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Background: Tumor microenvironment is essential for breast cancer progression and

metastasis. Our study sets out to examine the genes affecting stromal and immune

infiltration in breast cancer progression and prognosis.

Materials and Methods: This work provides an approach for quantifying stromal

and immune scores by using ESTIMATE algorithm based on gene expression matrix

of breast cancer patients in TCGA database. We found differentially expressed genes

(DEGs) through limma R package. Functional enrichments were accessed through

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis. Besides, we constructed a protein-protein network, identified several

hub genes in Cytoscape, and discovered functionally similar genes in GeneMANIA. Hub

genes were validated with prognostic data by Kaplan-Meier analysis both in The Cancer

Genome Atlas (TCGA) database and Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) database and ameta-analysis of hub genes prognosis data was

utilized in multiple databases. Furthermore, their relationship with infiltrating immune cells

was evaluated by Tumor IMmune Estimation Resource (TIMER) web tool. Cox regression

was utilized for overall survival (OS) and recurrence-free survival (RFS) in TCGA database

and OS in METABRIC database in order to evaluate the impact of stromal and immune

scores on patients prognosis.

Results: One thousand and eighty-five breast cancer patients were investigated and

480 differentiated expressed genes (DEGs) were found based on the analysis of mRNA

expression profiles. Functional analysis of DEGs revealed their potential functions in

immune response and extracellular interaction. Protein-protein interaction network gave

evidence of 10 hub genes. Some of the hub genes could be used as predictive markers

for patients prognosis. In this study, we found that tumor purity and specific immune cells

infiltration varied in response to hub genes expression. The multivariate cox regression

highlighted the fact that immune score played a detrimental role in overall survival

(HR = 0.45, 95% CI: 0.27–0.74, p = 0.002) and recurrence-free survival (HR = 0.41,

95% CI: 0.22–0.77, p = 0.006) in TCGA database. These result was confirmed in
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METABRIC database that immune score was a protector of OS (HR = 0.88, 95% CI:

0.77–0.99, p = 0.039).

Conclusions: Our findings promote a better understanding of the potential genes

behind the regulation of tumor microenvironment and cells infiltration. Immune score

should be considered as a prognostic factor for patients’ survival.

Keywords: breast cancer, tumor microenvironment, immune infiltration, prognosis, ESTIMATE algorithm, The

Genome Cancer Atlas database

INTRODUCTION

Over the past few years, tumor microenvironment has been
one of the fastest developing and most promising fields in
breast cancer research. An increasing number of studies have
investigated that immune microenvironment not only modulates
immunotherapy but also promotes prognosis of patients with
breast cancer (1–3). To estimate the stromal and immune
infiltration level of tumor and provide clues for researches
on this field, Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTIMATE)
(4) is modeled and tested to calculate tumor purity, stromal and
immune scores of patients via expression profile and give an
overall view of tumor microenvironment. As indicated in recent
work, high or intermediate immune score of breast cancer could
bring better disease-free survival or overall survival (5). Other
than confirming this discovery, we intended to investigate the
pathways and genes that potentially affect tumor infiltration.

There are some works concerning characteristic genes
that could impact tumor cellularity. Gene modifiers such
as point mutations or deletions on several growth factor
receptors, pattern recognition receptors, transcription factors,
and apoptosis-related proteins are summarized to be associated
with nonmalignant tumor microenvironment in breast cancer
and affects most aspects of breast cancer biology such as
tumorigenesis, progression, and metastases (6). The amount of
somatic copy-number variation (SCNV) of immune genes are
negatively related to immune signatures but positively related
to stroma infiltration in the analysis of lung adenocarcinoma
(7). Moreover, chemokines, interleukins, interferons, and their
receptors are differentially expressed in different phenotypes of
breast cancer with varied infiltration levels of microenvironment
cells (8). On the basis of these researches, we attempted
to identify pivotal genes contributed to tumor infiltration in
breast cancer. Since multiple kinds of cells including tumor
infiltrating lymphocytes (TILs), dendritic cells, tumor-associated
macrophages (TAM), and tumor-associated neutrophils (TAN)
are all related to tumor treatment and prognosis inspected in
several different works (9–13), we also predicted these genes’
relationships with immune cell aggregation and tumor prognosis.

MATERIALS AND METHODS

Data Collection and Preparation
The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA)
RNAseqV2 gene expression data and clinical data were
obtained from the TCGA Data Portal (14). Altogether, 1,096

female breast cancers from TCGA with normalized gene
expression and specific clinical status were collected and
analyzed. Transcriptional values were Log2-transformed from
the normalized fragments per kilobase transcript per million
mapped reads values using R package “limma” in R 3.6.0.

We accessed Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) (15) on cBioportal
website (16, 17) for gene expression and clinical data. One
thousand, four hundred twenty-four samples with specific genes
expression and complete clinical and prognostic data were
chosen and downloaded for further analysis.

ESTIMATE Algorithm and Identification of
Stromal and Immune Groups
ESTIMATE algorithm (Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data) (4)
was applied to value stromal and immune microenvironment
infiltration based on gene expression data. The analysis method
is integrated in “estimate” R package in R 3.6.0. In ESTIMATE
algorithm, the expression profiles of two independent sets of
141 genes are considered to represent the extent of tumor
stromal and immune infiltrations. Thus, we extracted these
expression matrixes from RNASeqV2 data to calculate stromal
and immune scores in TCGA-BRCA samples. ESTIMATE score,
which is the summation of stromal and immune score from
individual case, is defined as tumor purity. To explore the
possible association between stromal and immune score and
clinical statistics, characteristics such as age at diagnosis, ER
status, PR status, HER2 status, histological type, menopause
status, PAM50 subtypes, pathologic T, N, M, and stage were
evaluated. Unpaired t-test was used to compare stromal and
immune scores between young (≤55 years old) and old patients
(>55 years old) while one-way analysis of variants and Least
Significant Difference (LSD) test were used to carry out the
significances of other characteristics. Since indeterminate data
showed biased outcomes, we omitted them while post hoc
was conducted.

Medians of stromal and immune scores were considered as
cutoffs for high and low score group demarcation. The medians
we used here were 531.15 in stromal group and 617.78 in immune
group, respectively.

Identification of Valid Differentially
Expressed Genes (DEGs) and Their
Functional Analysis
Differentially expressed genes (DEGs), defined as dysregulated
genes with |logFC| > 1 and FDR < 0.05 between high and low
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score groups in this study, were operated and clustered via R
package “limma.”

To explore pivotal genes’ function in tumor
microenvironment infiltration, we intended to find genes
mediated both in stromal and in immune compartment.
Therefore, DEGs in stromal and immune groups were overlapped
and genes were selected only when they changed synchronously
in both groups (i.e., genes were upregulated or downregulated
in both groups). Validated DEGs were visualized through Venn
graphs and a heatmap via R package pheatmap.

Functional Enrichment, Pathway Analysis,
and PPI Network of Differentially
Expressed Genes (DEGs)
Using the list of DEGs above, Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were conducted on WebGestalt.org (18). The R package
“ggplot2” was used to visualize the results of GO analysis and
KEGG pathway with enrichment p < 0.05 and FDR < 0.1. The
top 15 pathways with highest enrichment scores were shown
in biological processes (BPs) enrichment since more than 15
pathways were found during the analysis.

As we know, ESTIMATE algorithm uses 141 genes separately
to calculate stromal and immune scores, in order to rule out
the impact of these genes on functional network enrichment,
we prudently excluded them if they are in DEGs list. After that,
other valid DEGs were carried out for further protein-protein
interaction (PPI) network construction. Setting minimum
required interaction score as high confidence (0.7), PPI network
was constructed on STRING website to elucidate potential
interactions between DEGs. MCODE application (19) in
Cytoscape software (20) was utilized to extract network modules
and identify hub genes if they showed strong connections in
the network. GeneMANIA website (21) was used to predict the
relationship between hub genes and their functionally similar
genes. Interaction network was downloaded and rearranged
according to their interplays.

Predictive Value of Hub Genes in Survival
Analysis
Hub genes were unraveled from protein-protein interactions. All
samples’ clinical and survival data were reanalyzed from BRCA
database and the expression related prognosis were validated in
METABRIC database. We divided patients into different groups
by the medians of hub genes expression. Kaplan-Meier analysis
was performed for survival curves and the significance was
determined by log-rank, during which R packages survival and
survminer in R 3.6.0 were used to analyze and sketch Kaplan-
Meier curves.

Meta-analysis of Hub Genes’ Survival in
Organized Public Databases
We downloaded survival data with cox regression of all hub
genes in PROGNOSCAN website (22), recently updated in 2019
April. In total 19 databases were included and used for meta-
analysis, 18 of which are Gene Expression Omnibus (GEO)

databases and one is ArrayExpress database. The hazard ratios
(HRs) of every hub gene were reorganized. Summarized HRs
were illustrated using R package forest plot. Overall survival
(OS) in five databases, disease free survival (DFS) in 12
databases, disease-specific survival (DSS) in three databases and
disease metastasis free survival (DMFS) in nine databases were
all evaluated.

Hub Genes’ Correlation With Immune Cells
Infiltration
To explore the relations between hub genes and the infiltrating
immune cells, we utilized TIMER (Tumor IMmune Estimation
Resource) web tool (23, 24) to calculate coefficients of correlation
between hub genes expression and infiltrated immune cells
including B cells, CD4+ T cells, CD8+ T cells, macrophages,
neutrophils, and dendritic cells. The correlation heatmap was
drawn using coefficients and p-values extracted from TIMER
calculation via pheatmap R package.

Cox Regression and Survival Analysis
Complete clinical, pathological and prognostic data of 1,085
breast cancer patients were obtainable for further analysis.
All ESTIMATE results were reorganized with clinical and
pathological characteristics for subsequent statistical analysis.
Quantitative stromal score and immune score were categorized
into high and low groups taking medians as cutoffs. Age at
diagnosis was defined as young (≤55 years) and old (>55
years). Univariate and multivariate cox regression were used
to shed light on the relationship between clinical patterns and
the immune microenvironment in TCGA and METABRIC
database. Hazard ratios and corresponding confident
intervals were calculated through R package survival using
survival data.

RESULTS

Stromal/Immune Scores Were Distributed
Diversely in Terms of Clinical
Characteristics
ESTIMATE algorithm gave stromal and immune scores for all
1,096 samples, among which 1,085 cases with clinical data were
used. We firstly compared different distribution of these scores
with respect to clinical characteristics as follows: age at diagnosis,
ER status, PR status, HER2 status, histological type, menopause
status, PAM50 subtypes, pathologic T, N, M, and tumor stage.
Indeterminate data were omitted while each specific factor was
inspected and analyzed as shown in Figure 1. Among all the
characteristics displayed in Supplementary Table S1, we found
the immune infiltration score was diversely distributed in terms
of age at diagnosis, ER status, PR status, HER2 status, histological
type, and PAM50 subtypes. Young patients (≤55 years old)
showed elevated stromal scores (p = 0.02) but similar immune
scores (p = 0.18) compared to old patients. Only 517 cases were
defined in PAM50 subtypes. Luminal B subtype and basal-like
subtype were associated with lower stromal score (p < 0.001)
while luminal A and B subtype were less infiltrated by immune
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FIGURE 1 | The scatter plot shows that the immune score and the stromal score are distributed differently among clinical characteristics such as Age at diagnosis (A),

ER status (B), PR status (C), HER-2 status (D), PAM50 subtypes (E), Histological type (F). *p < 0.05; ***p < 0.001; ns, not significant.

cells (p < 0.001). Invasive lobular carcinoma had higher level of
stromal score (p < 0.001) but lower infiltration of immune cells
(p < 0.001) compared with invasive ductal carcinoma, revealing
the possible differences in tumor microenvironment during
tumorigenesis in IDC and ILC. Positive ER and positive PR status
showed same trend on lower stromal infiltration (p < 0.001) and
higher immune infiltration (p < 0.001). Interestingly, positive

HER2 status was only related to lower stromal score (p= 0.036)
but not significantly relevant to immune score (p= 0.705).

As for other clinical features such as menopause status,
pathologic T, N, M, and tumor stage, only stromal score was
significantly associated with some terms, such as pathologic T
(p= 0.003), pathologic N (p = 0.003), and tumor stage (p =

0.058) when indeterminate data were excluded.
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Up- and Down-Regulated Genes in Stromal
and Immune Groups Were Overlapped to
Generate Valid Differentially Expressed
Genes (DEGs)
In order to evaluate the possible impact of stromal and immune
scores on breast cancer, we investigated the expression patterns
in different stromal and immune groups. DEGs were compared
between high- and low-score stromal or immune groups with
|logFC| < 1 and p < 0.05 through R package “limma.” Total
of 1,075 upregulated genes and 212 downregulated genes were
found in different stromal groups. Meantime, 1,251 upregulated
genes and 187 down regulated genes were identified in different
immune groups.

To minimize the systematic error from group classification,
the overlap of genes with same trends in both stromal and
immune groups were considered as valid DEGs. Consequently,
435 overexpressed genes and 45 underexpressed genes were
found (the overlap of valid DEGs was shown in Venn graph
in Figure 2A). The heatmap of gene expression and the
stromal, immune and ESTIMATE scores of 1,096 patients were
shown and clustered in Figure 2B. The original expression
data was uploaded in Supplementary Materials. From the
clustering, we could find out that dysregulated genes showed
a similar expression trend along with stromal, immune
and ESTIMATE scores, indicating that they expressed
coordinately and probably cooperated among certain
biological processes.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Analysis Showed Functional
Enrichment in Immune Regulations
To explore the underlying interplay of these valid DEGs, GO
analysis, and KEGG pathway enrichments were performed.
As shown in Figure 3A, 15 biological processes (BPs) were
enriched, such as immune cells activation, immune response, and
cytokine metabolic processes. Ten molecular functions (MFs)
including glycose metabolism, antigen, and immunoglobulin
binding were found to be related as shown in Figure 3B. Seven
cellular components (CCs) regarding extracellular and receptor
complex, granule generation and secretion were found as shown
in Figure 3C.

Regarding to the KEGG pathway analysis as shown in
Figure 3D, infectious diseases related pathways were enriched
such as malaria, leishmaniasis and measles. Besides, NF-κB
signaling pathway and JAK-STAT signaling pathway were also
enriched, which revealed potential mechanisms and pathways
activated during tumor progression. Immune processes and
regulations were significantly enriched in both GO and
KEGG analysis. Even though we excluded genes used for
scoring, we could not deny the possibility that the enrichment
result was influenced partially by scoring process. The GO
identifiers/KEGG identifiers, enrichment scores and False
Discovery Rates (FDRs) of the enrichment analysis was displayed
below the graph.

FIGURE 2 | (A) The Venn graph shows intersection of DEGs in stromal and immune group. Four hundred and thirty-five upregulated and 45 downregulated genes are

found. (B) The heatmap demonstrates DEGs and the stromal score, the immune score, and the tumor purity (ESTIMATE score) at the top of the heatmap.
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FIGURE 3 | Functional enrichments are operated. Fifteen biological processes (A), ten molecular functions (B), seven cellular components (C) and fifteen KEGG

pathways (D) are illustrated. The color of the dots demonstrates -Log10 (FDR). Therefore, yellow dots shows greater FDR than red ones. The size of the dots indicates

the number of genes enriched in the analysis.

Hub Genes Were Extracted From
Protein-Protein Interaction (PPI) Network
and Validated in Different Databases
All valid DEGs except genes employed in ESTIMATE algorithm
were used to predict PPI network in STRING website. Setting

minimum required interaction score as high confidence (0.7),
191 genes were found and analyzed in STRING. All genes
were mutually connected and interacted, constructing a sketch
of the interplay network. Further analysis was conducted in
Cytoscape and 10 genes were screened out as hub genes (CCR4,
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FIGURE 4 | (A) Hub genes are shown and the thickness of the line indicates the extent of the relationship between two genes. (B) GeneMANIA is used to identify

predicted genes correlating with hub genes, 20 of the predicted genes are located in the outer circle while hub genes are drawn in the inner circle. The color of the line

illustrates different type of their relationships. The color inside the gene dots indicates functions which these genes are involved in.

CCL21, PNOC, CCR5, CCR2, CCL19, CNR2, P2RY13, GPR183,
PENK) and a potential interaction sketch map was shown
in Figure 4A. We also uploaded hub genes to GeneMANIA
website to predict functionally similar genes. As a result,
twenty genes emerged as shown in Figure 4B, among which
17 genes had shared protein domains with hub genes, 12
genes were co-expressed with hub genes, 8 genes were co-
localized with hub genes, 10 genes shared similar pathways
with hub genes. We also visualized predicted functions in the
network. Hub genes were arranged at the inner circle while
predicted genes at the outer circle. Immune response and
chemokine related functions were enriched, such as G-protein
coupled chemoattractant receptor activity, cell chemotaxis,
chemokine receptor activity, chemokine-mediated signaling
pathway, cytokine receptor activity, leukocyte chemotaxis, and
chemokine receptor binding. These results strongly supported
the hypothesis that hub genes were interacted with each other

and played important roles in immune processes during the
tumor progression.

Moreover, we investigated these genes in TCGA database,
METABRIC database and GEO databases to find their potentials
as prognostic factors. In TCGA database, higher expression
of CCL19, CNR2, P2RY13 and GPR183 showed significantly
higher OS rate and longer median survival time with p <

0.05 in Figure 5A and Supplementary Figure S1. And high
expression of CCL19, CNR2, and PENK showed prolonged
RFS in Figure 5B and Supplementary Figure S1. In METABRIC
database, we applied Kaplan-Meier analysis of overall survivals.
The relevant high expression of CCL19, CCL21, CCR2, CCR4,
GRP183, or P2RY13 significantly extended patients’ lifespan as
shown in Figure 5C and Supplementary Figure S1.

All information about 19 databases were attached in
Supplementary Table S2. The results of meta-analysis in
multiple databases of 10 hub genes and the cox regression of
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FIGURE 5 | Kaplan-Meier survival analyses and meta-analysis of survivals in multiple databases are shown. Significant OS (A), RFS (B) in TCGA-Breast Cancer and

OS of METABRIC (C) are sketched and p-values are in the plots. (D) Meta-analysis of the survival with endpoints as OS, DFS, DSS, and DMFS and cox regression of

OS in TCGA and METABRIC of 10 hub genes. P < 0.05 is used as significant criteria. DFS, disease free survival; DMFS, disease metastasis free survival; DSS,

disease specific survival; OS, overall survival.

genes in TCGA database andMETABRIC database were together
demonstrated in Figure 5D and Supplementary Figure S2.
CCR2 was not in the meta-analysis since it was not evaluated in
any of the multiple databases but its relationship with prognosis
in TCGA and METABRIC database was demonstrated. As
obviously indicated, all genes tended to be protective in patients
survivals. As we can see, all genes were not significant in
meta-analysis of OS. The reason of this phenomenon could be

the limited follow-up time and small sample size. Other than the
results in meta-analysis, the genes which were possibly influence
OS included CCL19, CCL21, CCR4, GPR183, and P2RY13. In all
hub genes, P2RY13 and PENK played a significantly beneficial
role in DFS as CCL19, GPR183, P2RY13, PENK in DMFS, and
CCL21, CNR2, GPR183, PENK in DSS.

Overall, CCL19, CCL21, GPR183, P2RY13, and PENK were
potential protective factors in breast cancer. These genes as
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FIGURE 6 | The correlation heatmap demonstrates the relationship between

gene expressions and immune cells infiltration. Dots size shows the extent of

their relationships and dots color indicates if they are positive-related (blue

dots) or negative-related (red dots). The number inside dots indicates the

coefficients of correlation between genes expression and cells infiltration.

Blank squares mean insignificance (p > 0.05).

prognostic biomarkers in breast cancer need systematic and
thorough researches in the future.

The Correlation Between Hub Genes and
Immune Infiltration Was Identified
Hub genes expression was analyzed by TIMER (Tumor IMmune
Estimation Resource) web tool in order to predict their probable
influences on immune cells infiltration including lymphoid cells
such as B cells, CD4+ T cells, CD8+ T cells and myeloid cells
including macrophages, neutrophils, and dendritic cells. The
scatter diagrams and fitting curves generated by TIMER were
attached in Supplementary Figure S3. Immune cells infiltration
was generally linked to hub genes expression as shown in
Figure 6. All genes were associated with tumor purity (coefficient
above 0.37). Most of the genes were related to certain types
of immune cells. However, we could easily tell that CCL21
and PENK have very limited correlation with immune cell
infiltration while CCR2, GPR183, CCR5, and CCR4 showed a
strong correlation with all immune cells except macrophages.
GPR183 and CCR5 were slightly more relevant to myeloid cells
infiltration while other genes showed strong mediating functions

in both lymphoid and myeloid cells. On the other aspect,
macrophages were mildly affected by CCR2, GPR183, CCR5, and
CCR4 while P2RY13 showed the most remarkable correlation
with macrophages (coefficient= 0.39).

Cox Regression With Matrix and Immune
Compartment and Clinical Characteristics
Cox regression was used to evaluate the relationship between
risk factors and survival time. Univariate and multivariate cox
regression were conducted using R language and forest plots
were demonstrated in Figure 7A. In univariate analysis, young
patients (≤55 years old) (HR = 0.60, 95% CI: 0.43–0.83, p =

0.002), post-menopause (HR = 2.16, 95% CI: 1.31–3.54, p =

0.002, compared to pre-menopause), T3&T4 (HR= 1.70, 95%CI:
1.18–2.44, p = 0.004, compared to T1&T2), N1&N2&M3 (HR=

2.24, 95% CI: 1.57–3.19, p < 0.001, compared to N0), M1 (HR
= 4.41, 95% CI: 2.6–7.48, p < 0.001), stage III & IV (HR = 2.56,
95% CI: 1.83–3.57, p < 0.001, compared to stage I & II), high
immune scores (HR = 0.70, 95% CI: 0.51–0.97, p = 0.031) were
prognostic factors. Based on the univariate analysis, we include
immune score in next multivariate analysis but stromal score and
ESTIMATE score were excluded since these scores were linearly
dependent on each other as shown in Supplementary Figure S4.
In multivariate analysis for overall survival, young patients (≤55
years old) (HR = 0.58, 95%CI: 0.35–0.95, p = 0.032), N0 (HR
= 0.57, 95% CI: 0.37–0.88, p = 0.012), M0 (HR = 0.48, 95% CI:
0.25–0.84, p= 0.011), stage I & II (HR= 0.52, 95% CI: 0.31–0.88,
p = 0.014), high immune scores (HR = 0.45, 95% CI: 0.27–0.74,
p= 0.002) turned out to be protective factors.

As for recurrence-free survival (RFS), only N0 (HR = 0.45,
95% CI: 0.25–0.81, p = 0.007), stage I & II (HR = 0.54, 95%
CI: 0.29–0.99, p = 0.048) and high immune score (HR = 0.41,
95% CI: 0.22–0.77, p = 0.006) showed their potential protective
effects in multivariate cox regression (Figure 7A). In univariate
analysis, reduced hazard ratios on recurrence-free survival could
be observed in positive ER status (HR= 0.61, 95% CI: 0.39–0.94,
p = 0.026), positive PR status (HR = 0.61, 95% CI: 0.41–0.93, p
= 0.020), T1 (HR = 0.45, 95% CI: 0.29–0.71, p < 0.001) and M0
(HR= 0.25, 95% CI: 0.11–0.58, p= 0.001) patients group.

The univariate and multivariate cox regression of overall
survival were applied in METABRIC database and immune score
was confirmed to be a protector (HR = 0.88, 95% CI: 0.77–0.99,
p = 0.039) with younger age (HR = 0.45, 95% CI: 0.35–0.57,
p = 0.039), ER-positive (HR = 0.85, 95% CI: 0.71–1.02, p =

0.08), HER2-negative (HR= 0.69, 95% CI: 0.58–0.84, p < 0.001),
smaller tumor size (HR = 0.66, 95% CI: 0.58–0.75, p < 0.001)
and no metastasis lymph nodes (HR = 0.63, 95% CI: 0.53–0.75,
p < 0.001) as demonstrated in Figure 7B. Cox regression results
could be checked in Supplementary Tables S3, S4.

DISCUSSION

Tumor microenvironment in breast cancer has arisen
concentration these years. On the basis of the fact that tumor
microenvironment has manifested its influence on diagnosis,
classification, treatment and prognosis, all carcinoma types are
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FIGURE 7 | The cox regression is applied to discover hazard ratios (HRs) of clinical characteristics and immune scores in OS (left) and RFS (right) in TCGA database

(A) and OS in METABRIC database (B). Blue diamonds and red dots demonstrates univariate and multivariate analysis, respectively. The confidence intervals are

shown as the length of the line. Lines cross HR = 1.0 indicates their insignificance.

divided into different subtypes by immune genes and immune
cell infiltration in several models. Pan-cancer immune analysis
uses expression signatures for clustering and six immune
subtypes of cancer in spite of primary sites are generated
(25). The six subtypes possess distinctive characteristics on
infiltrated immune cells, somatic variation, immunomodulators
and prognosis. Similar analysis is applied in triple negative
breast cancer that 29 immune signatures are used as criteria for
clustering and defining immunity levels of high, intermediate
and low (26). In a recent work, 72-gene test panel are drawn from
more than 2,000 cases and tested in public and private databases
for subtyping and immunity-adjusted risk of distant metastasis
analysis in breast cancer (27). These findings are all focused

on clustering patients into different subtypes using immunity-
related genes and cells but give little evidence on the possible
mechanism of these genes or cells in tumor microenvironment.

Based on these studies, we calculated tumor purity, stromal,
and immune infiltration levels based onmRNA expression. From
the description of clinical characteristics and prognosis, there
was a significantly positive correlation between the majority
of clinical features and stromal scores but immune scores. It
might suggest the independent impact of immune infiltration
on prognosis and survival. The result of the cox regression was
coordinated with the hypothesis. Immune score was a significant
protector no matter in univariate or multivariate cox analysis.
Interestingly, high immune score was found to be associated
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with ER negative and PR negative status while the latter two
are considered as factors for poor prognosis in breast cancer
stratification and treatment. The connection between immune
infiltration and ER status could be seen as well in ductal
carcinoma in situ among women patients (28, 29). However,
there is necessity that the level of immune or stromal infiltration
should be detected further using flow cytometry and/or single-
cell sequencing and their relationships with clinical features can
be restated.

Furthermore, we bioinformatically investigated possible
pathways and hub genes triggered or mediated the variation
of tumor cellularity. Immune response and extracellular
interactions were found during the enrichment analysis. Cell
membrane activity and granule generation in CC, cytokines,
membrane receptor binding and activities in MF, immune cell
activation, interleukins production, immune responses in BP all
combined to sketch a picture of immunity processes in tumor
progression. More importantly, there are two signaling pathways
highlighted in KEGG enrichment other than immunity-centered
pathways, which are Janus kinase/signal transducer and activator
of transcription (JAK/STAT) andNF-κB pathway. The JAK/STAT
pathway is recognized as a downstream of a variety of
cytokines, hormones, and growth factors. This rapid membrane-
to-nucleus signaling plays an significant role both in metabolism
and in immune process (30–32). NF-κB pathway, activated
by extracellular molecules, is also a convincing induction of
tumorigenesis and metastasis (33, 34). These two pathways
interact with each other and modulate immune cells in tumors
(35–37). Our results have given evidence of their critical roles in
tumor microenvironment.

Among DEGs, 10 hub genes (CCR4, CCL21, PNOC, CCR5,
CCR2, CCL19, CNR2, P2RY13, GPR183, PENK) were found and
their prognostic effects and relationship with infiltrated cells were
predicted. The chemokines CCL19 and CCL21 were two of C-
C chemokine ligands that shared the same chemokine receptor
CCR7. Researchers have found that CCR7 is highly expressed
on human B cells, expanded T cells instead of naïve T cells
(38) and dendritic cells (39) and its expression on peripheral
T cells was positively related to the chemotactic migration
of T cells to CCL19 and CCL21 (40). On the other hand,
CCR7 mediated chemotaxis required the existence of CCL19
or CCL21 (41). In vitro experiment indicated that recombinant
CCL19 showed potent chemotactic activity for T-cells and B-
cells but not for granulocytes and monocytes. Combined with
our analysis in Figure 6, CCL19 showed a chemotactic role in
B cells, T cells, and dendritic cells. In contrast, recombinant
murine CCL21 was tested to be chemotactic for activated
T cells, but not for B cells, macrophages, or neutrophils in
vitro (42). CCL19 significantly enhanced breast cancer patients’
prognosis in our work and we speculated it could work
in accordance with these immune cells infiltration. In our
analysis, CCL21 expression was positively correlated with T
cells and dendritic cells, less correlated to B cells, neutrophils
but not related to macrophages infiltration. Researchers have
found that CCL21/CCR7 chemokine axis not only induced
lymphangiogenesis in breast cancer (43), but also promoted
breast cancer cells migration and metastasis (44). We could

further explain whether and how immune cells modulate these
processes experimentally.

Chemokines receptors CCR2, CCR4, and CCR5 were
extremely associated with gathering of immune cells except
macrophages as in Figure 6. These genes are all functional
receptors with several cognate chemokines and mediates
chemotaxis and migration of immune cells through intracellular
signaling pathways. However, these genes effect on breast cancer
should be interpreted with caution since they mainly expressed
in leukocytes. In Yang et al.’s work (27) on breast cancer, blood
single-cell RNA-seq was used to exclude active genes in the blood
and they precisely located genes that were activated in tumor
tissues. More confirmation like this can be applied to chemokine
receptors because the expression change of these genes can be
resulted from the infiltration of leukocytes. GPR183, P2RY13 and
CNR2 are all G-protein coupled receptors, in which GPR183
and P2RY13 are not only expressed in immune cells but also in
breast tissues while CNR2 mostly expressed in immune organs.
Their effect in immune responses and cell chemotaxis have been
discovered. GPR183 mediated in immune response, intestinal
immunity and inflammation (45) when activated in T cells, B
cells, dendritic cells and macrophages (46–48). In glioblastoma
multiforme, GPR183 contributed to chemotactic migration of
THP-1 cells toward tumor (49). P2RY13, in another hand, was
analyzed in lung adenocarcinoma and associated with survival
of patients (50), which was similar to our analysis. But if this
effect could be explained by high immune infiltration needs to
be further investigated. We found P2RY13 as an promoter of
high proportion of immune cells in tumor, on the contrary,
P2RY13 was negatively correlated with acute inflammatory score
in Crohn’s disease (51). Due to different pathogenesis of Crohn’s
disease and breast cancer, we need to interpret the result with
caution. Even though CNR2 expressed high only in the immune
system, it was unraveled to enhance head and neck squamous
carcinoma progression (52) and impaired prostate cancer cell
migration by heterodimerized with CXCR4 (53). These genes
function are not illustrated clearly, but their prognostic effect in
breast cancer should be interpreted with deeper experiments.

PENK and PNOC, precursor proteins of enkephalin and
nociceptin, respectively, are highly expressed genes in the
central neuron system as transmitters to opioid receptor and
commonly work in pain transmission and perception. However,
the promoter hypermethylation of PENK has been indicated in
several malignancies including bladder cancer (54, 55), colorectal
cancer (56) and pancreatic cells (57, 58). In researches, PENK has
been reported to be required for apoptosis induction in response
to activation or overexpression of p53 and p65 through NF kappa
B signaling pathway (59), which is a pathway that is activated
in inflammation and enriched in our functional analysis. PNOC
has merely been focused in cancer but it is assumed to express
in immune system. Its expression could be down-regulated by
LPS or IL-10 in human whole blood cultures (60). In vivo studies
in mice and/or rats revealed the interaction between nociceptin
and several inflammatory mediators in immune system such as
TNF-α, IFN-γ, and IL-1β (61–63).

To further investigate these genes relationship with immune
cells, we predicted gene-immune cell interactions. It is reasonable
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that higher expression of hub genes is correlated with lower
tumor purity and higher immune cells infiltration. Numerous
studies have attempted to summarize the suppressive functions
of immune infiltration through immune cells, matrix cells
(64) and immune-vascular crosstalk (65). Existing researches
have recognize the critical role of mononuclear immune cells
including CD4+ T cells, CD8+ T cells, macrophages, and natural
killer cells (9, 66–70). In non-small cell lung cancer (NSCLC),
lymphocytes especially T and B plasma cells were significantly
associated with better OS (71). These results also corroborate
the idea in renal cell carcinomas that different types of tumor-
infiltrating immune cells modulated in different subtypes of
renal carcinomas and prolonged OS or DFS (28). However,
a contradictory study indicated cancer-associated fibroblasts
activation correlated with tumor-associated macrophages
Infiltration and lymph node metastasis could promote tumor
progression by mediating inflammatory reactions in triple
negative breast cancers (29). Besides, stromal cells are found
to act as crucial factors during chemotherapy and endocrine
therapy in breast cancer (72–74). In our study, different genes
had diverse correlation coefficients with different immune cells,
presenting the unique function of genes in immune infiltration
and tumor-immune interplay. This may suggest the immune
infiltration possibly slows down tumor growth and metastases
through its specific ways. But in vitro and in vivo experiments
are needed to confirm their functions and interplays.

Current understanding of tumor microenvironment has
showed that high immune score, indicating highly active immune
cells infiltrations inside solid tumors, brings prognostic benefits
including highly differentiated phenotype (75), less switch to
invasive carcinoma (76), higher pathological complete response
rate to neoadjuvant treatment (77) and better OS and DFS (9, 78).
These results are in concordant with our analysis that immune
score is a protective factor in breast cancer prognosis.

Our findings may help to understand the phenomena
of stromal and immune infiltration in breast cancers. Since
our analysis is totally based on bioinformatic methods, the
results should be interpreted cautiously. We could only offer
a relation that the hub genes and functional pathways could
work in the process of tumor microenvironment and affect the
prognosis of breast cancer patients, but we have very restricted
evidence of their potential causal relationship. Some of our
hub genes (CCL19, CCL21, CCR2, CCR4, CCR5, CNR2) are
mainly expressed in immune cells or organs, resulting in the
possibility that their expressions are mostly affected by immune

cells infiltration. But there is still necessity to identify their
potential to predict prognosis and if possible, their function
in tumor infiltration. Multi-color flow cytometry has already
been used in breast cancer immunophenotyping (79) and tumor
microenvironment (80). It could measure the proportion of
several kinds of immune cells and sort those we are interested
for in vivo and in vitro experiments. Subsequently we could
clarify the specific effects of diverse immune cells to promote or
prohibit tumor progression. Meanwhile, with the development
of single-cell sequencing, diverse immune phenotypes in breast
cancer has been illuminated (81). A combined analysis of eight
patients indicated the variability of immune cells in different
patients and the work also proposed the phenomenon of
continuous activation in T cells in breast tumor. Abundant
questions raised for further promotion on determining the
interaction and crosstalk between genes and tumor-infiltrated
cells in experiments.
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