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As we age, the immune system undergoes a process of senescence accompanie

by the increased production of proinflammatory cytokines, a chronic subclinica

condition named as “inflammaging”. Emerging evidence from human and experimenta

models suggest that immune senescence also affects the central nervous system an

promotes neuronal dysfunction, especially within susceptible neuronal populations. I

this review we discuss the potential role of immune aging, inflammation and metaboli

derangement in neurological diseases. The discovery of novel therapeutic strategie

targeting age-linked inflammation may promote healthy brain aging and the treatmen

of neurodegenerative as well as neuropsychiatric disorders.
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Introduction

Aging is a complex phenomenon characterized by the progressive decline of physiological
function and tissue homeostasis leading to increased vulnerability to degeneration and death.
One of the most recognized effects of aging is the dysregulation of the immune system as a
result of defects in both initiation and resolution of immune responses (immunosenescence) and
chronic low-grade inflammation (inflammaging) (Franceschi et al., 2007; Montecino-Rodriguez
et al., 2013). This chronic subclinical condition has been linked to an increased incidence of
metabolic syndrome, atherosclerosis, cancer, and neurodegenerative diseases (Franceschi et al.,
2007). Similarly, recent work suggests that microglia, the innate immune cells of the brain, undergo
a process of senescence that may in turn contribute to the development of neurological diseases
in elderly people (Wong, 2013). In this review we discuss recent advances on the link between
immune aging and neurological disorders and we describe how the metabolic changes of the
aging body, immunosenescence, and inflammation can exacerbate immunological contributions
to neurodegenerative and neuropsychiatric diseases.

Immunosenescence and Inflammaging

As we age, the immune system undergoes a process of senescence characterized by a progressive
decline in immune function associated with an increased frequency of infections and chronic
diseases. Aging affects both the adaptive and the innate immune system (Larbi et al.,
2011; Goronzy et al., 2012; Shaw et al., 2013). The most relevant changes are observed in

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00172
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:michela.deleidi@dzne.de
http://dx.doi.org/10.3389/fnins.2015.00172
http://journal.frontiersin.org/article/10.3389/fnins.2015.00172/abstract
http://community.frontiersin.org/people/u/196052
http://community.frontiersin.org/people/u/217216
http://community.frontiersin.org/people/u/217045


Deleidi et al. Aging-linked inflammation in neurological disorders

the adaptive immune system; immunosenescence is
characterized by a decrease of naïve T cells and a concomitant
increase in memory cells, a progressive reduction of the TCR
repertoire and decreased proliferation in vitro (Arnold et al.,
2011; Frasca et al., 2011; Nikolich-Zugich et al., 2012; Fulop et al.,
2013). With regard to innate immunity, studies in animal models
and humans have shown age-associated alterations including
myeloid skewing (Dykstra et al., 2011), impairment of neutrophil
chemotaxis and effector function (Wenisch et al., 2000; Butcher
et al., 2001; Fulop et al., 2004), defects in NK cells (Le Garff-
Tavernier et al., 2010) and monocyte dysregulation (Hearps
et al., 2012). Immunosenescence is accompanied by a low-grade
chronic proinflammatory environment in multiple tissues
characterized by increased production of proinflammatory
cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor
alpha (TNF-α), acute-phase proteins, reactive oxygen species
(ROS), and autoantibodies. This proinflammatory environment
has been defined as “inflammaging” (Franceschi et al., 2000,
2007). Several mechanisms contribute to inflammaging,
including the dysregulation of the adaptive vs. innate immunity
(Franceschi et al., 2000) and cellular senescence. Senescent cells
secrete a variety of proinflammatory cytokines, chemokines,
growth factors and proteases collectively termed as senescence-
associated secretory phenotype (SASP) (Freund et al., 2010;
Chinta et al., 2014; Ovadya and Krizhanovsky, 2014). The SASP
has beneficial effects, such as the reinforcement of the tumor-
suppressing cell state (Acosta et al., 2008), prevention of fibrosis
(Jun and Lau, 2010), and clearance of senescent and tumor cells
(Xue et al., 2007). On the other hand, cellular senescence and
the SASP drive the chronic inflammatory environment that
is a major contributor to the development of aging-associated
diseases. Chronic infections promote immunosenescence and
inflammaging (Koch et al., 2007); cytomegalovirus (CMV)
promotes age-like immune changes (Derhovanessian et al.,
2011) and CMV reactivation has been associated with increased
levels of IL-6 and TNF and premature mortality (Stowe et al.,
2007; Roberts et al., 2010). However, further studies are needed
to assess the link between CMV infection and inflammatory
markers in the elderly (Bartlett et al., 2012). Other chronic
infectious diseases such as HCV and HIV may also have a role
in immunosenescence (Gruener et al., 2001; Zapata and Shaw,
2014). With effective antiretroviral therapy, the life expectancy
of HIV patients has significantly improved and a link between
chronic infection, immune dysregulation and age-related
comorbidities has become evident (Deeks and Phillips, 2009;
Lederman et al., 2013). Antigen-dependent clonal expansion of
memory T cells as well as premature immune senescence have
been shown in HIV patients (Appay et al., 2002, 2011). However,
there is still debate as to whether HIV accelerates such immune
aging (High et al., 2012). Interestingly, despite the increased
life expectancy, the incidence of cognitive impairment in these
patients remains high and mounting evidence suggests that
persistent inflammation and immune dysregulation play a key
role in HIV-associated cognitive disorders (Hong and Banks,
2015). Further corroborating evidence linking chronic infections,
aging, and immunosenescence comes from experimental studies
showing that lymphocytic choriomeningitis virus (LCMV)

infection leads to a reduction of specific antiviral T cell responses
in aged mice (Mekker et al., 2012).

Parasites such as Toxoplasma gondii (T. gondii) also
contribute to immune dysregulation. Chronic infection with T.
gondii is characterized by the presence of intraneuronal cysts
that are controlled by the immune system (Suzuki et al., 2010).
Growing evidence shows a link between chronic infection and
CD8 T-cell dysfunction that in turn may promote the psychiatric
disturbances often observed in these patients (Bhadra et al., 2011,
2013; Torrey et al., 2012). Genetic predisposition leading to an
increased tendency toward uncontrolled inflammatory responses
can also accelerate immunosenescence and inflammaging.
With this respect, the Leiden Longevity Study (LLS) showed
that individuals enriched for longevity genetic traits are less
susceptible to CMV-associated immune alterations with aging
(Derhovanessian et al., 2010). Hormonal changes such as the
decreased production of estrogen or androgen also influence
the secretion of cytokines (Maggio et al., 2006; Abu-Taha et al.,
2009). Finally, alterations of mitochondrial function andmetabolic
changes in the adipose tissue contribute to immunosenescence
and inflammaging.

Brain Cell Senescence and
Neuro-inflammaging

Senescent and hyperactive microglia have been detected in the
aged and diseased brain (Streit et al., 2004, 2009). Microglia are
the innate immune cells of the central nervous system (CNS)
and are involved in several physiological and pathological
brain functions. They play essential roles in brain development
and actively support neural circuitries and plasticity either
through the removal of synaptic elements or the secretion
of neurotransmitters and neurotrophic factors (Nimmerjahn
et al., 2005; Wake et al., 2009; Kettenmann et al., 2011).
During infections, brain injury or neurodegenerative diseases,
resting microglia transform into an active state and release
immune molecules including cytokines, ROS, and growth
factors. Activated microglia exert beneficial functions such
as the phagocytic clearance of pathogens and cellular debris.
However, uncontrolled immune reactions contribute to neuronal
dysfunction and death over time. During aging, rodent microglia
undergo replicative senescence characterized by telomere
shortening and loss of homogenous distribution throughout the
brain (Flanary et al., 2007; Hefendehl et al., 2014). Experimental
evidence suggest that microglial motility and paghocytic
activity decrease with age leading to the formation of glial
lipofuscin granules with subsequent accumulation of damaged
mitochondria and oxidative stress (Brunk and Terman, 2002;
Szweda et al., 2003; Xu et al., 2008; Damani et al., 2011; Hefendehl
et al., 2014). In addition, histo-pathological studies show
increased expression of interleukin-1α as well as CD11b/CR3
in humans suggesting that uncontrolled microglial activation
occurs with normal brain aging (Sheng et al., 1998; Strohmeyer
et al., 2002). Animal studies show increasedmicroglial expression
of MHC class II antigens and CD68 (Perry et al., 1993; Sheffield
and Berman, 1998) as well as decreased arborization and
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abnormal cytoplasmic structures (Streit et al., 2004, 2009;
Conde and Streit, 2006). Interestingly, these morphological
changes precede the appearance of tau neuropathology in
Alzheimer’s disease (AD) patients suggesting that a loss of
microglial function contributes to the onset of the disease
(Streit et al., 2009).

The cellular and molecular mechanisms controlling brain
immune senescence and neuro-inflammaging are still unknown.
Several studies support the existence of a bidirectional
communication between the peripheral immune system
and the brain mainly through immune molecules, including
cytokines, chemokines, acute phase proteins, and complement
factors (Wrona, 2006). On the other hand, the aging brain
is able to modulate the immune system and to promote the
recruitment of immune cells from the periphery, especially
lymphocytes, which contribute to immunosenescence and
neuro-inflammaging (Gemechu and Bentivoglio, 2012). Thus,
peripheral immunosenescence and inflammaging can modulate
microglial phenotype and reactivity and drive low-grade brain
inflammation (von Bernhardi et al., 2010). This hypothesis
is supported by the observation that systemic low-grade
inflammation is accompanied by an increase of cytokines in the
brain and an imbalance between pro- and anti-inflammatory
molecules (Ye and Johnson, 2001; Lukiw, 2004; Streit et al.,
2004).

Systemic inflammation promotes the activation of brain
immune cells in humans as well as in non-human primates
(Brydon et al., 2008; Harrison et al., 2009; Hannestad et al.,
2012) and can prime neurons and immune cells in the brain
increasing the risk of developing neurological disorders (Deleidi
and Isacson, 2012; Perry and Holmes, 2014). The molecular
pathways that link low-grade systemic inflammation to brain
aging and neuroinflammation remain unclear.

In summary, the aging of the peripheral immune system
can promote or exacerbate microglial senescence and
drive neuroinflammation (Figure 1). The individual genetic
background as well as infections and environmental exposures
over a lifetime could further exacerbate the dysregulation of
immune responses, increasing the risk of neurological disorders.

Aging, Obesity, and Neuroinflammation

Aging is characterized by important changes in the distribution of
total and regional adipose tissue (Kuk et al., 2009). Overnutrition
and obesity are associated with an increased risk of metabolic
syndrome, a complex disorder characterized by hypertension,
insulin resistance, glucose intolerance, and hyperlipidemia.
Both hypertrophic fat cells and immune cells infiltrate the
adipose tissue and secrete inflammatory molecules that can
promote systemic low-grade inflammation. Adipocytes secrete
more than 600 bioactive molecules, which are collectively
termed as adipokines and include proinflammatory mediators,
such as TNF-α, monocyte chemoattractant protein (MCP)-1,
and IL-6, as well as anti-inflammatory molecules (Trayhurn
and Wood, 2004). A link between obesity and inflammation
has been initially hypothesized based on the observation of
increased levels of IL-6 and C-reactive protein (CRP) in obese

animals and humans (Yudkin et al., 1999; Festa et al., 2001;
Moschen et al., 2011). Interestingly, concentrations of these
cytokines decrease after weight loss (Ryan andNicklas, 2004; Rao,
2012). Circulating adipokines have immune as well as neuronal
functions and can influence brain inflammation. For example,
leptin, one of the first adipokines identified, is a proinflammatory
cytokine sharing structural similarities with IL-2, IL-6, IL-12,
and granulocyte colony stimulating factor (Zhang et al., 1997).
Leptin has important immune functions, especially related to
T lymphocyte proliferation (Lord et al., 1998; Carbone et al.,
2012). In the CNS, it also regulates appetite and energy balance
(Friedman and Halaas, 1998) and contributes to development
of sickness-type behavior during experimental inflammation
(Pohl et al., 2014). Thus, excess adiposity drives low-grade
systemic inflammation that increases the risk of developing
insulin resistance, type 2 diabetes, cardiovascular disease, stroke,
cancer, and neurodegeneration (Tchernof and Despres, 2013).

The link between obesity-induced inflammation and type
2 diabetes is further supported by the observation that the
development of insulin resistance correlates with immune cell
infiltration (Hotamisligil, 2006). Interestingly, obesity is also
linked to mitochondrial dysfunction and endoplasmic reticulum
(ER) stress (Arruda et al., 2014), which in turn leads to impaired
glucose metabolism. In fact, the earliest hallmark of insulin
resistance is the decreased expression of PPARγ coactivator 1-
α (PGC1α), a positive regulator of mitochondrial biogenesis and
respiration (Patti et al., 2003). Decreased expression of PGC1α
has been linked to aging and chronic inflammation in humans
and mice (Ghosh et al., 2011; Sczelecki et al., 2014).

In summary, fat accumulation and changes in fat
redistribution with age lead to the dysregulation of adipokine
secretion and metabolic changes linked to systemic and
local inflammatory responses that, in turn, contribute to
accelerated aging as well as cardiovascular and neurological
disorders.

Mitochondrial Dysfunction in Aging and
Inflammation

Because of their function in oxidative stress processes,
mitochondria have a fundamental role in aging (Green et al.,
2011). Altered mitochondrial function is central to several acute
and chronic inflammatory diseases and increasing evidence show
that mitochondria may contribute to immunosenescence and
inflammaging via ROS production, calcium exchange, ATP and
NF-κB activation. Mitochondrial dysfunction can be both the
cause and the consequence of inflammation. Aged dysfunctional
mitochondria are able to modulate innate immunity through
redox-sensitive inflammatory signaling pathways or the
direct activation of the NLRP3 inflammasome (through ROS,
mtDNA, and ATP) (Kepp et al., 2011; Shimada et al., 2012).
Mitochondria are an important source of damage-associated
molecular patterns (mito-DAMPs) that activate Toll-like
membrane receptors (TLRs) and cytoplasmic nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) (Krysko
et al., 2011). Interestingly, DAMPs and mito-DAMPs directly
activate antigen-presenting cells and other non-immune cells
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FIGURE 1 | Immune aging, dysmetabolism, and inflammation in

neurological diseases. The aging of the immune system is

accompanied by a progressive senescence of immune cells

(immunosenescence) and a chronic proinflammatory environment

characterized by increased levels of cytokines and adipokines

(inflammaging). These immune molecules modulate neuronal function and

prime microglial cells and vulnerable neuronal populations. With aging,

microglial cells also become senescent, lose their neuroprotective

function and become more prone to abnormal inflammatory activation.

Amyloid deposition and pathogenetic forms of α-synuclein activate

microglia with the subsequent release of proinflammatory mediators.

Aged dysfunctional mitochondria play a fundamental role in

immunosenescence and age-related inflammation by the production of

ROS and DAMPs that activate the NLRP3 inflammasome and immune

cells triggering inflammatory reactions. In turn, inflammatory mediators

aggravate mitochondrial dysfunction. High immune risk profile, infections

and metabolic syndrome promote abnormal inflammatory reactions that

contribute to disease onset and progression.

such as astrocytes (Mathew et al., 2012). On the other hand,
inflammatory mediators, including inflammatory cytokines,
ROS, and nitric oxide (NO), impair mitochondrial function by
inducing the accumulation of mtDNA mutations and inhibiting
mitochondrial respiratory chain and energy production
(Lopez-Armada et al., 2013).

Immune Senescence and Inflammation in
Neurological Diseases

Neuropsychiatric Disorders
In recent years, the role of the immune system in the
development of neuropsychiatric disorders has become more
apparent. The immune system communicates with the brain and
regulates behavior andmany other critical neurological functions
(Wilson et al., 2002). Thus, age-related immune dysregulation
may be relevant to the pathophysiology of neuropsychiatric

conditions. This hypothesis is further supported by the
observation that psychiatric manifestations are common in
autoimmune diseases including systemic lupus erythematosus,
CNS vasculitis, Whipple’s disease, Sjögren’s syndrome, and
Behçet’s disease [reviewed in (Kayser and Dalmau, 2011)].
In addition, patients with acute isolated psychosis have
been diagnosed with synaptic autoimmune encephalitis and
antineuronal antibodies targeting synaptic proteins have been
demonstrated (Kayser and Dalmau, 2011). Finally, it is well
established that infections and inflammation during the perinatal
period increase the risk of developing neurological and
neuropsychiatric diseases in the adulthood (Hagberg et al., 2015).
Infectious diseases can cause direct neuronal damage; in other
circumstances, such as after LCMV infection or chronic T.
gondii infection, neuronal dysfunction may also be linked to
immune reactions. Chronic immune activation is a potential
key contributor to disease pathology, even in the absence of
overt cell death. It is also well established that viruses can alter
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neurotransmission and activate the kanyurine pathway causing
chronic fatigue, cognitive impairment and mood disorders
(Weissenborn et al., 2006). In particular, the alteration of the
kanyurine pathway is linked to an increased risk for neurological
and neuropsychiatric disorders (Schwarcz et al., 2012). It has also
been hypothesized that viruses such as LCMV alter inhibitory
circuits causing unbalanced excitatory neurotransmission and
neuronal death via excitotoxicity (“Virus induced disinhibition
and excitotoxicity”) (Pearce et al., 2000). Finally, long-term
alterations in neurogenesis have been described in mice after
LCMV infection (Sharma et al., 2002).

Several immune changes are associated with neuropsychiatric
disorders; increased levels of inflammatory mediators have been
reported in schizophrenia (Soderlund et al., 2009; Beumer
et al., 2012a), depression (Dowlati et al., 2010) and autism
spectrum disorders (ASD) (Vargas et al., 2005; Li et al., 2009).
Altered monocytic as well as T- and B-cell function has
been demonstrated in patients with schizophrenia and ASD
(Ashwood et al., 2011; Beumer et al., 2012b; Braunschweig
and van de Water, 2012; Jyonouchi et al., 2012; Muller
et al., 2012). Further corroborating evidence comes from the
observation that infections and chronic inflammatory diseases
are linked to depression, anxiety as well as schizophrenia
(Eaton et al., 2006; Loftis et al., 2008; Yolken and Torrey,
2008; Margaretten et al., 2011; Watkins and Treisman, 2012;
Bhadra et al., 2013). Interestingly, many genes involved in
the predisposition to schizophrenia are related to immune
defense against invading pathogens, suggesting an involvement
of immune dysregulation and infections in the pathogenesis of
this disease (Carter, 2009; International Schizophrenia et al.,
2009; Irish Schizophrenia Genomics C and the Wellcome Trust
Case Control C, 2012). Neuropsychiatric disorders are also
characterized by the activation of the brain innate immune
system and increased density of activated microglia has been
found in brains of schizophrenic and ASD patients (Vargas et al.,
2005; Doorduin et al., 2009).

Aging, metabolic changes, obesity, and chronic stress
modulate the communication between the immune system
and the brain and may promote neuropsychiatric diseases.
Neuropsychiatric disorders are indeed common in people
with metabolic dysfunctions (Skilton et al., 2007). In these
patients, inflammation is one major determinant of depressive
symptoms (Capuron et al., 2008). Obesity is also a contributing
factor; in obese women adiposity is associated with increased
concentrations of inflammatory markers (IL-6, CRP, and
adipokines) that correlate with depression and anxiety (Capuron
et al., 2011). Interestingly, after surgery, weight loss correlates
with reduced markers of inflammation and is associated with
improvement of psychiatric symptoms (Capuron et al., 2011).

The brain, in turn, is able to regulate the immune
system via neurotransmitter signals (Felten et al., 1987). As
a consequence, psychological stress and depression are often
associated with impaired immune function and increased risk
of acute respiratory infections (Cohen et al., 1991, 2012). In
addition, premature shortening of telomeres in leukocytes has
been reported in subjects with chronic stress and depression as
well as in mice exposed to stressful conditions (Epel et al., 2004;

Simon et al., 2006; Kotrschal et al., 2007; Karabatsiakis et al.,
2014). Stress responses pathways including the hypothalamic–
pituitary–adrenal (HPA) axis and chronic immune stimulation,
which are often associated with mood disorders, could be the
cause of telomere shortening and accelerated aging observed
in these patients (Glaser and Kiecolt-Glaser, 2005). The role
of telomere shortening in other psychiatric disorders such
as schizophrenia is still controversial and further studies are
therefore warranted (Nieratschker et al., 2013; Kota et al., 2014).

Alzheimer’s Disease and Mild Cognitive
Impairment
AD is the most common form of dementia in the elderly affecting
more than 35 million people worldwide. In AD, the progressive
neuronal loss in the medial temporal lobe and many other brain
regions causes cognitive decline. The pathological hallmarks
of AD are extracellular β-amyloid (Aβ) plaques, intracellular
neurofibrillary tangles and gliosis consisting of activated
microglia and astrocytes surrounding β-amyloid plaques
(Joachim and Selkoe, 1992). The pathogenesis of the common
sporadic forms of AD is still unknown. Neuroinflammation and
microglial activation have been proposed as key players in the
pathogenesis of the disease (Wyss-Coray, 2006). Inflammation
is an early event in the amyloid pathology and precedes plaque
deposition in experimental models of AD (Ferretti et al., 2012;
Wright et al., 2013). Amyloid deposition leads to microglial
activation (Meyer-Luehmann et al., 2008) and the production
of proinflammatory mediators that contribute to disease
pathogenesis. However, microglia also play a beneficial role
in restricting senile plaque formation by clearing Aβ deposits
(Simard et al., 2006) and secreting neuroprotective factors. It has
been proposed that the loss of such neuroprotective function
rather than microglial inflammatory activation contributes
to AD. Microglial senescence and dysfunction have been
described in AD (Streit et al., 2009). Oxidative stress-related
mechanisms that precedes Aβ oligomerization can trigger
microglia senescence and dystrophy (Sutherland et al., 2013).
Senescent microglia upregulate immune receptors such as
MHC II, CD68, CD14, CD11, and TLRs (Sheffield and Berman,
1998; Landreth and Reed-Geaghan, 2009; Hart et al., 2012)
and become more prone to trigger inflammatory response
to Aβ (Reed-Geaghan et al., 2009). Thus, loss and gain of
microglial function are not mutually exclusive and can both
play a role in disease pathogenesis and progression. Loss of
function in peripheral monocytes and macrophages can also
contribute to disease pathogenesis. It has been shown that,
upon stimulation, monocytes from AD patients secrete more
proinflammatory cytokines compared to monocytes from
healthy subjects (Bonotis et al., 2008). In addition, phagocytosis
of Aβ is defective in peripheral macrophages from AD patients
and this may elicit a compensatory response of the adaptive
immune system (Fiala et al., 2005). AD-linked genetic mutations
and metabolic risk factors such as obesity, lipid dysmetabolism,
and chronic inflammation can trigger immune cell dysfunction
and promote cognitive decline. Interestingly, two recent GWAS
studies have identified mutations in Trem2 (triggering receptor
expressed on myeloid cells 2) as risk factors for AD (Guerreiro
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et al., 2013; Jonsson et al., 2013). TREM2 is an innate immune
receptor expressed on the cell surface of microglia, macrophages,
osteoclasts and immature dendritic cells (Colonna, 2003).
It regulates the phagocytic ability of myeloid cells and has
anti-inflammatory properties by inhibiting cytokine secretion
(Takahashi et al., 2005; Turnbull et al., 2006). Apolipoprotein
E allele ε4 (APOE∗ε4), the best-established genetic risk factor
for sporadic AD, can also influence the degree of microglial
activation in response to Aβ deposition (Barger and Harmon,
1997; Rodriguez et al., 2014). Associations have been reported
between APOE∗ε4 and clinical outcomes in infectious diseases
further supporting a link between the patient genetic profile
and the degree of inflammatory responses (Gerard et al., 2005;
Itzhaki and Wozniak, 2006).

Metabolic syndrome has been associated with impaired
cognitive function and increased risk of AD (Razay et al.,
2007). Patients with diabetes mellitus have an increased risk
of developing AD (Arvanitakis et al., 2004). Several studies
show a negative correlation between body mass index (BMI)
and cognitive performance (Elias et al., 2005; Jeong et al.,
2005; Hassing et al., 2010). The mechanisms by which obesity
influences risk of AD are still unclear. Obesity may contribute
to disease onset by promoting low-grade systemic inflammation
(Odegaard and Chawla, 2013; Erion et al., 2014), the disruption
of the integrity of the blood brain barrier (Gustafson et al., 2007),
and altered lipid metabolism (Hottman et al., 2014). Associations
between systemic inflammatory markers and cognitive decline
have been described with conflicting results and further studies
are warranted (Engelhart et al., 2004; Tan et al., 2007; Sundelof
et al., 2009; Singh-Manoux et al., 2014).

In summary, aged-related metabolic changes,
immunosenescence and inflammaging can induce loss of
microglial function and promote neuroinflammation and Aβ

accumulation over time (Figure 1).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is an adult-onset
neurodegenerative disease that affects motor neurons in
the brain and spinal cord leading to progressive paralysis and
death within 2 to 5 years after onset of symptoms. The etiology of
ALS remains largely unknown. Most cases are sporadic, whereas
approximately 5–10% of the cases are caused by an autosomal
dominant mutation. The pathological hallmarks of ALS are
the presence of cytoplasmic ubiquitinated protein inclusions in
degenerating motor neurons and intense inflammatory reactions
characterized by microglial/astroglial activation and infiltration
of peripheral T cells (Pasinelli and Brown, 2006). Thus, both
innate and adaptive immune responses are involved in the
pathogenesis of ALS (McGeer and McGeer, 2002; Henkel et al.,
2004). Experimental and clinical evidence support the hypothesis
that microglia activation occurs at early stages of disease (Turner
et al., 2004). In experimental ALS, the microglial phenotype
changes with disease progression, with a shift from the M2
phenotype in the early disease phase to M1 phenotype at later
stages, suggesting that the decreased function of neuroprotective
microglia correlates with disease progression (Beers et al., 2011;
Liao et al., 2012). Moreover, the degeneration of peripheral

motor axons is preceded by the recruitment and activation
of macrophages (Chiu et al., 2009). T cells also play a role
in ALS as suggested by the presence of CD4+ and CD8+ T
lymphocyte infiltrates surrounding degenerating motor neurons
(Troost et al., 1989; Engelhardt et al., 1993). Recent studies have
shown that regulatory T lymphocytes (Tregs) and cytotoxic T
lymphocytes (Teffs) have distinct roles in the pathogenesis and
progression of ALS (Beers et al., 2011). Increased numbers of
endogenous Tregs and M2 microglia predominate at early stages
of disease, whereas Th1 lymphocytes and M1 microglia are more
abundant during the rapidly progressing phase (Beers et al.,
2011; Liao et al., 2012). These data suggest that inflammation
plays a neuroprotective role during the initial stages, whereas
immune dysfunction correlates with the progression of the
disease at later stages. With regard to ALS, it is still unclear
whether immunosenescence, inflammaging, and dysmetabolism
affect the disease risk. ALS is associated with metabolic
alterations, including include weight loss, hypermetabolism,
and hyperlipidemia (Dupuis et al., 2011), and dyslipidemia
has been described as a protective factor in ALS (Dupuis et al.,
2008; Sutedja et al., 2011). However, further research is needed
to clarify the relationship between aged-associated metabolic
derangements, inflammation and sporadic ALS.

Parkinson’s Disease
PD is the second most common neurodegenerative disorder
affecting over 4 million people worldwide. In PD, the
interaction between aging, individual genetic vulnerability, and
environmental factors leads to the death of dopaminergic
(DA) neurons in the substantia nigra (SN) pars compacta
and other vulnerable neuronal populations. Interestingly, the
dysfunction of the autonomic nervous system (ANS) and
brainstem pathology precedes midbrain DA cell loss and motor
symptoms (Braak et al., 2006). Even though inflammation has
been associated with the pathogenesis of PD, it is still under
debate whether this is a cause or consequence to neuronal death.
Several lines of evidence support a role for both the innate and the
adaptive immune system in disease pathogenesis. These include
the increased levels of proinflammatory cytokines observed in
PD patients (Dobbs et al., 1999) and the association of the
disease risk with certain HLA genetic variants (Hamza et al.,
2010). In PD, both native and pathogenic forms of α-synuclein
activate microglial TLRs (TLR2 and TLR4) triggering the release
of proinflammatory cytokines and ROS (Beraud et al., 2011;
Stefanova et al., 2011; Codolo et al., 2013; Fellner et al., 2013).
Interestingly, nitrated forms of α-synuclein exacerbate peripheral
adaptive immune responses (Benner et al., 2008).

Metabolic syndrome has been proposed as a risk factor for
PD. Increased BMI and high cholesterol are potential risk factors
for PD (Hu et al., 2006, 2008). However, studies have yielded
inconsistent findings and further investigations are needed
to elucidate this association (Palacios et al., 2011). Diabetes
increases PD risk in prospective studies and has been associated
with severity of disease (Xu et al., 2011; Cereda et al., 2012). It has
been suggested that common dysregulated pathways converging
on mitochondrial dysfunction, ER stress, and inflammation as
well as glucose and lipid metabolism, link diabetes, and PD
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(Santiago and Potashkin, 2013). Interestingly, high calorie and
high fat diet exacerbates autonomic abnormalities in α-synuclein
mutant mice suggesting a link between metabolism and disease
pathology (Griffioen et al., 2013; Rotermund et al., 2014). It has
been proposed that energy intake influences the vulnerability
of neurons during aging by modulating the production of
neurotrophic factors and inflammation (Maswood et al., 2004;
Youm et al., 2015).

The role of the systemic immune system in PD is still
unclear. It has been shown that peripheral monocytes from
PD patients have a proinflammatory phenotype and impaired
phagocytic function compared to controls (Grozdanov et al.,
2014). In addition, T-lymphocytes, but not B-lymphocytes,
are present in the SN of MPTP-intoxicated mice and PD
patients (Brochard et al., 2009). Abnormalities in peripheral
T cells, including decrease in the number of CD4(+) T cell
subsets and Treg dysfunction have also been demonstrated
in PD patients (Calopa et al., 2010; Saunders et al., 2012).
These data support the existence of a peripheral immune
dysfunction in PD and are complemented by the association
of viral infections with disease onset. Viral infections and
inflammatory reactions are a possible environmental trigger for
PD (Deleidi and Isacson, 2012). A viral etiology for PD is based
on epidemiological studies showing a high incidence of severe
progressive parkinsonism in people developing encephalopathy
after the 1918–1919 influenza outbreak (Ravenholt and Foege,
1982). In addition, parkinsonism has also been described in
patients infected with other viruses such as Japanese encephalitis
virus, Epstein-Barr virus, Coxsackie, St. Louis, West Nile and
HIV viruses (Jang et al., 2009). Even though viral parkinsonism
is extremely rare, an emerging hypothesis is that viral infections
cause inflammatory reactions that prime vulnerable neurons to
degenerate in response to other cellular insults over time (Deleidi
et al., 2010). Finally, as many PD-linked genetic mutations play
a role in the regulation of the immune system (Deleidi and
Gasser, 2013), it is likely that genetic vulnerability predisposes
to the development of midbrain DA neurodegeneration via
inflammatory mechanisms.

In summary, more work is required to determine the role
of age-linked inflammatory changes and dysmetabolism in the
pathogenesis of PD. Nevertheless, emerging evidence suggest that
the interplay between aging and genetic vulnerability results in
increased susceptibility to infections or abnormal inflammatory
reactions that overtime predispose to PD. A fundamental
question to address is whether metabolic and inflammatory
changes are strong predictors of neurodegeneration in PD
patients. Understanding the molecular mechanisms regulating
such responses and their link with aging and metabolism may
provide potential opportunities for therapeutic targeting in PD.

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the CNS in which the interaction between
environmental exposures and genetic predisposition leads
to persistent inflammation, oligodendrocyte death, and loss of
the myelin sheath. Even though the sequence of events that
initiate the disease remains largely unknown, MS is generally

believed to be an immune-mediated disorder that occurs
in genetically susceptible people. Diverse disease processes,
including autoimmunity, viral infections, and metabolic changes
may lead to the formation of inflammatory demyelinated plaques
(Hedstrom et al., 2014; Belbasis et al., 2015). An accelerated aging
could also play a role in the development of autoimmune diseases
such as MS. Premature immune aging has been described in MS
patients (Thewissen et al., 2005, 2007). It has been hypothesized
that both genetic and environmental factors such as viral
infections accelerate immunosenescence in these patients and
contribute to disease pathogenesis.

Therapeutic Considerations

Potential therapeutic strategies targeting the age-associated
inflammatory immune phenotype include anti-inflammatory
drugs and lifestyle interventions such as diet, exercise and
nutritional modifications. Common anti-inflammatory drugs,
vaccines against CMV and HIV and novel strategies, either small
molecules or monoclonal antibodies, targeting inflammatory
pathways (e.g., IL1-β , TNFα, IL-6, mTOR), could be used
in mono- or combination therapy. The association between
nonsteroidal anti-inflammatory drug (NSAID) treatment and
lower incidence of AD and PD is still controversial (in t’
Veld et al., 2001; Chen et al., 2003; Wahner et al., 2007; Gao
et al., 2011; Rees et al., 2011; Cote et al., 2012; Alzheimer’s
Disease Anti-inflammatory Prevention Trial Research, 2013).
Epidemiological studies suggest that the risk reduction with
NSAIDs decreases with age (Zandi et al., 2002) and may be
affected by individual genetic traits such as the APOE genotype
(Szekely et al., 2008). Further studies are therefore warranted
to assess the role of anti-inflammatory drugs and identify
patient subgroups that could benefit from such interventions.
With respect to neuropsychiatric disorders, it is noteworthy
that many antipsychotics and antidepressants decrease the
levels of pro-inflammatory cytokines and inhibit immune-
inflammatory pathways in humans and experimental models of
inflammation (Miller et al., 2011; Walker, 2013). Interestingly,
Tyring and colleagues showed that Etanercept, an anti-TNF-
α molecule, improves fatigue and depression symptoms in
patients with psoriasis (Tyring et al., 2006). Therapeutic strategies
targeting cellular senescence and SASP-induced inflammationmay
be beneficial to dampen inflammaging and delay the onset
and progression of neurological diseases (Wang et al., 2010;
Tchkonia et al., 2013). Ideally, these drugs should delay the
accumulation of senescent cells or promote their clearance,
without interfering with anti-oncogenic pathways. With this
respect, inducers of heat shock response (e.g., heat shock, physical
exercise, and diet) can efficiently inhibit the SASP and reduce
obesity-dependent chronic inflammation (Newsholme and de
Bittencourt, 2014).

The NLRP3 inflammasome is another potential therapeutic
target. The NLRP3 inflammasome is an immune sensor
that could link systemic and brain aged-related inflammation
(Youm et al., 2013). Interestingly, Youm et al. showed
that caloric restriction in animal models reduces chronic
inflammation with a mechanism involving the inhibition of
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NLRP3 inflammasome and reduced levels of IL-1β and IL-18 in
human monocytes by the ketone metabolite β-hydroxybutyrate
(Youm et al., 2015). Thus, dietary or pharmacological approaches
should be exploited to treat NLRP3-mediated inflammatory
diseases.

Calorie restriction improves health and survival in several
species including non-human primates (Colman et al., 2014;
Fontana and Partridge, 2015). Even though it is still an open
question whether it extends lifespan in humans, several beneficial
effects of calorie restriction have been shown including the
improvement of cognitive function in elderly people (Witte
et al., 2009) and a shift of the transcriptional profile toward a
younger state in muscle cells (Mercken et al., 2013). Further
understanding of the molecular mechanisms underlying the
beneficial effects of calorie restriction in humans will help devise
novel drugs and dietary supplements that can prevent or delay
aging-related diseases.

Nutritional supplements such as natural anti-inflammatory
molecules can dampen the inflammatory environment and
promote healthy aging. For example, omega-3 essential fatty acids
decrease the levels of IL-1, IL-6, TNF, and CRP (Simopoulos,
2002) and improve cognitive function in aged mice (Cutuli et al.,
2014).

Regular and moderate physical activity is the most effective
and affordable prevention strategy that reduces aged- and
obesity-linked inflammation through the increased release of
immunomodulant molecules (Cotman et al., 2007; Handschin
and Spiegelman, 2008). Exercise improves cognitive, cardiac and
immune function and reduces risk factors such as diabetes,
hypertension, and cardiovascular diseases (Phillips et al., 2014).
Interestingly, exercise also improves mitochondrial biogenesis
and respiration by increasing the expression of PGC1α that,
in turn, may have anti-inflammatory properties (Handschin
and Spiegelman, 2008). Drugs or nutritional supplements
that enhance mitochondrial function represent a potential
therapeutic strategy for diseases associated with chronic low-
grade inflammation.

Finally, it is important to remark that in current drug trials,
inclusion criteria are usually based on clinical symptoms,
therefore failing to take into account the underlying
heterogeneity of the molecular pathogenesis and genetic risk
patterns of complex neurological diseases. Thus, identifying the
correlation between genomic risk profiles and the dysregulation

of specific molecular inflammatory pathways will allow the
identification of novel targets for therapeutic intervention

and the stratification of patients toward personalized
medicine.

Conclusions

Aging predisposes to disease via several mechanisms that
in part converge on inflammatory pathways. As we age,
the immune system undergoes a process of senescence
accompanied by the increased production of inflammatory
cytokines. Given the bidirectional communication between
the peripheral immune system and the brain, it is not
surprising that systemic inflammation and metabolic changes
interfere with brain immunological processes and neuronal
function. Immune challenges such as systemic infections,
age-related immunological and metabolic changes can alter
this communication and disrupt brain plasticity. Under
these circumstances, immune molecules in the periphery
signal to neurons and glial cells via humoral routes or the
sympathetic nervous system. Numerous studies have now
provided evidence that increased levels of inflammatory
molecules impair behavioral and cognitive performances
(Lynch, 2010). Hence, this strengthens the hypothesis that the
age-associated dysregulation of immune function and systemic
as well as brain inflammaging contribute to increased risk of
cognitive dysfunction and neurodegenerative diseases.

In summary, the interplay between aging, genetic
predisposition, and environmental exposures initiate systemic
and local metabolic changes as well as inflammatory reactions
that predispose to neuropsychiatric and neurodegenerative
diseases (Figure 1). We would further argue that targeting
age-associated inflammation, especially in selected patients
with high immune risk profiles, can be an advantageous
strategy to prevent or delay the onset of these diseases. Further
understanding the cellular and molecular mechanisms that
control immunosenescence and inflammaging both in the
periphery and in the brain will help unravel how the immune
and nervous system communicate and devise novel drugs to
promote healthy aging.
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