M glycine at pH 8.0. The experiments were conducted as described in
the Methods.

Relative Activity (%)

Biocatalyst (Immobilization
pH Value) Immobilization Incubation Blocking

pH 7 88.60 ± 4.41 70.50 ± 3.87 75.25 ± 3.26
pH 8 77.53 ± 3.87 63.13 ± 3.16 70.32 ± 3.51
pH 9 67.56 ± 3.37 57.02 ± 2.85 66.41 ± 2.82
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Figure 8. Thermal inactivation courses of PGA immobilized in VS-agarose at different pH values
using 1 M sodium sulfate (see legend of Figure 7) compared to the enzyme immobilized in glyoxyl
agarose. Empty circles with dashed line: glyoxyl agarose. Full triangles with solid line: immobi-
lization on agarose-VS was performed at pH 7.0. Full squares with solid line: immobilization was
performed at pH 8.0. Full circles with solid line: immobilization was performed at pH 9.0. Other
specifications are described in the Methods.

2.3.2. Effect of Incubation Conditions

It has been shown that high pH value increase the reactivity of enzyme groups with
the support, and that a higher intensity of the enzyme supports multipoint attachment [22].
However, enzyme distortions caused by this enzyme-support reaction may result in a
milder incubation condition that can yield better activity/stability parameters. PGA was
immobilized at pH 7.0, and incubated for 3 h at pH 7.0, 8.0, 9.0 or 10.0 in the presence of
phenylacetic acid and glycerol, and finally blocked with Gly. Table 2 shows the activity
losses of each step. The incubation at pH 10.0 produced a significant decrease in enzyme
activity, down to around 40%, while at pH 9.0 the expressed activity was over 50%, and at
pH 7.0 and 8.0, approximately 70%.
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Table 2. Effect of the incubation pH on the expressed activity of PGA immobilized on VS-agarose.
The enzyme was immobilized at pH 7.0 (see legend of Table 1). Incubation was performed in 50 mM
of each buffer (containing 100 mM phenyl acetic acid and 30% glycerol); sodium phosphate at pH 7.0,
sodium phosphate at pH 8.0, sodium carbonate at pH 9.0 and sodium carbonate at pH 10.0 for 3 h.
Blocking was performed by incubation in 2 M glycine at pH 8.0. The experiments were conducted as
described in the Methods.

Relative Activity (%)

Biocatalyst Immobilization Incubation Blocking

pH 7 92.46 ± 4.62 69.37 ± 3.46 75.54 ± 3.13
pH 8 85.86 ± 4.29 69.49 ± 3.47 72.66 ± 3.10
pH 9 87.51 ± 4.37 55.36 ± 2.96 61.82 ± 2.59

pH 10 88.57 ± 4.42 35.33 ± 1.76 52.69 ± 1.88

Blocking produced an increase in the enzyme activity that was more significant when
the enzyme was incubated at pH 10. Inactivation of the biocatalysts (Figure 9) showed
that the most stable biocatalyst was that incubated at pH 10, and was next in stability after
the glyoxyl-PGA preparation. The enzymes incubated at the other pH values were less
stable when the incubation pH decreased. The activity loss during incubation at pH 10
was partially reversed by the blocking step; therefore, we selected pH 10 as the optimal
incubation pH (Table 3). Next, we analyzed the effects of the incubation
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Figure 9. Thermal inactivation courses of PGA immobilized at pH 7.0 in 1 M sodium sulfate and
incubated at different pH values (compared to the enzyme immobilized on glyoxyl agarose. The
incubation time was 3 h and the biocatalysts were blocked with 2 M glycine. Empty circles with
dashed line: glyoxyl agarose-PGA. Full triangles with solid line: sodium phosphate at pH 7.0. Full
squares with solid line: sodium phosphate at pH 8.0. Full circles with solid line: sodium carbonate at
pH 9.0. Full rhombi with solid line: sodium carbonate at pH 10.0. Other specifications are described
in the Methods.

Enzyme-support reaction time is an important parameter in the intensity of multipoint
covalent attachment. Immobilization may be just a physical phenomenon (as in this case) or
involve just one covalent bond, while to reach the maximum intensity of enzyme-support
reaction, it is necessary to leave time lomg enough. Immobilization plays an important
role because it involves the reaction between two rigid and not fully complementary
structures [21,22,80,81]. Activity decreased from 45% after 1 h to around 25% after 24 h,
suggesting a support-enzyme reaction, and remained unchanged later (Table 3). The
blocking step partially reversed the negative effects of the incubation time on activity, and
increased by almost 1.5 to values ranging 50%. The inactivation rate decerased when going
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from 1 h to 3 h of incubation (Figure 10), with any later effects being almost negligible.
Incubation for 3 h at pH 10 was selected as optimal incubation conditions.

Table 3. Effect of the incubation time on the expressed activity of PGA immobilized on VS-agarose
The immobilization was at pH 7 and the incubation was performed in sodium carbonate 50 mM
(containing 100 mM phenyl acetic acid and 30% glycerol) at pH 10.0. Blocking was performed by
incubation in 2 M glycine at pH 8.0. The experiments were conducted as described in the Methods.

Relative Activity (%)

Biocatalyst Immobilization Incubation Blocking

1 h 71.96 ± 3.59 40.38 ± 1.52 69.14 ± 3.46
3 h 90.22 ± 4.51 38.85 ± 1.44 55.08 ± 3.40
5 h 80.21 ± 4.01 29.55 ± 1.18 50.35 ± 2.76
24 h 70.67 ± 3.53 26.03 ± 1.30 46.42 ± 2.82
48 h 83.03 ± 4.15 25.44 ± 1.27 45.95 ± 3.09
72 h 79.15 ± 3.95 26.62 ± 1.33 45.90 ± 3.35
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Figure 10. Thermal inactivation courses of PGA immobilized at pH 7 in 1 M sodium sulfate and
incubated at pH 10 for different times compared to the enzyme immobilized on glyoxyl agarose The
biocatalyst was blocked with 2 M glycine. Empty circles with dashed line: glyoxyl agarose. Empty
triangles with solid line: 1 h. Full circles with solid line: 3 h. Full squares with solid line: 5 h. Empty
squares with solid line: 24 h. Full rhombus with solid line: 48 h. Full triangles with solid line: 72 h.
Other specifications are described in the Methods.

2.3.3. Effect of the Blocking Step

This step alters the enzyme-support physical interactions [70]. Table 4 shows that
blocking with Gly and ethanolamine produced the most active preparations (increasing the
activity by almost 1.5-fold) and producing a final activity around 55%.

Blocking with β-mercaptoethanol and Asp produced a significant decrease in the
activity of the incubated biocatalyst (the final activity was 9% and 3%, respectively), while
Cys reduced the activity to 30%. Glucose or ethylenediamine did not affect enzyme
activity significantly.

Comparison of the stability of different biocatalysts (Figure 11) showed that the
unblocked biocatalyst was not the least stable, indicating that an inadequate blocking
agent can be negative for enzyme stability. The use of ethanolamine or Gly as blocking
agents produced stability similar to that of PGA-glyoxyl (reported to be thousands-fold
more stable than the free enzyme) [52–54]. Blocking with glucose and ethylenediamine
produced biocatalysts slightly less stable than the unblocked biocatalyst, while Cys and
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mercaptoethanol blocking resulted in stabilities similar to the unblocked biocatalyst. Asp
blocking produced a biocatalyst with the lowest stability. Therefore, blocking was found
to be decisive for the final stability of the biocatalyst [62,65,67–70,77], and in this case
ethanolamine and Gly produced the best results.

Table 4. Effect of the blocking agent on the expressed activity of PGA immobilized on VS-agarose.
The enzyme was immobilized in 1 M sodium sulfate/50 mM sodium phosphate pH 7.0, incubated
in sodium carbonate 50 mM (100 mM phenylacetic acid and 30% glycerol) at pH 10.0 for 3 h. The
concentration of the blocking agents was 2 M at pH 8.0 for 48 h. The experiments were conducted as
described in the Methods.

Relative Activity (%)

Biocatalyst Immobilization Incubation Block

Glycine 74.79 ± 3.74 40.37 ± 0.72 55.75 ± 1.93
Ethanolamine 75.62 ± 3.78 39.67 ± 0.78 57.24 ± 2.86

Cysteíne 82.44 ± 4.12 38.95 ± 0.74 30.03 ± 1.50
Aspartic 74.32 ± 3.72 40.31 ± 0.76 3.40 ± 0.17

Ethylenediamine 76.67 ± 3.83 40.25 ± 0.71 40.05 ± 2.01
Glucose 78.91 ± 3.95 41.66 ± 0.78 44.87 ± 2.24

β-mercaptoethanol 73.49 ± 3.67 38.02 ± 0.70 9.42 ± 0.47
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Figure 11. Effect of different blocking agents on the stability of the enzyme penicillin G acylase
immobilized at high ionic strength on vinyl sulfone agarose. Immobilization was carried out in
50 mM sodium phosphate pH 7.0 and incubation at pH 10.0. Empty circles with dashed line: glyoxyl
agarose as a reference. Full circle with solid line: ethanolamine. Full squares with solid line: glycine.
Empty squares with solid line: β-mercaptoethanol. Full rhombi with solid line: cysteine. Full triangle
with solid line: control without blocking agent as a reference. Empty triangles with solid line: glucose.
Empty rhombi with solid line: ethylenediamine. Empty circles with solid line: aspartic acid. Other
specifications are described in the Methods.

3. Materials and Methods
3.1. Materials

PGA was purchased from Merck (Madrid, Spain) as an aqueous solution (with a mean
value of 86 ± 8 mg of protein per mL and 3.4 U/mg). Phenylacetic acid, 6-nitro-3-(phenyl
acetamido) benzoic acid (NIPAB), ethylenediamine (EDA), glycine, ethanolamine, cysteine,
glucose, aspartic and β-mercaptoethanol were also acquired from Merck. Sepharose® 4BCL
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was procured from ABT (Madrid, Spain). Divinyl-sulfone (DVS) was supplied from Thermo
Fisher Scientific (Madrid, Spain). The Protein Assay Dye Reagent kit was purchased from
Bio-Rad (Alcobendas, Spain). All other reagents were of analytical grade. Glyoxyl-PGA
biocatalyst (with an enzyme loading of 2.5 mg/g) was used as reference and prepared
as previously described [82]. This biocatalyst is described as among the most stable in
the literature [52–54]. For this purpose, PGA was diluted in 50 mM sodium carbonate
containing 100 mM phenylacetic acid/30% (v/v) glycerol with the pH adjusted at pH 10.05.
Then, glyoxyl-agarose beads were added under gently stirring. After 3 h, solid borohydride
to reach a concentration of 1 mg/mL was added, and after 30 min, the biocatalyst was
vacuum filtered and washed with 100 mM sodium acetate at pH 5 and with an excess of
distilled water using a sintered filter. The immobilization yield was 100% and the expressed
activity was 80% [52–54].

3.2. Methods
3.2.1. Preparation of VS Agarose Beads

Agarose beads were activated by mixing 200 mL of 0.333 M sodium carbonate at
pH 11.5 with 7.5 mL of divinyl sulfone under vigorous stirring until a homogeneous
solution was obtained [83]. Then, a mass of 10 g of agarose beads was added, and the
suspension was subjected to gentle agitation for 2 h. Next, the activated VS support was
vacuum filtered with a sintered glass funnel, washed extensively with distilled water and
stored at 4–6 ◦C.

3.2.2. Determination of Protein Concentration

The concentration of a commercial preparation of PGA was determined using the
method described by Bradford with some modifications [84]. One milliliter of a 1:5 dilution
of Protein Assay Dye Reagent Concentrate was put in a 1 cm width cuvette. Twenty-five
microliters of the sample at different dilutions were added and mixed. The solution was
incubated for 5 min at room temperature. Then, absorbance was measured at 595 nm. A
calibration curve was determined using BSA at different concentrations (0.05, 0.1, 0.2, 0.3,
0.5, 0.7 and 0.9 mg/mL).

3.2.3. Enzyme Activity Assay

A spectrophotometer with magnetic stirring (200 rpm) was used to determine enzy-
matic activities at a controlled temperature of 40 ◦C. One unit of enzymatic activity (U) was
defined as the amount (µmol) of substrate hydrolysed per minute by the indicated mass of
free enzyme or immobilized biocatalyst under the assay conditions. NIPAB was used in the
determination of PGA enzymatic activity as described by Kutzbach and Rauenbusch [85].
The substrate was prepared in 50 mM sodium phosphate at pH 7.5 at a concentration
of 0.15 mM. Enzyme suspension (100–200 µL) or soluble enzyme was used in the reac-
tion medium to initialize the reaction. Activity was measured following the increase in
absorbance at 405 nm caused by the hydrolysis of NIPAB (ε under these conditions is
8730 M−1 × cm−1).

3.2.4. PGA Immobilization on Vinyl Sulfone Agarose Beads

In all the experiments, PGA was immobilized at a loading rate of 2.5 mg/g of support.
A reference suspension was prepared using inert agarose beads (the enzyme was not
immobilized on this support). All immobilizations courses were followed by measuring the
NIPAB activity in the suspension, supernatant and reference suspension. The activity in the
supernatant divided by the activity in the reference suspension gave an accurate measure
of the immobilization yield, i.e., the percentage of enzyme that has been immobilized. We
calculated immobilization yield (percentage of enzyme immobilized on the support) and
expressed activity (observed activity divided by the expected one from the immobilization
yield) [86]. The immobilization assays were performed at a ratio of 1 g of support per
10 mL of enzyme solution; if this was changed for any reason, it was mentioned in our
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report. PGA was diluted in 50 mM sodium phosphate solution at pH 7.0 and pH 8.0, or
in 50 mM sodium carbonate solution at pH 9.0. In some instances, some salts (sodium
chloride, sodium phosphate or sodium sulfate) were added. After enzyme immobilization,
the biocatalysts were filtered and washed with the buffer utilized in the incubation step
(50 mM sodium phosphate at pH 7 or 8, or 50 mM of sodium carbonate at pH 9 or 10) and
the biocatalysts were resuspended under these conditions for different times to permit
multipoint covalently attachment, adding 30% glycerol (v/v) and 100 mM phenyl acetic
acid to prevent enzyme inactivation [59,78,79]. After the desired times, and to put an end
to the enzyme-support reaction, the biocatalysts were washed with distilled water and
resuspended in 2 M solutions of different nucleophiles (EDA, Gly, ethanolamine, Cys,
glucose, Asp or β-mercaptoethanol) in 100 mM sodium phosphate at pH 8.0 for 48 h to
block the remaining VS groups in the support. Samples were withdrawn to check enzyme
activity during the whole process.

3.2.5. Thermal Inactivation of the Different Biocatalysts

The different biocatalysts were inactivated by incubation in 50 mM Tris-Cl at pH 8.0 in
a water bath with the temperature set at 65 ºC. Periodically, samples were taken, and their
residual activities were determined using the NIPAB assay described above, considering
the initial activity of the preparation as 100% and referencing the activity of the other
samples to this initial value as a percentage.

4. Conclusions

The direct immobilization of PGA on VS-agarose produced very bad results in terms
of immobilization yield, expressed activity and enzyme stabilization. However, VS-agarose
has a mild hydrophobic character, making this support a de facto heterofunctional one. The
use of high ionic strength enabled rapid PGA immobilization on VS-agarose, initialized by
the hydrophobic adsorption of the enzyme on the support, shortly followed by covalent
bonding that prevented enzyme desorption. This converted VS-agarose to a heterofunc-
tional support, with the advantages and drawbacks that this can have. The individual
study of immobilization, incubation and blocking steps produced PGA biocatalysts with
stabilities similar to those of the glyoxyl-PGA agarose, considered among the most sta-
ble biocatalysts of this enzyme. The moderately hydrophobic character of VS may be
an interesting feature in immobilizing enzymes and proteins that immobilize slowly on
VS in a direct way, opening new applications for this support in enzyme immobilization.
Moreover, the results show that immobilization of enzymes on VS may follow a somewhat
more complex protocol that direct reaction between chemical groups on the enzyme and
the VS of the support, as the enzyme immobilized readily on glyoxyl supports but not in
VS supports.
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