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Abstract

The immune composition of the tumor microenviron-

ment regulates processes including angiogenesis, metasta-

sis, and the response to drugs or immunotherapy. To

facilitate the characterization of the immune component

of tumors from transcriptomics data, a number of immune

cell transcriptome signatures have been reported that are

made up of lists of marker genes indicative of the presence a

given immune cell population. The majority of these gene

signatures have been defined through analysis of isolated

blood cells. However, blood cells do not reflect the differ-

entiation or activation state of similar cells within tissues,

including tumors, and consequently markers derived from

blood cells do not necessarily transfer well to tissues. To

address this issue, we generated a set of immune gene

signatures derived directly from tissue transcriptomics data

using a network-based deconvolution approach. We define

markers for seven immune cell types, collectively named

ImSig, and demonstrate how these markers can be used for

the quantitative estimation of the immune cell content of

tumor and nontumor tissue samples. The utility of ImSig is

demonstrated through the stratification of melanoma

patients into subgroups of prognostic significance and the

identification of immune cells with the use of single-cell

RNA-sequencing data derived from tumors. Use of ImSig is

facilitated by an R package (imsig). Cancer Immunol Res; 6(11);

1388–400. �2018 AACR.

Introduction

Modulating the activity of the immune component of the

tumor microenvironment holds potential in the treatment of

cancer. Checkpoint inhibitors, particularly anti-PD1 and

CTLA4, have advanced therapeutic options in the past decade

producing benefit for some patients (1). However, multiple

factors within the tumor microenvironment, including the

immune infiltrate prior to treatment (2), influence the response

to immunotherapy. IHC and flow cytometry are often used to

study the immune status of tumors. However, the former

analyses are limited to small areas of tissue and a few markers,

and the latter requires tissue disaggregation, which may not

always be practical. To overcome these limitations, computa-

tional methods have been developed to estimate the immune

content of blood and tissue samples from transcriptomic data

(3). Two approaches can be used to infer the relative propor-

tion of cell types from transcriptomic data: (i) fitting reference

gene-expression profiles from sorted cells to the data in ques-

tion (4–7) and (ii) following cell type–specific genes to indicate

the presence of certain cell populations (8–11). Both

approaches rely on sets of gene markers (gene signatures);

however, in the first case, the gene signature is not necessarily

cell type–specific, and supervised learning algorithms are need-

ed to distinguish between cell types.

A number of computational frameworks leveraging these

approaches have been described to estimate the contribution

of different immune cell types to the tissue transcriptome

(5, 10–14). Across these studies, the range of immune cell

types that each method detects varies. For instance, collectively,

the published studies report gene signatures for 22 different

T-cell subtypes, but with many "marker genes" expressed by

nonimmune cell types and others used interchangeably to

define different T-cell subtypes. Another shortfall is that these

signatures are based on gene-expression data gathered from

primary blood-derived cells generally collected from healthy

donors. When the expression profiles of the same immune cell

either from blood (peripheral blood mononuclear cell) or from

tissue can differ (15), the predictive value of signatures is

compromised (16).

Genes that contribute to a common biological process or

define a given cell type are frequently coregulated and coex-

pressed, giving rise to expression modules (17, 18). We have

previously validated gene correlation network (GCN) analysis

of gene-expression data sets from human (including human

cancers), mouse, pig, and sheep, as a means to define such ex-

pression modules (19–21). Here, we have analyzed human

tissue transcriptomic data to identify coexpressed marker

genes representing seven immune cell types and three cellular

pathways present in data from many tissues. We have named

this set of signatures ImSig. We demonstrate the advantages

of ImSig over other reported signatures derived from the
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comparison of isolated blood cells and characterize ImSig's

utility for analyzing the immune microenvironment of tumors.

Materials and Methods

Derivation of ImSig

Eight publicly available expression data sets derived from

human tissue were extracted from the Gene-Expression Omnibus

(GEO) database (ref. 22; GSE11318, GSE50614, GSE75214,

GSE38832, GSE23705, GSE24383, GSE58812, and GSE65904).

Prerequisites were that the unprocessed data files were available,

the data set included a variety of normal and diseased samples,

represented a variety of array platforms, and contained >20

samples (median size, 114 samples). The data sets were chosen

to include the variety of immune cell types and differentiation

states. Data sets were subjected to standard processing (i.e.,

conversion of raw platform-specific files into expression matrix

and normalization) with the help of R packages such as "oligo"

(23) and "lumi" (24) for Affymetrix and Illumina data, respec-

tively. The signal intensities were normalized using the robust

multiarray average. The expression values for genes with multiple

probes were reduced to one probe per gene by choosing the

probe with maximum intensity across samples.

The resultant expression matrix was loaded into the network

analysis tool Graphia Professional (Kajeka Ltd.), previously

known as BioLayout Express3D (25, 26). Within the tool, a

Pearson correlation matrix was generated, i.e., an all versus all

comparison of expression profiles with genes exhibiting a sim-

ilar expression pattern across the samples scoring highly (with a

maximum correlation value equal to 1). A GCN was then

generated using a correlation threshold value so as to include

approximately 10,000 genes in the analysis for each data set. In

the context of a GCN, nodes represent genes/transcripts and

edges, correlations above the threshold. The optimal correlation

threshold is data set–specific, as generally smaller data sets

exhibit a higher overall correlation and all threshold values

used also minimized chance associations. The GCN for each

data set was then clustered using the Markov clustering (MCL)

algorithm (27), an algorithm analyzes a graph's structure to

define gene clusters of nodes, in this case coexpression modules.

Clusters were manually annotated based on domain knowledge

with the help of Gene Ontology (GO) and Reactome path-

way enrichment analyses (28, 29). Gene modules representing

immune cell types and biological processes were identified for

each of the eight data sets. The genes within the modules were

consolidated into a list of genes for seven immune cell types

and three biological processes. In order to identify the core set of

genes that represents each cell type or process, these genes

were further refined using eight independent validation data

sets (GSE9891, GSE14580, GSE38832, GSE14951, GSE15773,

GSE7305, GSE22619, and GSE52171) by the following proce-

dure: Robust signatures were identified by excluding genes that

were poorly coexpressed using an unbiased approach. Each data

set was loaded into Graphia (r values were again selected so as to

include approximately 10,000 genes in the analysis) and clus-

tered using the MCL algorithm. To model the contribution of

noise by random genes within signatures, 0 to 100% of genes

within every MCL cluster were replaced with random genes

(using the R function "sample") in a stepwise manner, in 2%

increments. For each of these replacements, the resultant medi-

an correlation of every cluster was noted. The combined data

points were fitted to a sigmoidal curve using the nonlinear least

squares method. On the basis of this model, we estimated the

number of genes that might contribute to noise within the

signatures and should be filtered out. To facilitate such estima-

tion, the R package "investr" was used. For example, based on

the median correlation of signature genes, if the model sug-

gested 30% of genes represented noise, then 30% of genes

exhibiting the poorest median correlation were discarded.

This process was repeated for each signature across the eight

validation data sets. The set of genes that survived the filtration

process were defined as ImSig. Our approach sought to identify

the genes most correlated across data sets to arrive at the final

list of genes for the individual ImSig signatures. TopGo was

used to identify the five most enriched GO Biological Process

(GO_BP) terms associated with each gene set (28), and P values

were generated using the Fisher exact test.

Comparison of ImSig with other published signatures

Seven published immune signatures were taken from the

literature (5, 8, 10–14). To visualize the concordance between

the immune genes defined by the different studies, a chord

diagram was built using the circlize package (30) in R. We used

only genes reported as markers of immune cells, and signatures

of nonimmune cells such as fibroblast or endothelial cells

were omitted from this analysis. Due to the great variety of

T cell–subtype signatures reported, these were further explored

to identify how genes were used to define the different sub-

types. Genes that were present in two or more studies and

ascribed to a T cell or one of its subtypes were identified. Using

these genes, a graph was constructed using Cytoscape (31) and

visualized with a circular layout. The size of nodes represent-

ing individual signatures was adjusted according to the number

of connections each signature had with others. A Jaccard simi-

larity index was also calculated between all signatures. The

LM22 signature (5) did not provide an absolute signature, that

is, the same genes may represent multiple cell types and only

a subset of genes that were unique to cell types were used

for our analysis. For visualization of the results, genes pertain-

ing to cell subsets [regulatory T cell (Treg) and Th1] were

pooled to represent the parent population (T cells) and the

Jaccard similarity index was recalculated.

Comparative analysis of gene signatures in the context of a

tissue data set

The median correlation of the signature genes from the same

seven published immune signatures (5, 8, 10–14) was calculated

within the context of a trachoma data set (GSE20436; ref. 32). The

transcriptomics data set was generated from swabs taken from

the eyes of children with symptoms of trachoma or controls

and contained samples from three patient subgroups; 20 controls

with normal conjunctivas; 20 individuals with clinical signs of

trachoma but that tested negative for the bacteria C. trachomatis

(these patients may have been in the resolution stage); and

20 individuals with symptoms and active infections. This data

set was chosen due to the immune cell infiltration associated

with this disease. The presence of all immune cell populations

was confirmed by ImSig. To facilitate comparison with ImSig,

genes pertaining to cell subsets were pooled to represent the

parent cell population. In addition, median correlations of

nonpooled signatures (i.e., marker sets representing subpopula-

tions of cells) were also analyzed.

Immune Cell Gene Signatures for Profiling Solid Tumors
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To assess the ability of ImSig to define known clinical differ-

ences between patient subgroups and to illustrate the explor-

ative power of network-based analysis, we used the trachoma

data set described above. In order to estimate the relative

abundance of immune cells across patient groups, the average

expression of the ImSig signature genes was computed. A two-

tailed, unequal variance t test was conducted between groups to

obtain P values. To explore the immune environment and

extrapolate immune cell subsets, a GCN (r > 0.7) was visualized

in Graphia. By visual inspection of the network graph, immu-

nologically relevant genes (subtype/differentiation-specific)

were identified in the vicinity of the ImSig modules, and their

average expression profile across patient groups was plotted.

To validate ImSig in the context of tumor-derived samples,

transcriptomic data from single-cell suspensions from lymph

nodes of four patients with metastatic melanoma were analyzed

(GSE93722). Here, the relative proportion of immune cells,

CD4þ T cells, CD8þ T cells, B cells, natural killer (NK) cells, had

been measured with flow cytometry. To facilitate direct compar-

ison, proportions of CD4þ and CD8þ T cells were summed to

estimate total T-cell content. The average expressionof ImSig genes

was calculated to determine the relative abundance of immune

cells in each patient. Predicted and observed abundances were

normalized between 0 and 1 to facilitate comparisons. This

analysis also served to validate the applicability of ImSig to

RNA-seq data.

Pan-cancer analysis of tumor data (TCGA)

Prenormalized (level 3 data: the calculated expression signal of

a gene per sample) transcriptomic data from 12 cancers were

downloaded from The Cancer Genome Atlas (TCGA) database.

For each cancer type, the patients were ordered based on the

average expression of the individual ImSig signatures and split

into two groups based on the median expression value of the

signature genes. In cases such as brain lower grade glioma (LGG),

kidney renal clear cell carcinoma (KIRC), and uterine corpus

endometrial carcinoma (UCEC), B-cell signature genes were not

coexpressed, indicating the absence or low abundance of these

cells, and so were not included in the survival analysis. A univar-

iate Cox-proportional hazard ratio (HR) analysis was performed

for the rest using the R package "survcomp" (33). P values are

based on the log-rank test.

Molecular subtyping (patient stratification) of melanoma

RNA-seq data for human skin cutaneous melanoma (SKCM)

were downloaded from the TCGA data portal. Using the

expression data of ImSig genes, a sample-to-sample correlation

plot (r > 0.85) was generated. MCL clustering (inflation value

1.7) of the sample-to-sample correlation plot grouped the

patients into five clusters. These groupings were mapped onto

the GCN to study the differences in expression patterns of

immune cells between groups. A univariate Cox-proportional

analysis was also performed using the R package survcomp (33)

between the groups in various combinations. The P value was

calculated using the log-rank test.

An independent melanoma data set GSE65904 (34) was

used for validation. The data set was produced on the Illumina

HumanHT-12 V4.0 microarrays and composed of samples

from 214 melanoma patients. Samples that did not contain

necessary information such as disease-specific survival, gender,

and sample type were removed. After processing and normal-

ization using the "lumi" package (24) in R, samples that were

not present in the network graph (r � 0.8) were also removed,

and the remaining samples (210) were processed as described

above for the TCGA data set.

Processing and analysis of single-cell RNA-seq data

Single-cell transcriptomics data for melanoma (35) and head

and neck squamous cell cancer (HNSCC; ref. 36) were down-

loaded fromThe Broad Institute single-cell portal (https://portals.

broadinstitute.org/single_cell). As computation of the relative

abundance of cell types is based on the average expression of

ImSig genes, missing values in single-cell data can affect results.

Therefore, to compensate for dropouts, a diffusion-basedmethod

was used to impute missing values (37).

To validate the cell-type specificity of ImSig, the average

expression of B cell, T cell, NK cell, and macrophage signature

genes was calculated from the melanoma cell data set and

compared with the average expression of the other immune-

related ImSig genes. To evaluate the concordance between esti-

mated abundance and measured number of cells, the averages

for expression of signature genes for 10 patients were computed

(estimated abundance). Correlation between estimated abun-

dance and measured number of cells was calculated, and

P values were attained by building a linear regression model.

To illustrate the concordance of relative proportions, both the

estimated abundance and measured number of cells were

scaled using the formula [x � min(x)/max(x) � min(x), where

x is the cell abundance value], and results were plotted as a

stacked bar plot normalized to 100%.

In order to predict immune cell types in the HNSCC data

set using the SVM-based algorithm Cibersort, a reference

matrix (ImSig as features) was generated using the melanoma

single-cell data. The algorithm was run with the generated

reference matrix and HNSCC single-cell data by uploading it

to the Cibersort's web portal (https://cibersort.stanford.edu).

The portal computes a score for B cell, T cell, and macrophage

for each sample and an associated P value. P values of <0.05

and a score of >0.75 (upper quartile) were set as defining

correct predictions, that is, a T-cell score of >0.75 in a T cell

with a P value of <0.05 was judged as a correct prediction.

R implementation and availability of ImSig

We implemented ImSig as an R package called "imsig." Users

should call the "imsig" function, which takes a normalized gene-

expression matrix made up of HUGO symbols in rows and

samples in columns as its first argument, and a correlation

threshold (r) as its second argument. Users can also generate a

network graphic of ImSig genes and perform survival analysis

using the package. A tutorial is available at https://github.com/

ajitjohnson/imsig.

This package is available at CRAN (https://cran.r-project.org/

web/packages/imsig/).

Results

Derivation of ImSig

Using a network-based approach, we identified a set of co-

expressed gene modules associated with human tissue immune

cell populations and frequently observed biological processes,

from eight independent tissue transcriptomics data sets. An

illustrative example of a GCN is shown in Fig. 1A. These initial

Nirmal et al.

Cancer Immunol Res; 6(11) November 2018 Cancer Immunology Research1390

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rim

m
u
n
o
lre

s
/a

rtic
le

-p
d
f/6

/1
1
/1

3
8
8
/2

3
5
1
8
0
4
/1

3
8
8
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u

s
t 2

0
2
2

https://portals.broadinstitute.org/single_cell
https://portals.broadinstitute.org/single_cell
https://cibersort.stanford.edu
https://github.com/ajitjohnson/imsig
https://github.com/ajitjohnson/imsig
https://cran.r-project.org/web/packages/imsig/
https://cran.r-project.org/web/packages/imsig/


gene signatures were refined and validated by testing for coex-

pression of the genes associated with each signature across an

additional eight independent data sets (Fig. 1B). The result

was 569 marker genes representative of seven immune popula-

tions [B cells (37 genes), plasma cells (14 genes), monocytes

(37 genes), macrophages (78 genes), neutrophils (47 genes),

NK cells (20 genes), T cells (85 genes)] and three biological

processes [Interferon response (66 genes), translation (86

genes), proliferation (99 genes)]. We named this set of genes

collectively ImSig (Tables 1 and 2; Supplementary Table S1). The

data-driven definition of each immune signature is internally

validated by association of known markers with the specific

gene signatures, e.g., CD3D and CD3E (T cells), CD19, CD22,

and CD79 (B cells), CD14 (monocytes), CD68 and CD163

(macrophages), KIR family (NK cells) and immunoglobulin

family members (plasma cells). Furthermore, GO enrichment

analysis of the gene signatures and data from the published

literature supported the association of markers with relevant cell

types and processes. The top five significant enrichment terms

for all signatures are listed in Supplementary Table S2 and

the top significant term is given in Fig. 1C. Unlike other

published immune gene signatures, our gene signatures do not

distinguish immune cell subtypes, such as subpopulations of

T cells or activation states of macrophages. We found no

support for distinct modules of coexpressed markers describing

T cell or macrophage subpopulations. Indeed, analysis of iso-

lated human macrophages responding to different stimuli did

not support the existence of distinct activation states of macro-

phages but rather indicated a continuum of states depending

on the stimulus (38). Where present, "activation-specific" tran-

scripts, such as receptors, cytokines, or transcription factors,

tend to form part of the overall cell expression module. By

inference, coexpression of a gene with a particular cell type–

specific signature in a particular data set indicated that the

gene is likely expressed by those cells or at least a subpopulation

of them.

Comparison between ImSig and published immune

signatures

The gene content of seven published immune signatures, all

derived from comparisons of isolated blood cells (5, 8, 10–14),

was compiled and compared. We excluded signatures for non-

immune cell types, e.g., endothelial cells, fibroblasts etc.

When ImSig was added to the list, the list contained a total of

3,658 genes (Supplementary Table S3). To compare these

gene signatures, we calculated a Jaccard similarity index

Figure 1.

Derivation of ImSig. A, An example of a correlation network generated from a tissue data set where nodes represent unique genes and edges represent

correlations between genes above a defined threshold. Groups of nodes sharing the same color represent gene modules (obtained by MCL clustering),

those highlighted being associated with a given immune cell type or biological process. B, Example plots from the approach used to refine the gene signatures.

Blue points represent genes that were kept, i.e., they were highly correlated with other genes in the preliminary signature. Red represents genes that

were discarded. This approach was applied to eight tissue data sets (only two are shown here). The most robustly coexpressed genes across the data

sets were used to define ImSig. C, Bar plot depicting the number of genes within each marker gene signature comprising ImSig and the top GO enrichment

term for each signature.

Immune Cell Gene Signatures for Profiling Solid Tumors
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(Supplementary Table S4), which highlights the poor con-

cordance between signatures (Supplementary Table S4; Sup-

plementary Fig. S1). The highest observed similarity was

between the B-cell signatures from ImSig and from (8), with

a Jaccard score of 0.26, which is a not a high Jaccard score.

Figure 2A illustrates the lack of consensus between pub-

lished signatures and ImSig. Most (76.3%, or 2,794 genes) of

the genes are associated with only a single study, and fewer

than 10% of those genes described unique populations, e.g.,

erythroblast (297 genes; ref. 13) and megakaryocyte (259

genes; ref. 13). The poor conservation of immune marker

genes across studies is likely due to various technical and

statistical artifacts. For example, proliferation-related genes

were identified as part of the signature for activated CD4

(12) and T cells (10). The mitotic index of resting versus

activated T cells may be a true difference between them, but

cell-cycle genes are expressed by all proliferating cells (39)

and are therefore poor markers of cell type. Of all signatures

proposed, ImSig contains the fewest unique genes; of the

318 immune-related markers defined by ImSig, only 60 genes

have not been previously reported in other signatures, suggest-

ing a good consensus overall with other studies but not with

an individual published signature.

Certain genes are associated with different cell types in different

studies. Of the 729 genes proposed to represent distinct T-cell

states, none were common to all seven studies and only 98 were

listed by two or more studies. The assignment of markers to cell

types varies across studies (Fig. 2B). For example, LRRN3was used

to define resting cytotoxic T cells by (11) and as a Th1 marker by

(14), CTLA4 is annotated as either a marker of Tregs, Th1, and

CD4þ T cells and by (12, 14) and (13), respectively. CTLA4 can

also be expressed on CD8þ T cells (40). There are many such

examples of discordance between marker gene/cell-type assigna-

tions. The ImSig T-cell signature, which was designed to be

subtype agnostic, exhibited the greatest overlap between all T-cell

signatures (displayed by the relative node size in Fig. 2B) and

includes genes defined as subtype-specific by other studies but for

which we found no support as a separate coexpression module.

To compare the coexpression of the ImSig signatures to previous

signatures, the median correlation of each set of signature genes

was calculated within the context of a data set derived from

trachoma patients. We used this data set because it was derived

from a tissue in which all immune cell types defined by ImSig

were present, these being recruited in response to a bacterial

infection. For comparison with previous signatures, the modules

representing subpopulations, such as T-cell subsets, were

Table 1. Table of ImSig genes (immune signatures)

Signature Genes

B cells AFF3, BANK1, BLK, BTLA,CCR6,CD180,CD19,CD22, CD37,CD72,CD79A, CD79B, CR2, EBF1, FAM129C,FCRL1, FCRL2, FCRL3,FCRL5,FCRLA,HLA-DOB,

IGHV5-78, KIAA0125, LINC00926, LOC100507616, LY9, MS4A1, P2RX5, PAX5, PNOC, POU2F2, S1PR4, SNX22, STAP1, TCL1A, TLR10, VPREB3

T cells AMICA1, APBB1IP, ARHGAP15, ARHGAP25, ARHGAP9, BIN2, BTK, C1orf162, CCL19, CCR7, CD2, CD27, CD28, CD3D, CD3E, CD3G, CD48, CD52, CD6,

CD8A, CD96, CORO1A, CRTAM, CXCL9, CXCR6, CYTIP, DOCK10, DOCK2, DOCK8, DPEP2, EVI2A, EVI2B, FAM26F, FLI1, FYB, FYN, GAB3, GIMAP2,

GIMAP4, GIMAP5, GIMAP6, GIMAP7, GMFG, GPR171, GPR18, GZMK, HCST, HMHA1, HVCN1, ICOS, IL10RA, IL16, IL23A, IL7R, ITGAL, ITK, KLHL6,

KLRB1, LCP1, LY86, NCF1B, NLRC3, PARVG, PRKCH, PSTPIP1, PTPRCAP, PVRIG, RASSF5, RCSD1, RGS18, RHOH, SASH3, SH2D1A, SIRPG, SLA,

SP140, TARP, TBC1D10C, TNFRSF9, TRAC, TRAF3IP3, TRAT1, TRGC2, TRGV9, UBASH3A

Macrophages ADAMDEC1, ADORA3, AOAH, ARRB2, ATP8B4, BCL2A1, C1orf54, C1QA, C1QB, C2, C3AR1, C5AR1, CCR1, CCRL2, CD163, CD300A, CD4, CD68, CD74,

CD86, CECR1, CLEC7A, CMKLR1, CSF1R, CTSB, CTSS, CYBB, CYTH4, DPYD, EMR2, FCER1G, FCGR1A, FCGR1B, FCGR2A, FCGR3B, FPR3, GPNMB,

HK3, HLA-DRB6, IFI30, IGSF6, ITGAM, ITGAX, ITGB2, LAIR1, LAPTM5, LILRB4, LIPA, LY96,MAN2B1,MFSD1, MNDA,MS4A4A,MS4A7,MSR1,MYO1F,

NCKAP1L, NPL, NR1H3, PLA2G7, PLEKHO2, SCPEP1, SLAMF8, SLC15A3, SLC31A2, SLCO2B1, SNX10, SPI1, TBXAS1, TLR8, TMEM140, TNFAIP2,

TNFRSF1B, TNFSF13B, TRPV2, TYMP, TYROBP, VSIG4

Monocytes AGTRAP, AIF1, C10orf54, CD14, CD300LF, CD33, CD93, CTSD, EMILIN2, FCN1, FES, FGR,GNS, GRN,HCK,HMOX1, KIAA0930, LILRA6, LILRB2, LILRB3,

LRRC25, LST1, NFAM1, NOTCH2, PILRA, PLXDC2, PRAM1, PSAP, PYCARD, RHOG, SERPINA1, SLC7A7, TGFBI, THEMIS2, TIMP2, TPP1, VCAN

Neutrophils ACSL1, ALPK1, AQP9, BASP1, BCL6, CD97, CEP19, CFLAR, CSF3R, CXCR2, DENND5A, DYSF, FAM65B, FCGR2C, FPR1, GLT1D1, GPR97, IFITM2, IL17RA,

KCNJ2, KIAA0247, LILRA2, LIMK2, LINC01002, MGAM, MOB3A, NAMPT, NCF4, PADI2, PHC2, PHF21A, PLXNC1, PREX1, RALB, RNF149, S100A8,

S100A9, SLC25A37, SNORD89, SSH2, STAT3, STAT5B, THBD, TLR2, TLR4, TMEM154, TNFRSF1A

NK cells KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3, KLRC2, KLRC3, KLRC4,

KLRD1, PRF1, SAMD3, SH2D1B, TBX21

Plasma cells GUSBP11, IGH, IGHG3, IGJ, IGKC, IGKV1D-13, IGLC1, IGLJ3, IGLL3P, IGLV@, IGLV1-44, MZB1, TNFRSF17, TXNDC5

Table 2. Table of ImSig genes (pathways signatures)

Interferon APOL1, APOL6, BATF2, BST2, C19orf66, C5orf56, CMPK2, DDX58, DDX60, DHX58, DTX3L, EPSTI1, FBXO6, GBP1, GBP4, HELZ2, HERC5, HERC6,

HSH2D, IFI16, IFI35, IFI44, IFI44L, IFI6, IFIH1, IFIT1, IFIT2, IFIT3, IFIT5, IFITM1, IRF7, IRF9, ISG15, LAMP3, LAP3, MX1, MX2, OAS2, OAS3, OASL,

PARP10, PARP12, PARP14, PARP9, PHF11, PML, PSMB9, RNF213, RSAD2, RTP4, SAMD9, SAMD9L, SHISA5, SIGLEC1, SP110, STAT1, STAT2, TAP1,

TRAFD1, TRIM21, TRIM22, TRIM5, UBE2L6, USP18, XAF1, ZNFX1

Proliferation ANLN, ASPM, AURKA, AURKB, BIRC5, BUB1, BUB1B, CASC5, CCNA2, CCNB1, CCNB2, CCNE2, CDC20, CDC6, CDCA2, CDCA3, CDCA5, CDCA7,

CDCA8, CDK1, CDKN3, CDT1, CENPA, CENPE, CENPF, CENPL, CEP55, CKS1B, DEPDC1, DEPDC1B, DLGAP5, DONSON, DTL, E2F8, ECT2, EZH2,

FAM72C, FANCI, FBXO5, FOXM1, GINS1, GINS2, GMNN, HJURP, HMGB3, HMMR, KIAA0101, KIF11, KIF14, KIF15, KIF18B, KIF20A, KIF2C, KIF4A,

MAD2L1,MCM10,MCM2,MCM4,MCM6,MELK,MKI67,MND1,MTFR2,NCAPG,NCAPG2,NDC80,NEK2, NUF2,NUSAP1, OIP5, PARPBP, PBK, PCNA,

PLK4, POLE2, POLQ, PTTG1, RACGAP1, RAD51, RAD51AP1, RRM1, RRM2, SHCBP1, SKA1, SMC2, SPC25, STIL, STMN1, TCF19, TK1, TOP2A, TPX2,

TRIP13, TTK, TYMS, UBE2C, UHRF1, ZWILCH, ZWINT

Translation EEF1A1, EEF1B2, EEF1D, EEF1G, EIF3D, EIF3E, EIF3F, EIF3G, EIF3H, EIF3K, FAU, GNB2L1, NACA, PFDN5, RPL10, RPL10L, RPL11, RPL12, RPL13, RPL13A,

RPL14, RPL15, RPL17, RPL18, RPL18A, RPL19, RPL21, RPL22, RPL23, RPL23A, RPL24, RPL27, RPL27A, RPL28, RPL29, RPL3, RPL30, RPL31, RPL32,

RPL34, RPL35, RPL35A, RPL36A, RPL37, RPL37A, RPL38, RPL39, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, RPL9, RPLP0, RPLP2, RPS10, RPS11,

RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, RPS21, RPS23, RPS25, RPS27A, RPS28, RPS29, RPS3, RPS3A, RPS5,

RPS6, RPS7, RPS8, RPS9, RPSA, SNHG6, SNHG8, SNRPD2, UXT

Nirmal et al.
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Figure 2.

Comparison of ImSig with other published signatures. A, Chord diagram showing the overlap between marker genes across studies. In most studies, a large

proportion of genes were unique to the signatures defined by them. ImSig showed the best overlap (81%) with other studies. B, Network diagram

showing the relationship between T-cell subtype–specific genes among six studies and ImSig. Only genes that were present in two or more studies are

represented in this plot (98 genes representing 13.4% of all T-cell marker genes). Nodes are sized relative to the number of shared genes between one

signature and others. ImSig included genes describing various subtypes and was the most conserved set among all studies compared. C, Heat map of

the median correlation between genes from published signatures as assessed in the context of the trachoma data set (GSE20436). Where a cell-type

signature was split into subsets, subset signatures were combined to represent the parent population. The median correlation values of signatures

without combining them into parent population is available (Supplementary Table S5). D, Bar plots of the average expression of signature genes

(estimated relative abundance) across the data set, each bar representing the average expression of signature genes in an individual patient sample.

Samples are ordered according to T-cell content, low to high (left to right), and this order is maintained for other plots. �� , P ¼ 0.01; ��� , P ¼ 0.001.

Immune Cell Gene Signatures for Profiling Solid Tumors
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subsumed into one module, such as T cells. Their median cor-

relation in the context of the trachoma data set is shown

in Fig. 2C. A noncollated version of the results is provided in

Supplementary Table S5. Regardless of whether data were aggre-

gated by broad cell type, or by subtype, none of the blood-derived

modules were strongly coexpressed across the set of trachoma

patient samples. In contrast, all of the ImSig signatures displayed a

high median correlation (coexpression) value. The gene signa-

tures from ref. 8 performed next best. The bacterial infection that

gives rise to the pathology of trachoma leads to recruitment of

immune cells to the site of infection (32). In order to evaluate the

ability of ImSig to estimate the relative abundance of immune

cells, the average expression of each gene signature was used as

a proxy for immune cell number in the trachoma data set. All

immune cell populations increased in patient groups relative to

controls, with greater increases seen in patients with an active

infection (Fig. 2D).

To validate the applicability of ImSig on RNA-seq data and in

the context of tumor biology, we computed the relative abun-

dance of immune cells in four metastatic melanoma patients

fromwhom samples were collected from lymph nodes. A fraction

of the single-cell suspension was used to measure cell-type

proportions by flow cytometry and the other fraction was used

for RNA-seq analysis. We observed good agreement (r ¼ 0.91,

RMSE ¼ 0.1, and P ¼ 2.74E�05) between predictions of relative

cell number made using ImSig and experimentally determined

cell numbers (see also Supplementary Fig. S2). Thus, ImSig

accurately predicted relative cell numbers for all cell types, as

confirmed by the low root-mean-square error (RMSE).

Deconvolution of tissue data

In the context of GCN analyses, the ImSig signatures can be

used to identify other context-specific genes expressed by

immune populations. For example, the T cell and macrophage

signatures were correlated with each other, consistent with an

immune-mediated inflammatory process, and many immune-

related genes were coexpressed with ImSig genes in the context of

the trachoma data (Fig. 3A). The expression profile of genes such

as IFNG, LAG3, CD44, FOX03, FOXP3, CD80, IL20, STAT4, and

IL17A was correlated with T-cell signature genes, indicating

that the T-cell population included Th17, Treg, and Th1 sub-

types (Fig. 3B). Similarly, genes associated with the macrophage

signature contained many M1 markers. Performing a network

analysis such as this can also provide a broader perspective of

the transcriptional signatures of other cell types present in

clinical samples. When the data set is examined as a whole,

many GCN clusters can be assigned to other cell populations or

processes (41).

Satisfied with the performance of ImSig in the context of tissue

transcriptomics data, we explored its utility in the analysis of

transcriptomics data derived from cancer.

Analysis of immune infiltrates in cancer

Our previous analysis of the cancer transcriptome showed

that expression signatures of immune cells can be extracted

from large cancer transcriptomic data sets, but we did not at

that time correlate gene-expression signatures with patient

outcomes (20). To test the use of ImSig in the study of the

tumor microenvironment, the 12 largest TCGA cancer data

sets were examined and HRs were computed between

high and low-immune cell infiltrate groups (Fig. 4A). Although

the survival analysis was not adjusted for potentially con-

founding variables (such as tumor stage, grade, age, or treat-

ment), the findings were consistent with the literature. In

melanoma (SKCM), we reaffirmed the known association

between tumor-infiltrating lymphocytes (TIL) and a good

Figure 3.

Coexpression of other immune genes with ImSig core signatures. A, Correlation network of genes associated with the immune clusters during trachomatis

infection. ImSig genes are colored according to the different immune cell types they represent, whereas the genes coclustering with the ImSig immune

genes are shown as nodes without color and reduced in size. Highlighted with a greater node size and label are a few well-known immune-modulatory

genes present in the immediate vicinity of the signature genes. B, Bar plots of the average expression intensity of a few well-known immune-

modulatory genes across the three patient groups.

Nirmal et al.
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prognosis (42, 43). Breast cancer (BRCA) is not as immuno-

genic as melanoma, but several studies have associated TILs

with a good prognosis as observed here (44). A negative

association between TILs and prognosis was evident in LGG

(45, 46) and lung squamous cell carcinoma (LUSC; refs. 47, 48)

in accordance with previous literature. We did find prognostic

value of the interferon response in LGG. We confirmed an

association between the proliferation signature and a good

prognosis in colorectal cancers (COAD; as shown in ref. 49)

and also in LUSC. Analysis of individual proliferation-related

genes in LUSC supported this observation (log2HR: G2E3,

0.66; MND1, 0.56; CHEK2, 0.53; RFC4, 0.51; CEP192,

0.48; CDKN3, 0.47; CENPA, 0.47; CCND2, 0.47; CDC7,

0.46: P < 0.05). One possible explanation for this counterin-

tuitive observation is that the mitotic signal in these tissues

originates from proliferating immune cells, not from cancer

cells (50, 51).

We performed a molecular subgrouping of melanoma based

on ImSig, using the signature genes only to group patient

samples. Unsupervised clustering based on the immune

Figure 4.

Application of ImSig to tumor data. A, Prognostic map of 12 cancer types based on immune cell content. The average expression of each ImSig

signature was calculated for each sample/tumor type. Samples were then ordered according to each signature (low–high, black plot in each square), and

the HR was calculated between the lowest and highest expressing samples. Blue represents a good prognosis with increased expression of the

signature genes and red a poor prognosis. � , a HR P < 0.05. BCLA-bladder urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon

adenocarcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LGG, brain lower grade glioma; LUAD, lung

adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarcinoma; SKCM, skin cutaneous melanoma; THCA, thyroid carcinoma;

UCEC, uterine corpus endometrial carcinoma. B, Sample–sample correlation graph of melanoma patient samples based on expression of ImSig genes in

and clustered using MCL algorithm. Here, every node is a patient, and the edges correspond to the correlation between them. C, Expression profile of

ImSig-related genes within the various clusters/grouping as defined in B. Here, the y-axis is the average expression of the signature genes, and x-axis

describes patient groupings as shown in B. D, Univariate Cox-proportional analysis between the patient groups as defined in B.

Immune Cell Gene Signatures for Profiling Solid Tumors
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profile revealed five groups of patient samples (Fig. 4B).

Clinical features such as the tissue of origin and tumor type

(metastatic or primary) did not affect the subtyping. Nearly

half the patients were in cluster-1, characterized by little

immune infiltrate (Fig. 4C). HR analysis between these low-

immune (cluster 1) and high-immune infiltrate (clusters 2 and

3) tumors revealed a significant difference in patient survival

(HR: 0.38, P ¼ 3E�9). The median survival of patients in the

group with high-immune infiltrate was 10 years greater

than that of patients with low-immune infiltrate (Fig. 4D).

Within the high-immune infiltration subgroup, cluster 2

appeared to have more B cells and plasma cells than cluster

3 (Fig. 4C), but overall survival (HR) was not significantly

different between the two groups (Fig. 4D). Cluster-4 samples

displayed higher expression of interferon response genes

and also showed improved survival compared with the low-

immune infiltrate group (Fig. 4D). Finally, patients in cluster

5 had a low-immune infiltrate, showed greater expression

of keratin-related genes, and presented the worst survival

rates (median survival ¼ 2.34 years). Although patients

in clusters 2, 3, and 4 did not differ in HR, they could differ

in other ways, such as responses to treatment. Following

an analogous analysis, we reproduced the five patient group-

ings on an independent validation data set (GSE65904),

which showed a similar infiltration pattern (Supplementary

Fig. S3A), survival analysis, and prognostic pattern (Supple-

mentary Fig. S3B). High-immune and keratin subgroups have

been identified and described in melanoma (52, 53) but these

studies did not describe the type and variation in the immune

infiltrate in melanomas. Our analysis reveals the nature of

the immune landscape of these tumors and differences in

their survival.

Use of ImSig in identifying immune cells in single-cell data

To extend these analyses and validate the ImSig signatures in

the context of single-cell data, we examined single-cell data

derived from melanoma (35). The immune component of the

melanoma single-cell analysis included 515 B cells, 126 macro-

phages, 52 NK cells, and 2,069 T cells. Cell type–specific

expression of ImSig markers was observed (P < 7E�15) as

illustrated in Fig. 5A. For each patient, the estimated proportion

of immune cells was compared with the true proportion. The

estimated proportion was concordant with the measured num-

ber of cells (P < 0.05), with the poorest observed correlation

being r ¼ 0.97. Randomized permutation analysis with the

same-sized gene sets produced no significant correlation

(Fig. 5B). Figure 5C illustrates the concordance between the

measured and estimated number of cells.

Figure 5.

Validation of ImSig using single-cell RNA-seq data from melanoma samples. A, The immune component of the melanoma single-cell data displayed as a

correlation network, each node representing a cell from melanoma. Box plots display the average expression of cell type–specific ImSig genes in their

respective cell types compared with the average expression of other ImSig genes. Process-specific ImSig signature genes (proliferation, interferon,

and translation) were omitted in this analysis. B, Linear regression plots showing the concordance between the estimated and measured abundance of

immune cells in 10 patients. For five patients (P1, P3, P5, P7, and P9), the regression line was also calculated using a random set of genes to highlight

the specificity of ImSig genes. C, Stacked bar plots showing the concordance between measured and estimated proportions of immune cells. ��� , P ¼ 0.001.

Nirmal et al.
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The single-cell community depends on gene markers, gene

signatures, and clustering algorithms to define cell types. Here,

we show the utility of ImSig when used in association with

classification algorithms, such as support vector machine (SVM),

to predict cell types from single-cell RNA-seq data. To demon-

strate the potential for automation, we used the SVM-based

deconvolution tool Cibersort (5) with a reference profile gener-

ated with ImSig to predict immune cells within a single-cell data

set from head and neck tumors (HNSCC; ref. 36). The immune

component of the HNSCC data set contained 1,473 cells. Predic-

tion using ImSig yielded a high degree of accuracy for B cells

(88.4% correct prediction), macrophages (98.8%), and T cells

(99.8%; Table 3). Only 63 immune cells remained uncategorized

(P>0.05).With respect to the other 4,087 cells, which consisted of

myocytes, mast cells, malignant cells, fibroblast, dendritic cells,

and endothelial cells, only 2.2% of cells were misclassified as

macrophages, B cells, or T cells. In contrast, Cibersort's (5) default

blood-derived signature (LM22) showed an accuracy rate for B

cells of 15.2%; macrophages, 0%; and T cells, 75.3%. However,

the LM22 signature was not designed to deconvolute single-cell

data, and its poor performance is likely a result of using a blood-

derived signature and a reference gene matrix based on

microarrays.

Discussion

Cellular heterogeneity is a hallmark of cancer, in terms of

both the tumors themselves and the normal cells that both

support and control their growth. A wealth of transcriptomics

data has been generated from cancer samples and a number of

studies report approaches to deconvolute these data and to

define the set of cell types present therein. However, we and

others (16) found that immune signatures derived by compar-

ing the expression profile of immune cells isolated from blood

do not perform optimally when applied to tissue data.

The current work is based on the observation that genes

associated with a specific cell population or biological process

form highly connected cliques of nodes when large collections of

transcriptomics data are subjected to network-based correlation

analysis (18, 41). Although the main goal of this study was to

define immune gene signatures for the deconvolution of cancer

data, we have derived ImSig from a range of tissue pathologies and

platforms to ensure its applicability across different data types and

sources. Our aim in defining ImSig was to choose the most

robustly coexpressed genes for each immune cell type from the

analysis of tissue data, thereby defining a "core" or invariant cell

type–specific signature.

In any given tissue, a gene may be expressed by multiple cell

types present therein or a cell type may not be present, hence the

need to explore a wide variety of tissue data. We also chose to

include signatures for interferon signaling, proliferation (mitosis)

and translation, as these are commonly observed coexpression

modules in tissue and act as additional controls. Validatory

analysis of the resultant ImSig signatures showed the gene signa-

tures to be enriched with appropriate GO terms, and manual

inspection of the lists with reference to the literature also sup-

ported the validity of the selected genes. This was further con-

firmed by the observed coexpression of the ImSig signatures across

a range of data sets not used for their derivation and their average

expression reflecting changes in immune cell numbers, where

known, as in trachoma.

As the current study is not the first to attempt to define sets of

signatures for immune cells, we sought to compare ImSig with

other published signatures, in terms of both gene content and

performance. Definition and comparison of cell signatures is

complex. In the first instance, published gene signatures vary in

terms of the number of genes they include and the cell popula-

tions and subpopulations they seek to define. Second, there is

no benchmark data set where the number and nature of

immune cells are known in the context of a tissue environment.

Comparison of the signatures showed many to include gene

markers only defined by that study. Where gene markers were

common to more than one study, there was a complex rela-

tionship between the assignation of genes to cells across stud-

ies. In other words, there is little consensus across published

immune marker lists. Of all the signatures, ImSig contained the

fewest unique genes (60 genes), suggesting that the gene

content of ImSig represents a consensus view of other studies,

despite being derived independently. A comparison of the

relative performance of signatures again represented a chal-

lenge. Where multiple subtypes of cells were defined, the genes

associated with subtypes were either analyzed separately or

collapsed into a single signature. We chose to compare the

performance of these summarized signatures in the context of

the trachoma data set, where we knew all immune cell types

defined by ImSig to be present and that their numbers increase

during an active infection (32). In this context, the degree of

coexpression between genes associated with individual ImSig

signatures was better in some cases than in others. Furthermore,

the average expression of ImSig signatures mirrored the known

increase in immune cell infiltrate across patient groups (32).

Researchers seek to define immune cell subtypes and acti-

vation states associated with different tissues, developmen-

tal stages, and pathologies. Although heterogeneity among

immune cell populations exists, few markers can identify this

heterogeneity outside of the context of flow cytometry and IHC.

For instance, tissue macrophages are sometimes named depend-

ing on their tissue of origin (microglia, Kupffer cells, etc.) or

activation state (M1, M2, etc.) and in other cases are referred

to as dendritic cells (53, 54). In the literature we have cited,

signatures for 22 T-cell subsets are reported, and this does not

include all T-cell subsets that are defined in the literature (55). In

a given pathologic state, multiple cellular subtypes or popula-

tions whose biology is adapted to different niches are likely to

Table 3. Identification of immune cells within single-cell data

Cells Correct prediction Wrong prediction Accuracy (%) Error (%)

B cells 122 16 88.4 11.6

Macrophages 84 1 98.8 1.2

T cells 1,185 2 99.8 0.2

Other cells (4,087 cells) 93 2.3

NOTE: ImSigwas used in conjunctionwith the SVM-based classifier Cibersort, to identify immune cells within the head and neck tumor (HNSCC) single-cell data. The

table shows the accuracy of identification. Sixty-three immune cells were unassigned as their P value was greater than 0.05.

Immune Cell Gene Signatures for Profiling Solid Tumors
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be present. We would argue that it is unrealistic to categorically

identify their individual signatures from bulk tissue data, espe-

cially when the differences between them are more likely to be a

spectrum than a series of absolute states (38). Even among

different myeloid populations, i.e., monocytes, macrophages,

and neutrophils, we have found few markers that are specific to

one population or another. Markers that define the presence of

these populations do so more by their coexpression than by

absolute expression in the context of tissue.

We suggest that many immune subtype markers are too poorly

defined to reliably distinguish immune cell subsets in the context

of transcriptomics data derived from tissue. However, network

analysis can provide a comprehensive picture of the immune

microenvironment. By examination of the genes that correlate

with the core signature genes, even if those genes expression

cannot be reliably assigned to one cell type or another, it is

possible to capture the overall profile of the immune microen-

vironment of a tissue. Itmay, after all, be the sumof the individual

parts thatmatter. How these findings are used to identify immune

cell subtypes, we leave to the individual analyst.

After satisfying ourselves of the validity of ImSig and comparing

it to other signatures for defining immune populations in tissue

data, we used it to analyze transcriptomics data sets derived from

12 cancer types. In each case, the majority of signature genes were

tightly coexpressed, apart from instances where we believe the

target cell was not present or was in low abundance. When the

samples for each tumor type were ranked according to their

immune cell content (as defined by the average expression of the

signature genes), we were able to demonstrate variation in the

immune microenvironment between tumors and the association

of specific immune cell populationswith goodor poor prognoses.

Despite an established association between the immune system

and survival in melanoma (56), there has been little effort to

subgrouppatients based uponwhat immune cell types are present

in their tumors. Previous studies have merely defined tumors as

having a high- or low-immune-cell content (34, 57). We, there-

fore, explored the use of ImSig in the molecular subtyping mel-

anoma patients. The analysis demonstrated a greater heterogene-

ity in the immune infiltrate of melanoma than previously

reported (52, 34). We distinguished tumors characterized by

T cells and macrophages (cluster 3), interferon enrichment

(cluster 4), or B-cell infiltration (cluster 2). Treating the immune

infiltrate of tumors as an overall signature limits the potential

to identify prognostically significant subgroups. In other cases,

merging the immune infiltrate into one immuno-subgroupmight

result in opposing survival differences cancelling each other out,

for example, if T cells were associated with a good prognosis

and macrophages a bad prognosis. Understanding the immune

heterogeneity of tumors may be key to predicting responses to

immunotherapy (58, 59).

The advent of single-cell transcriptomics and its application to

understanding the microenvironment of cancer promises to facil-

itate theprofilingof all the cells of a tumor as never before possible

(60) and may eventually circumvent the need to deconvolute

tissue data, as described here. The technology to perform these

analyses is improving and may in the future answer many ques-

tions about immune cell heterogeneity. However, at present, the

data available are limited and the droplet-based RNA-seq meth-

ods being widely used may not provide a sufficient depth of

sequencing to go beyond the identification of cell type. Here, we

demonstrate how ImSigwas able to accurately define the type and

relative abundance of immune cells in single-cell transcriptomics

data derived frommelanoma, as well as head and neck cancer. As

the quantity and quality of single-cell cancer data sets improve

and our understanding of the expression profile of these cells

improves, markers that are able to differentiate between immune

subtypes or activation states, specifically in the context of the

tumor microenvironment, may emerge.

ImSig is directly derived from tissue data. Although its gene

content is not entirely novel, we believe ImSig performs better

than previously published immune signatures as a subtype-

agnostic means to estimate the relative abundance of immune

cells across tissue samples. We also demonstrate the ability of

ImSig to facilitate identificationof biomarkerswhenapplied in the

context of network coexpression analyses. We anticipate that

ImSig will aid studies of immune cell variation in tumors,

responses to therapy, and predictive biomarkers.
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