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Expression of CCR5 and its cognate ligands have been implicated in COVID-19

pathogenesis, consequently therapeutics directed against CCR5 are being investigated.

Here, we explored the role of CCR5 and its ligands across the immunologic spectrum of

COVID-19. We used a bioinformatics approach to predict and model the immunologic

phases of COVID so that effective treatment strategies can be devised and monitored. We

investigated 224 individuals including healthy controls and patients spanning the COVID-19

disease continuum.We assessed the plasma and isolated peripheral bloodmononuclear cells

(PBMCs) from 29 healthy controls, 26 Mild-Moderate COVID-19 individuals, 48 Severe

COVID-19 individuals, and 121 individuals with post-acute sequelae of COVID-19 (PASC)

symptoms. Immune subset profiling and a 14-plex cytokine panel were run on all patients

from each group. B-cells were significantly elevated compared to healthy control individuals

(P<0.001) as was the CD14+, CD16+, CCR5+ monocytic subset (P<0.001). CD4 and CD8

positive T-cells expressing PD-1 as well as T-regulatory cells were significantly lower than

healthy controls (P<0.001 and P=0.01 respectively). CCL5/RANTES, IL-2, IL-4, CCL3, IL-6,

IL-10, IFN-g, and VEGF were all significantly elevated compared to healthy controls (all

P<0.001). Conversely GM-CSF and CCL4 were in significantly lower levels than healthy

controls (P=0.01). Data were further analyzed and the classes were balanced using SMOTE.

With a balanced working dataset, we constructed 3 random forest classifiers: a multi-class

predictor, a Severe disease group binary classifier and a PASC binary classifier. Models were

also analyzed for feature importance to identify relevant cytokines to generate a disease score.

Multi-class models generated a score specific for the PASC patients and defined as S1 =

(IFN-g + IL-2)/CCL4-MIP-1b. Second, a score for the Severe COVID-19 patients was defined

as S2 = (IL-6+sCD40L/1000 + VEGF/10 + 10*IL-10)/(IL-2 + IL-8). Severe COVID-19 patients

are characterized by excessive inflammation and dysregulated T cell activation, recruitment,

and counteracting activities. While PASC patients are characterized by a profile able to induce

the activation of effector T cells with pro-inflammatory properties and the capacity of

generating an effective immune response to eliminate the virus but without the proper

recruitment signals to attract activated T cells.
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INTRODUCTION

Post-acute sequelae of COVID-19 (PASC) is a group of

previously infected individuals who experience a multitude of
symptoms from several weeks to months after recovering from

their acute illness and presumably months after viral clearance.

The prevalence of PASC ranges from 10% to 30% of all

individuals infected with SARS-CoV-2 (1). These symptoms

include joint pain, muscle aches, fatigue, “brain fog” and

others. These symptoms can commonly resemble rheumatic
diseases such as rheumatoid arthritis, autoimmune disorders,

and others such as fibromyalgia and chronic fatigue syndrome

(2). Many of these common disorders are caused by

inflammation, hyper- and/or auto-immunity and some such as

chronic fatigue are associated with viral persistence after an acute

infection with pathogens such as Epstein Barr virus (EBV) and

Human Cytomegalovirus (CMV) (3). Previous studies
demonstrated that elevations of CCL5/RANTES, IL-6 and to a

lesser extent TNF-a were elevated in acute COVID-19 (4).

Although patients improved using CCR5 antagonists, the levels

of these cytokines decreased but not to normal levels suggesting

persistent cytokinemia following discharge from hospitals. In

addition, studies including those from our laboratory, have
suggested that PASC may be caused by persistent SARS-CoV-2

itself (5). Here, we sought to identify possible immunologic

signatures of COVID-19 severity and to determine whether

PASC might represent a distinct immunologic condition

compared to Mild to Moderate (MM) or Severe COVID-19.

Further, we addressed the question whether the immunologic

profile represents an immune response indicative of prolonged
or chronic antigenic exposure. Using machine learning, we

identified algorithms that allowed for accurate determination

of PASC and Severe COVID immunotypes. Finally, we present a

quantitative immunologic score that could be used to stratify

patients to therapy and/or non-subjectively measure response

to therapy.

MATERIALS AND METHODS

Patients
Following informed consent, whole blood was collected in a

10 mL EDTA tube and a 10 mL plasma preparation tube (PPT).
A total of 224 individuals were enrolled in the study consisting of

29 healthy control individuals (negative for both SARS-CoV-2

RNA and SARS-CoV-2 IgM/IgG serology), 26 Mild-Moderate

COVID-19 patients, 48 Severe COVID-19 patients and 121

chronic COVID (PASC) individuals (enrolled through the

Chronic COVID Treatment Center following informed
consent, Protocol CCTC 20-001). PASCs symptoms are listed

in Figure 1. Study subjects were stratified according to the

following criteria.

Mild

1. Fever, cough, sore throat, malaise, headache, myalgia, nausea,

diarrhea, loss of taste and smell

2. No sign of pneumonia on chest imaging (CXR or CT Chest)

3. No shortness of breath or dyspnea

Moderate:

1. Radiological findings of pneumonia fever and respiratory

symptoms

2. Saturation of oxygen (SpO2) ≥ 94% on room air at sea level

Severe:

1. Saturation of oxygen (SpO2) < 94% on room air at sea level

2. Arterial partial pressure of oxygen (PaO2)/fraction of

inspired oxygen (FiO2) < 300mmHG

3. Lung infiltrate > 50% within 24 to 48 hours

4. Heart Rate ≥ 125 bpm

5. Respiratory rate ≥ 30 breaths per minute

PASC

1. Extending beyond 12 weeks from the initial onset of first

symptoms.

High Parameter Immune
Profiling/Flow Cytometry
Peripheral blood mononuclear cells (PBMCs) were isolated from

peripheral blood using Lymphoprep density gradient

(STEMCELL Technologies, Vancouver, Canada). Aliquots (6)

of 5 x 105 cells were frozen in media that contained 90% fetal

bovine serum (HyClone, Logan, UT) and 10% dimethyl sulfoxide
(Sigma-Aldrich, St. Louis, MO) and stored at -70°C. Cells (5 x

105) were stained and analyzed as previously described (4) using

a 14-color antibody cocktail with the volumes indicated

(Supplementary Table 1). Samples were analyzed on a

Beckman Coulter CytoFlex LX 6-laser flow cytometer using

Kaluza Analysis Software (Beckman-Coulter, Miami, FL). All

statistical analysis was performed using the Mann-Whitney test
and a P value ≤0.05 was considered statistically significant.

Multiplex Cytokine Quantification
Fresh plasma was used for cytokine quantification using a

customized 14-plex bead based flow cytometric assay

(IncellKINE, IncellDx, Inc) on a CytoFlex flow cytometer as

previously described using the following analytes: TNF-a, IL-4,
IL-13, IL-2, GM-CSF, sCD40L, CCL5 (RANTES), CCL3
(MIP-1a), IL-6, IL-10, IFN-g, VEGF, IL-8, and CCL4 (MIP-1b)
(4). For each patient sample, 25 µL of plasma was used in each well

of a 96-well plate. Samples were analyzed on a Beckman Coulter

Abbreviations: IL, interleukin; RANTES, regulation on activation, healthy control

T-expressed and secreted; CCR, chemokine receptor; IFN, interferon; TNF, tumor

necrosis factor; MIP, macrophage inflammatory protein; GM-CSF, granulocyte-

macrophage colony-stimulating factor; VEGF, vascular endothelial growth factor;

HIV, human immunodeficiency virus; HCV, hepatitis C virus.
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CytoFlex LX 3-laser flow cytometer using Kaluza Analysis

Software (Beckman-Coulter, Miami, FL). All statistical analysis

was performed using the Mann-Whitney test and a P value ≤0.05

was considered statistically significant.

Data Processing
Although we have previously defined healthy, Mild, Moderate,

Severe, and PASC patients, for downstream analysis we have

divided the patients into 4 classes: Healthy control (healthy

patients), Mild-Moderate (including the Mild and Moderate

patients), Severe, and PASC. Data was imported and processed
using Python 3.8.3, using the pandas library (version 1.1.0) (7).

and the numeric python module, numpy version 1.18.5 (8). Our

data consisted of 224 instances representing 4 classes (healthy

control, Mild-Moderate, Severe and PASC). The dataset

consisted of 16 columns, of which 14 represented the different

cytokine/chemokine analytes, one for the patient identifier and

one column for the label, or the class to which the patient
belonged (healthy control, Mild-Moderate, Severe or PASC).

We identified imbalanced class labels in our dataset, and thus

decided to proceed to balance the dataset. In order to adequately

do data balancing, it was necessary to separate the data into

training, validation and test sets. We used the 60/20/20 schema,

with a 20% validation partition to assess model overfitting after
training, and 20% of data for class label prediction. Data

partitions needed to be implemented in order to ensure that

generated samples would be present in the training set only. It is

necessary to avoid generated samples in either the validation or

test set because their presence in either can lead to overfitting and

spurious results.

Data Balancing With Synthetic
Oversampling of the Minority Class
The 4 classes in our dataset were composed of different numbers

of instances. If the variation between the number of classes is

large enough, it can lead to a phenomenon identified as class
imbalance. The potential existence of class imbalance in our

dataset was further supported by the fact that 50% of the dataset,

or 121 individuals, were PASCs, while only 26 and 29 were mild-

moderate and healthy controls, respectively, and the remaining

48 corresponded to the Severe class. Class imbalance leads to
differences in the ratios between classes, for example we

identified a 2.5 ratio between PASC and Severe, and a 4-fold

ratio between PASC and both Mild-Moderate and Control.

These differences in ratios can lead to biased predictions,

which are often reflected as poor model performance metrics

and generalizations (6, 9, 10). In order to avoid this potential
pitfall, balancing methods have been proposed, which include

random under-sampling and oversampling methods. However,

it has been reported that random under-sampling can lead to

information loss (11), whereas basic/randomized oversampling

can lead to model overfitting.

Chawla et al. (11) proposed a solution in synthetic

oversampling of the minority class. This method, known as
SMOTE, uses interpolation between minority class instances to

generate new data points to balance the dataset. SMOTE has

been used in imbalance, including those of biological context, in

conjunction with machine learning models (12). We pipelined

SMOTE from the python library imbalanced-learn (13) to

balance the training set, which was used in random forest
classifier construction.

Random Forest Classifier
The random forest (RF) classifier is an ensemble method that

groups multiple decision trees. Random Forests can be used for

both classification and regression problems, as developed in 2001
(14). This method has been used to analyze biological datasets

and in biological context knowledge discovery (11, 15, 16).

Random forest classifiers possess the advantage of

incorporating the option of assessing feature importance,

which can be of great importance when undertaking

downstream analysis, like assessing the biological significance
of a feature, understanding its relevance in a given biological

FIGURE 1 | Symptoms reported by PASC patients enrolled in the study.
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process like immune response, or its potential role as a

biomarker (17).

The ability to both be a predictor and identify relevant

features makes random forests embedded selection methods.

We used the Python’s machine learning library, scikit learn,

version 0.24.1 to construct the random forest classifier (18).
Additionally, in order to adjust model hyperparameters (number

of features, tree depth and number of trees) we used an

exhaustive grid search with 10-fold cross validation (CV). It is

important to note that variable importance was only

implemented to identify significant features and not for

dimensionality reduction.

Defining Precision, Recall and F1 Score
for Model Performance
To estimate the random forest classifier performance, we selected

three different metrics: precision (equation 1) which is a measure
of the percentage of the results that are relevant, recall which

measures the total relevant results that are correctly classified by

the predictor (equation 2), and the F1 score (equation 3), which

is the harmonic mean between these two measures and ranges

from 0 to 1. If the F1 score is close to 1, the better the model

performs. The F1 score for both false positives (FP) and false

negatives (FN) as well as for true positives (TP).

Precision =
TruePositive

TruePositive + FalsePositive
(1)

Recall =
TruePositive

TruePositive + FalseNegative
(2)

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
=

TP

TP + 1
2
(FP + FN)

(3)

RESULTS

Immune Profiling
To determine if immunologic abnormalities remain in PASCs,
we performed high parameter immune cell quantification and

characterization in a subset of individuals with preserved PBMCs

(Table 1A). We quantified B-cells, T-cells, and monocytes

including subsets and including CD4/CD8 activation and T-

cell exhaustion. All T-cells determinations were initially gated on

CD3 expression and all monocyte subsets were initially gated on

CD45 (Supplementary Figure 1). Unlike acute COVID-19 (4),
the CD4 and CD8 T-cell populations in PASC were within

healthy control limits and there was no evidence of T-cell

exhaustion. In fact, CD4 and CD8 positive T-cells expressing

PD-1 were significantly lower than normal controls (P<0.001

and P=0.01 respectively). Further, there was a significant

decrease in total T regulatory cells compared to healthy control
individuals (P<0.001) possibly exacerbating the hyper-immunity

in PASC. B-cells were significantly elevated compared to healthy

control individuals (P<0.001) as was the CD14+, CD16+, CCR5+

monocytic subset (P<0.001) (Table 1A). Interestingly, these two

immune cell populations have been shown to be chronically

infected by different viruses. B-cells are infected by Epstein-Barr
and the CD14+, CD16+, CCR5+ monocytic subset by HIV-1 and

by HCV (19).

To further characterize the immune response in PASCs, we

performed a quantitative, multiplex cytokine/chemokine panel

on 29 healthy control individuals to establish the healthy control

range of the assay. We then analyzed Mild-Moderate, Severe, and

PASCs plasma samples and compared the cytokine/chemokine
profiles (Table 1B). CCL5/RANTES, IL-2, IL-4, CCL3, IL-6, IL-

10, IFN-g, and VEGF were all significantly elevated compared to

healthy controls (all P<0.001). Conversely GM-CSF and CCL4

were in significantly lower levels than healthy controls P=0.005.

Construction of a Multi-Class Random
Forest Predictor for the Discrimination of
the Analytical Groups in the Dataset
We proposed to differentiate the analytical groups (or diseases
groups) of the dataset by constructing a multi-class random

forest classifier. During the exploratory data analysis phase, we

identified that the current dataset presented the characteristic of

being imbalanced, with an overrepresentation of the PASC class.

This dataset can also be considered medium-sized due to the

number of instances. To address these potential pitfalls, and to

avoid model overfitting, we implemented a balancing technique

TABLE 1A | T-, B-cell, and monocyte immunophenotyping.

Average CD3

+%

CD4% CD8

+%

CD4

+PD1%

CD4

+LAG3%

CD4

+CTLA4%

CD4

+FoxP3%

CD8

+PD1%

CD8

+LAG3%

CD8

CTLA4%

CD8+

FoxP3%

CD19% CD14

+CD16-

%

CD16

+CD14

+%

CD16

+CD14-

%

Healthy

Controls

64.40 53.80 33.83 35.62 0.94 1.51 6.21 43.75 4.35 1.38 0.67 6.04 42.79 9.00 32.67

Lower

CI

54.39 43.21 27.20 28.36 0.49 0.75 4.54 33.50 2.71 0.74 0.37 5.04 34.41 4.60 25.49

Upper

CI

74.50 64.57 40.46 42.89 1.39 2.26 7.87 54.01 5.99 2.03 0.97 7.04 51.16 13.41 39.86

PASC 48.98 56.18 35.36 17.78 0.72 4.06 2.58 31.99 0.71 3.11 1.01 13.14 19.01 29.3 33.86

Lower

CI

44.78 52.44 32.56 15.73 0.36 2.32 2.01 29.46 0.55 2.04 0.80 11.72 15.65 25.65 30.28

Upper

CI

53.18 59.92 38.70 19.83 1.08 5.80 3.15 35.52 0.87 4.18 1.22 14.56 22.37 32.95 37.44
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as described above. The implementation of SMOTE is thus useful

to counter overfitting and to generate new samples from
interpolation for the underrepresented or minority classes. By

using SMOTE to balance the minority classes to 100% of the

PASC class, it resulted in each class having 76 instances in the

training set. This represented a 4-fold increase in the healthy

control and the Mild-Moderate classes, and a 2.5-fold increase

for the Severe class.

The balanced dataset was used to construct the multi-class RF
predictor, which was fine-tuned using the grid-search and cross

validation approach. This implementation of grid search and 10-

fold CV was used as a fine-tuning approach for this and all

subsequently constructed classifiers. The multi-class model was

then analyzed for overfitting with the validation set (Table 2).

During this analysis, we noticed a slight decrease in the model’s
predictive performance when discriminating between the healthy

control and Mild-Moderate class, however the overall

performance in the validation set was high, as seen by the

recall (sensitivity) and the f1 score. However, these differences

were heavily accentuated in the performance metrics of the test

set (Table 2). This can be further appreciated in the confusion

matrix for the multi-class classifier (Figure 2), which
demonstrates that in the test split, both the Severe and PASC

classes were properly identified but the healthy control and Mild-

Moderate classes incurred in multiple misclassifications.

Furthermore, when analyzing the feature importance

(cytokines) of the dataset, we noticed the differences between

variables are of small magnitude, only amplified by the scale of
the axis (Figure 2), but apart perhaps the difference between

IFN-ˠ and CCL5 (RANTES), differences might not be that

obvious. Because of these findings, we decided to proceed with

the construction of the binary RF classifiers focused on Severe

and PASC classes.

Construction of a Binary PASC Random
Forest Classifier Allows Identification of
Relevant Features for the Development
of a Heuristic Score for PASC
Patient Identification
After constructing the multi-class predictor, we proceeded with

the development of a binary classifier furthering our

understanding of the PASC disease group. The PASC class was

comprised of long-term disease carriers, and thus the random

forest classifier was tasked with separating the long-term carriers
from those instances that did not belong to this class, and to

identify the cytokines or features that were relevant for the

discrimination of the disease groups. To achieve this, we

separated the data into two major groups, one that consisted of

all the classes (healthy control, Mild-Moderate and Severe)

representing non-long term disease carrier groups, and a
second with the PASCs. This new dataset was split into 60/20/

20 (training/validation/test) and the training set was balanced

using SMOTE. The trained classifier was fine-tuned to determine

the best hyperparameter combination (tree-depth, feature

number, number of trees) using and exhaustive grid search.

We then used the model on the validation set in order to detect

model overfitting, and did not identify indications of model
overfitting (Table 2). The model was implemented on the test set,

to predict the classes for the instances in this partition. When

analyzing the confusion matrix (Figure 3), the model’s predictive

capabilities seemed very high, with only 2 instances being

misclassified, this is further supported by the predictors

metrics (Table 2), where the F1 score, the balance between
precision and recall was 0.95. Additionally, when looking at

the variable importance analysis (Figure 3), we identified that

the top 5 most relevant cytokines were (in order): IFN-ˠ, IL-2, IL-

4, IL-10 and GM-CSF. Other relevant identified cytokines

include: IL-8, CCL4 (MIP-1b) and CCL3 (MIP-1a).
The resulting features identified from the variable importance

analysis were fundamental for the subsequent development for a
novel heuristic that was constructed using feature engineering.

Through the use of the score derived from this heuristic, we

aimed to simplify our model and gain biological insight about the

PASC phenotype. We obtained a “PASC Score” defined as

S1 = (IFN-g + IL-2)/CCL4-MIP-1b (Figure 4). Setting an

optimized threshold of S1 = 0.5 as a tradeoff of sensitivity and
specificity, it was possible to classify the majority of PASCs as

such (118/121 with S1 > 0.5) for a sensitivity of 97.5%. No

healthy control or MILD-Moderate cases were classified as

PASCs (specificity of 100% for healthy control and MILD-

TABLE 1B | Cytokine and other soluble factors quantification.

Average (pg/ml) TFN-a IL-4 IL-13 IL-2 GM-CSF sCD40L CCL5 (RANTE S) CCL3

(MIP-1a)

IL-6 IL-10 IFN-g VEGF IL-8 CCL4 (MIP-1b)

Healthy Controls 9.09 4.18 3.94 6.17 51.27 7192.39 10781.84 22.82 2.21 0.67 1.94 9.32 16.87 76.84

Lower Cl 7.37 2.17 1.79 5.53 25.72 5148.85 9764.99 13.05 1.65 0.42 0.63 6.36 13.03 61.00

Upper Cl 10.81 6.18 6.09 6.82 76.82 9235.92 11798.68 32.60 2.77 0.92 3.26 12.28 20.72 92.67

PASC 7.72 17.03 4.21 16.16 12.46 18302.41 12505.06 97.81 20.47 12.23 86.60 41.03 35.98 35.10

Mild-Mod 6.82 2.33 2.40 5.90 56.13 10673.72 11627.70 18.75 8.74 0.63 1.15 17.39 17.37 94.40

Severe 5.39 2.39 2.26 5.43 20.31 12306.39 11581.47 16.54 144.15 3.10 2.06 25.52 10.87 64.84

TABLE 2 | Random forest classifier predictor performances on the validation

and test partitions.

Model Accuracy Precision Recall F1

Multi-class-Val 0.97 0.97 0.92 0.93

PASC-Val 1.00 1.00 1.00 1.00

Severe-Val 0.94 0.95 0.94 0.94

Multi-class-Test 0.8 0.62 0.65 0.63

PASC-Test 0.96 0.95 0.96 0.95

Severe-Test 0.95 0.97 0.93 0.94

The partition is indicated next to the model, either as Val for validation or Test for the test

partition. The presented performance metrics were calculated using the classification

report and the confusion matrix form sci-kit learn (18).
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Moderates). In contrast, 7/48 Severe cases were classified as
PASCs (S1>0.5) for a specificity of 85%, suggesting that these

‘misclassified’ Severe cases could indeed become PASCs.

Construction of a Binary Random Forest
Classifier and Variable Importance
Enables the Feature Engineering of a
Score for Severe Patient Identification
The random forest classifier for discriminating between Severe

and non-Severe individuals was constructed by grouping the

balanced healthy control and Mild-Moderate classes into a single

group that was labeled as non-Severe. In this dataset, the PASC

class was excluded based on the scope of potentially identifying

the cytokines that separate the Severe disease group from those
that are in a non-Severe state. These non-Severe individuals

however, do not belong to a long-term carrier group. In addition,

the results from the disease score generated using the important

variables allowed us to discriminate the PASCs.

The model was constructed and fine-tuned using the same

approach implemented in the multi-class and binary models.

The model with the best parameters was then selected to identify
model overfitting in the validation set. We were not able to

determine any evidence of overfitting, and proceeded to use this

model to undertake predictions in the test set. As the confusion

matrix for this Severe binary classifier indicates (Figure 5), it was

possible to discriminate between what we defined as Severe and

A B

FIGURE 3 | Confusion Matrix (A) and feature importance (B) for the PASC binary random forest classifier to enable the feature engineering of a score for the

identification of PASC patients. The positive class (1) are PASCs while the negative (0) class are the non-PASCs (healthy control, Mild-Moderate-Severe).

A B

FIGURE 2 | Confusion Matrix (A) and Feature importance (B) for multi-class classifier using Random Forest predictor. The confusion matrix was calculated from the

predictions of the random forest classifier on the test set. The classes were assigned in the following manner: (0) healthy controls, (1) Mild-Moderate, (2) Severe and

(3) PASC.
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non-Severe instances. The number of incorrectly classified

instances was 1 non-Severe misclassified as Severe (Figure 5).

The model performed very well, as indicated by its metrics in the
test set (Table 2). Both precision and recall were high (0.97 and

0.93, respectively, with an F1 score of 0.94). Additionally, as we

will report, this model also identified important features

(cytokines) that were relevant to discriminate between the

disease groups. This information would be useful to develop a

heuristic score for the Severe disease group. We also undertook
variable importance analysis (Figure 5) where we identified as

the most relevant features: IL-6, IL-10, VEGF, with IFN-g, CCL4-
MIP-1b and sCD40L being informative to a lesser degree.

Using these important features we developed a score to

identify patients. Based on the same principle, but using the

relevant features from the Severe random forest binary classifier,

we engineered a score for the identification of Severe cases. This
new score, identified as S2, was calculated as follows: S2 =

(IL6+sCD40L/1000+VEGF/10+10*IL10)/(IL2+IL8). Setting an

optimized threshold of S2 = 1.5 as a tradeoff between

sensitivity and specificity, it was possible to apply the heuristic

to classify the majority of Severe as such (46/48 with S2 > 1.5) for

a sensitivity of 95.8%. Only 2/29 healthy control and 5/26 MILD-
Moderate cases were classified as Severe (specificity of 93% for

healthy control and 81% for Mild-Moderates which may be

disease status misclassification) (Figure 6). However, using this

score alone, the original PASCs cannot be separated as most of
them will be classified as Severe.

A Combined Heuristic Enables an Optimal
Classification of PASCs and Severe Cases
of COVID-19
In order to integrate the PASC and Severe identification, we

aimed to develop a combined heuristic using both scores and the
optimized thresholds defined above. This heuristic identifies

the PASC cases first using the ‘PASC score’ and then identifies

the Severe cases from the remaining data points. The graphical

representation in Figure 7 shows a very good separation of the

PASC and Severe cases from the healthy control and Mild-

Moderates. All PASCs (121) were classified either as PASCs

(118) or Severe (3) indicating a sensitivity of 100% to identify
pathology. On the other hand, only 1 Severe case was classified as

Mild-Moderate, indicating that most Severe cases were classified

either as Severe (n=40) or PASC (n=7) indicating a sensitivity of

97.9% to detect pathology. In addition, the presence of those 7

‘mis-classified’ Severe cases as PASCs suggests that some Severe

cases are underway to become PASCs.

FIGURE 4 | Discrimination ability of the long hauler score for the identification of PASC patients (S1) with reduced or most important features identified using

Random Forest classifier. The dots represent the data points, where yellow are PASCs, red-Severe, dark blue-Mild-Moderate and green-healthy control.
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Finally, we simplified our prediction model by feature

engineering of two classification scores based on the top

informative features. First, a “PASC Score” was defined as
S1 = (IFN-g + IL-2)/CCL4-MIP-1b. Second, “Severe Score”

was defined as S2 = (IL6+sCD40L/1000+VEGF/10+10*IL10)/
(IL2+IL8). Using a combined heuristic to first classify the PASCs

(S1>0.4) and second the Severe COVID-19 patients (S2>0), we
obtained a sensitivity of 97% for PASCs with a 100% specificity

FIGURE 6 | Discrimination ability of the Severe score for the identification of Severe patients (S1) with reduced or most important features identified using Random

Forest classifier. The dots represent the data points, where yellow are PASCs, red-Severe, dark blue-Mild-Moderate and green-healthy control.

A B

FIGURE 5 | Confusion matrix (A) and variable importance (B) for the Severe binary classifier constructed using the random forest classifier. The results shown in the

confusion matrix were calculated for test split, where 0 represents the grouped Mild-Moderate and healthy control instances, and 1 are the Severe cases. For B, the

most significant variables were to calculate a disease group score for Severe patients.
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and a sensitivity of 88% for Severe patients with a specificity of
96% (Figure 7).

DISCUSSION

Individuals infected with SARS-CoV-2 exhibit distinct severity

patterns which have been associated with different immune

activation profiles. Interestingly, in some cases longer times are

required to experience full recovery, representing a particular
pathological type recently described as long-COVID or PASC.

The scientific evidence generated during the last months

strongly supports that the different outcomes on COVID-19

patients are determined by the immune mechanisms activated in

response to the viral infection (20).

The immune response to SARS-CoV-2 induces a release of

different molecules with inflammatory properties such as
cytokines including interleukins and chemokines. This event,

known as cytokine storm (20), is an immunopathological feature

of COVID-19 and it has been associated with the severity of the

disease. The increase in blood concentrations of different

cytokines such as interleukins and chemokines such as IL-6,

IL-8, IL-10, TNF-a, IL-1b, IL-2, IP-10, MCP-1, CCL3, CCL4,
and CCL5 has been described for COVID-19 patients (4). Some

of these molecules have been proposed as biomarkers to monitor

the clinical evolution and to determine treatment selection for
COVID-19 patients (21–23). Nevertheless, it is important to

consider that some of these molecules function in a context

dependent manner, therefore the clinical relevance of analyzing

single cytokine changes is limited.

One of the most important challenges during the pandemics

is to avoid the saturation of the health systems, therefore the
determination of predictive biomarkers that allow a better

stratification of the patients is paramount. Even though

cytokines such as IL-6 and IL-8 have been proposed as

indicators of the disease severity, and in some studies they

were strong and independent predictors of patient survival

(24), their predictive value when analyzed alone is debatable

(24). The generation of scores considering blood levels of
cytokines such as interleukins and chemokines with different

immunological functions incorporates the importance of the

context-dependent function of these molecules.

In order to predict Severe cases, a score was generated

considering blood concentrations of inflammation-associated

factors such as IL-10, IL-6, IL-2, and IL-8, as well as sCD40L
and VEGF which are associated with vascular homeostasis (25,

26). In this classification, Severe cases are characterized by high

IL-6 and IL-10 levels, both cytokines previously attributed to

increase the immunopathogenesis of COVID-19 and predictive

value in Severe cases (22, 23). In different backgrounds, IL-6 has

FIGURE 7 | Discrimination ability of the heuristic with both Long Hauler (S1) and Severe (S2) scores. The PASC patients are first identified with an S1>1.5. From

those remaining patients, the Severe cases are identified with an S2> 1.5. The dots represent the data points, where yellow are PASCs, red-Severe, dark blue-Mild-

Moderate and green-normal.
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been associated with oxidative stress, inflammation, endothelial

dysfunction, and thrombogenesis (25–28) which are

characteristic features of Severe COVID-19 cases caused by

excessive myeloid cell activation (29). Consistently, increased

IL-10 levels interfere with appropriate T-cell responses, inducing

T-cell exhaustion and regulatory T cell polarization leading to an
evasion of the antiviral immune response (30). Furthermore,

besides its anti-inflammatory function on T cells, in some

backgrounds IL-10 induces STAT1 activation and a pro-

inflammatory response in type I IFN-primed myeloid cells (30,

31). Therefore, elevated levels of IL-6 and IL-10 promote myeloid

cell activation, oxidative stress, endothelial damage, which might
affect an adequate antiviral T cell activation (26–30).

Furthermore, Severe cases show high levels of sCD40L and

VEGF, which are associated with vasculitis and vascular remodeling.

The cytokine storm observed in SARS-CoV-2 infection is

accompanied by hemostatic alterations and thrombosis. sCD40L

is a platelet activation marker, which has been associated with
increase severity in COVID-19 patients (32–34). Moreover, sCD40L

levels are higher in male patients compared with females and it is

the sex-associated differences in the severity of the disease (33).

Another vascular alteration associated to SARS-CoV-2 infection is

endothelial hyperactivation. According to the proposed severity

score, VEGF levels were significantly elevated in hospitalized

COVID-19 patients when compared to Mild-Moderate cases.
Additionally, to strengthen the classification presented here, the

score differentiates the Severe cases by the denominator of IL-2 and

IL-8, which are cytokines related to proper T cell activation (IL-2)

and recruitment (IL-8) (35, 36).

According to the score generated for distinguishing PASC, these

patients are characterized by an increased IFN-g and IL-2 and a
reduced CCL4 production. In the context of a viral infection, the

combinationof IFN-gandIL-2would induce theactivationof effector
T cells with pro-inflammatory properties and the capacity of

generating an effective immune response to eliminate the virus.

However, PASC are characterized by longer periods of time with

clinical signs and symptoms such as fatigue and lung damage. This

suggests that the inflammatory context created by these cytokines
that leads to T cell activation is not enough to generate an adequate

anti-viral response without the proper recruitment signals to attract

activatedTcells.CCL4signals through the receptorCCR5 toattractT

cells to the site of inflammation and depending on the immune

context, this molecule recruits differently activated T cells (37, 38).

Moreover, it was recently shown, by single cell analysis, down
regulation of CCL4 expression in peripheral myeloid cell

compartments in patients with Mild and Severe COVID-19 (39).

In PASC, IFN-g and IL-2 would create an immune context favoring

theTh1polarization, but the low levels ofCCL4affect the recruitment

of these cells thus impairing the antiviral response should SARS-

CoV-2RNAorprotein persist. The effect of increased IFN-g and IL-2
on T cell activation is evident in the reduction of the frequency of
exhausted (CD4+PD1+/CD8+PD1+) and total regulatory T cells

(FoxP3+) compared to healthy donors. Therefore, proper T cell

activation (high IFN-g+IL-2) but ineffective T cell recruitment (low

CCL4) are characteristic features of the failed anti-viral response

observed in the PASC group supporting virus persistence.

The significant increase of B cells in the PASC group is

associated with high IL-2 levels promoting B cell proliferation

and differentiation (40). Interestingly, increased IFN-g affects B-
cell homing to lymph nodes (41), reduces total IgG production,

and inhibits pre-activated B cells (42). This could be associated

with virus persistence in the PASC group as supported by the low
CCL4 levels observed in these patients, since CCL4 has been

proposed as a biomarker for B cell receptor pathway

activation (43).

Additionally, increased IFN-g promotes myeloid cell activation

which is observed in the augmented frequency of inflammatory

CD14+, CD16+, CCR5+ monocytes in the PASC group compared
to healthy donors, supporting lymphopenia and virus persistence

in these patients. This is in line with recent findings describing

increased gene expression in response to IFN-g in Mild and Severe

COVID-19 patients in peripheral myeloid cells (39) and the

dysregulation in the balance of monocyte populations by the

expansion of the monocyte subsets described in COVID-19
patients (39). Finally, we propose that long-lasting pulmonary

damage observed in PASC, is caused by a combination of factors

including 1) virus persistence influenced by the PASC immune

profile as characterized by high IFN-g and IL-2 levels. This in turn

induces Th1 polarization which is ineffective with low CCL4-

induced T cell recruitment, leading to an inflammatory myeloid

cell activation; and 2) the immunopathological pulmonary effects
of this PASC immune profile. Regarding the immunopathological

effects of the PASC immune profile, it has been shown using

murine models that high IFN-g levels could affect the kinetics of

the resolution of inflammation-induced lung injury as well as

thrombus resolution (44–46), which could be related to long-

lasting symptoms of PASC associated to pulmonary coagulopathy
and immune-mediated tissue damage.

Interestingly, COVID-19 individuals (including PASC, Mild,

Severe) show high levels of CCL5, a chemokine that like CCL4

signals through CCR5. Indeed, the disruption of the CCL5-CCR5

pathway restores immune balance in critical COVID-19 patients

(4). In the specific case of PASC, despite the statistically

significant elevation of CCL5 compared to healthy controls, a
reduction in the CCL4-mediated recruitment of activated T cells

is proposed. This could be related to different factors:

(1) Reduction of total recruitment signals in PASC with low

CCL4 concentrations.

(2) Different functional responses of CCL4 and CCL5 to

polymorphic variants of the CCR5 gene. Distinct functional

features have been reported in CCR5 variants regarding

binding avidity, receptor internalization, Ca++ influx and

chemotactic activity (47). Even though, clear mechanistic
differences between CCL4 and CCL5 interaction with CCR5

are missing, even considering the knowledge gained on CCR5

polymorphisms in HIV/AIDS context (48).

(3) Signaling through alternative receptors for CCL5. Besides CCR5,

CCL5 can signal through the receptors CCR1 and CCR3 (49)

whereas CCL4 effects are restricted to CCR5. It has been shown

that CCL4 can bind to CCR1 but is not able to induce the

intracellular pathway necessary for activating the chemoattractant
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stimulus (49). Therefore, CCL4 has been proposed as an

antagonist of CCR1 (50), however further analysis of this needs

to be performed. Interestingly, CCR1 is expressed on blood

myeloid cells such as monocytes and neutrophils, and it is

upregulated on COVID-19 patients (51). Additionally, high

levels of IFN-g (a feature of PASC) have been associated with
an increase in CCR1 expression on human neutrophils (52).

Therefore, in PASC, high levels of CCL5 (combined with low

levels of potential CCR1-antagonist CCL4) leads to a higher

recruitment of myeloid cells expressing CCR1.

CONCLUSION

In conclusion,wedeveloped a bioinformatics pipeline that analyzed

cytokines of the immunological landscape of COVID-19 using

machine learning methods to discriminate between PASC and

Severe individuals from other classes. The implementation of

random forest classifiers allowed for the identification of the
critical cytokines for this discrimination, which in turn was used

to calculate highly sensitive heuristics for PASC and Severe

individuals. These models, which can be incorporated into

clinical laboratory information systems, enabled a highly

accurate, immune-based classification of severe COVID-19

infection and PASC. This workflow could greatly aid the triage,

treatment, and prognosis of those affected. An interesting caveat
affecting the specificity of the PASC classification was that 7 Severe

COVID-19 patients classified as PASC that, while affecting the

specificity of PASC classification, may represent a subset of acute

COVID-19 patients destined to become affected by PASC.

These data also indicate that with an effective classification of

severe and PASC individuals based on cytokine profiles, precision
therapies guidedby themachine learningoutputmayresult in lower

severity and PASC scores and possibly in more favorable clinical

outcomes. CCR5 antagonism has already been demonstrated to

reduce IL-6, andVEGF(4, 53), numerators in the severity score, and

to reduce IFN-g, a numerator in the PASC score (54).
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