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Abstract

Cytokines are signaling molecules secreted and sensed by immune and other cell types, enabling 

dynamic inter-cellular communication. Although a vast amount of data on these interactions 

exists, this information is not compiled, integrated or easily searchable. Here we report 

immuneXpresso, a text mining engine that structures and standardizes knowledge of immune 

inter-cellular communication. We applied immuneXpresso to PubMed to identify relationships 

between 340 cell types and 140 cytokines across thousands of diseases. The method distinguishes 

between incoming and outgoing interactions, and includes the effect of the interaction and the 
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cellular function involved. These factors are assigned a confidence score and linked to the disease. 

Leveraging the breadth of this network, we predict and experimentally verify previously 

unappreciated cell-cytokine interactions. We also build a global immune-centric view of diseases 

and use it to predict cytokine-disease associations. This standardized knowledgebase 

(www.immunexpresso.org) opens up new directions for interpretation of immune data and model-

driven systems immunology.

Protective immunity is mediated through a complex system of interacting cells whose 

communication network is primarily governed by secreted molecules, chiefly the cytokines 

and chemokine family proteins. Until recently, the high complexity of the immune system 

was approached by researchers using reductionist approaches, but technological advances 

now enable acquisition of large data sets, with broad enumeration of cell subset types and 

functions, protein, gene expression and more1. In addition, papers in immunology alone are 

being published at the rate of approximately one every 30 minutes. To maximize discovery, 

research results must transition to organized standardized models of knowledge, on which 

automated computational processing is deployed.

Biomedical text mining efforts have been an important means of grasping at the breadth and 

complexity of biological systems. With efforts invested into recognizing biologically 

relevant entities, such as genes, diseases, chemicals and genomic variants2–8, driven by gold-

standards9,10 and community-wide efforts11,12,13,14, text mining is enabling automatic 

identification of complex biological relations15,16 and full-scale networks.. Recent research 

has expanded to additional types of molecular events17–19, with relation extraction methods 

ranging from co-occurrence15,19, pattern-matching and rule-based methods, to dependency 

parse graph analysis20,21 and machine learning21. However, to date, text mining approaches 

have not addressed large-scale inter-cellular communication networks and, in particular, 

those describing directional cell-cytokine interactions.

Biological literature mining has shown utility for hypothesis generation, particularly in 

disease contexts22–24. Similarly, data-driven disease classifications have shown benefit in 

understanding shared mechanisms, empowering target identification and drug repositioning 

choices25–28. Yet to date, such classifications have not addressed cellular cross-talk and how 

the immune system may impact disease.

To establish a foundation for systematic reasoning over the inter-cellular network, we built 

immuneXpresso (iX), a comprehensive high-resolution knowledgebase of directional inter-

cellular interactions, text-mined from all available PubMed abstracts across a broad range of 

disease conditions. Interactions captured by iX include both direct cytokine binding/

secretion events and more distant, indirect influencing relations, scored and filtered to 

emphasize precision. We use the resulting knowledge standardization to characterize the 

immune inter-cellular network and to predict and experimentally validate cell-cytokine 

interactions. Leveraging the breadth and context-awareness of the knowledgebase, we build 

an immune-centric view of diseases and explore its modularity to predict cytokine-disease 

associations.
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RESULTS

A text mining pipeline to extract inter-cellular interactions

We designed a computational pipeline focused on mining the primary literature for 

identification of cells, inter-cellular signaling molecules (i.e., cytokines) and the directional 

relations between them (Fig. 1a, Online Methods) and applied it across the entire PubMed 

(approximately 16 million articles published electronically by July 2017). Briefly, for each 

individual sentence, the analysis pipeline tags cells, cytokines and diseases, as well as 

standardizes terminology through official ontologies to allow for hierarchical data analysis at 

multiple resolutions (Supplementary Tables 1-4). We examine sentence structure to identify 

syntactically related cell, verb and cytokine. From each such ‘evidence record’, we the 

relation’s directionality, polarity (representing its positive, negative or neutral effect) and 

when possible, the resulting cellular biological function (Supplementary Table 5). We 

distinguish between ‘outgoing’ relations, describing cytokine secretion by a given cell type, 

and ‘incoming’ relations, describing events in which a cytokine affects a cell type, either 

directly via binding or indirectly. Finally, for each unique triple of cell, cytokine and 

directionality, summarized across all its evidence records, we use a trained machine learning 

classifier to make a call on whether the collected evidence indeed describes an interaction 

(Online Methods). We assign confidence scores to these and link to the conditions (e.g., 

diseases) co-mentioned in the same abstracts. In addition, we annotate independent entity 

mentions, without interaction, of cells and cytokines to allow for entity co-occurrence and 

enrichment statistics.

To assess the precision of entity recognition, expert human curators evaluated 100 randomly 

chosen annotations each for cells, cytokines and diseases and found the automatic annotation 

to be 91%, 96% and 93% correct, respectively (Online Methods, Supplementary Tables 6-8). 

Similarly, for precision of relation extraction, randomly chosen 590 interaction evidence 

records (i.e., particular sentence instances) and manually evaluated entity recognition, 

ontology mapping, verb and relation detection, directionality, polarity and cellular function 

identification (Online Methods, Supplementary Tables 9, 10). We observed a conservative 

true positives rate of 75% when all metrics were considered, 82% when assessing triple 

precision (cell-cytokine-directionality) and 93% when checking cell-cytokine relation pair 

extraction only, ignoring directionality, polarity and other relation characteristics (Fig. 1b).

To evaluate performance in interaction recall (i.e., identifying known interactions), we 

manually curated directional interactions from a reference book covering up-to-date 

knowledge of cytokines29, and used it as a gold standard (Online Methods). Our machine 

learning derived knowledgebase covered 79% of the interactions described in the reference 

book, yet was close to five times larger, containing an additional 3,055 directional 

interactions. Manual assessment of 200 of these yielded an 11.5% false positive rate, 

suggesting that a large amount of biologically meaningful interactions appear only in the 

primary literature.

Finally, we unified all identified interactions (manual and machine derived) into a single 

knowledgebase which we named immuneXpresso (iX) (Fig. 1c). To quantify the advantages 

of this semantic-based approach, we compared its precision and recall with an alternative of 
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assuming cells and cytokines co-occurring in the same sentence interact, without sentence 

structure analysis (Online Methods). Though the full set of co-occurrence based relations 

showed 98% recall of both the reference book-curated and iX cell-cytokine pairs, 75.6% of 

these relations appeared in neither resource, suggesting a very high false positive rate for a 

co-occurrence approach, even when we threshold by a minimal number of repeat co-

occurrences (Fig. 1d).

At present, iX contains a total of 4,118 directional cell-cytokine interactions (Supplementary 

Table 11), three times as many incoming interactions as outgoing ones, an enrichment 

qualitatively echoed in reference book annotated interactions. These interactions stem from 

more than 31,000 articles (Supplementary Table 12). In addition, using the iX pipeline, we 

collected annotations of thousands of diseases (11,260 distinct disease terms. 2,179 of them 

appearing in at least 100 papers) and identified mentions of 1,300 cell types, 360 of which 

are hematopoietic, and 170 cytokines in these disease contexts (Supplementary Table 11, 

13). iX is freely accessible for querying through www.immunexpresso.org, as well as via the 

ImmPort web site30.

System-level characterization of inter-cellular interactions

iX offers a unique opportunity for a system-level view of inter-cellular information flow. 

Given the large number of cells and cytokines, many of which are poorly understood, we 

first grouped cells into 16 major categories based on the cell ontology hierarchy, and 

cytokines into families based on structure and function (Online Methods). This yielded a bi-

partite inter-cellular interaction network showing information flow between cell types and 

cytokine families (Fig. 2a). We noted that cell-types, irrespective of the number of identified 

cell subsets in their lineage, interacted with a large number of cytokine families. Replotting 

the network using the highest cell and cytokine resolution in iX we observed an increase in 

distinct cell subset -cytokine profiles per cell-type, particularly for outgoing interactions 

(Supplementary Fig. 1a, shown for CD4+ T-cells). Yet, the bulk of interactions were still 

described solely at a low cellular resolution, indicating that the unique cytokine milieu 

profile of distinct cellular subsets is for the most part still lacking.

Signaling of some cytokines may be highly specific or broadly affecting multiple cell 

subsets, constituting hubs of the inter-cellular interaction network. iX enables to study global 

properties of the intercellular interaction network. For each interaction, we identified the 

highest cellular resolution it was reported for and calculated for each cytokine the number of 

cellular interactions it was associated with (i.e., its degree), covering both hematopoietic 

(HPC) and non-hematopoietic cell types. This demonstrated the existence of only a few hubs 

in the network, followed by a long tail of modestly and low interacting cytokines (Fig. 2b for 

incoming and Supplementary Fig. 1b for outgoing interactions). We noted that 50% of the 

incoming interactions in the network were formed by 23 (16% of total) cytokines. These 

included the top hubs TNF, TGFB, IL6 and IFNG. Similarly, in the reverse outgoing 

direction, we attributed 50% of edges to 17 (15% of total) cytokines. Cytokine degrees in 

incoming and outgoing directions showed high correlation (Fig. 2c, r=0.86 Pearson’s), as in 

the gold-standard reference book (Supplementary Fig. 1c, r=0.69 by Pearson). This 

correlation was lower yet still observed upon removal of autocrine interactions which may 
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inflate similarity (r=0.73 and 0.36 for iX and the reference book respectively) and following 

removal of low degree cytokines (r=0.5 by Pearson), suggesting that hubs in the literature-

derived inter-cellular interaction network appear to be bi-directional, both targeting and 

secreted by a large number of cell-types.

Immune inter-cellular network knowledge is biased

Analyzing the cytokine degree distribution, we could not reject power-law distribution for 

either incoming or outgoing interactions (Supplementary Fig. 2, p=0.73 and p=0.47 

respectively for incoming and outgoing, Online Methods). Heavy-tailed network 

distributions may arise due to a research bias, yielding a “rich get richer” phenomenon31,32. 

Conversely, such degree distributions may arise naturally due to biological network 

structure33. Analysis of cytokine interaction knowledge accumulation showed the existence 

of one or two connection-rich leaders per cytokine family, with other family members 

trailing well behind (Fig. 3a, Supplementary Fig. 3). These were predominantly founding 

cytokine family members, such as IL6, IFNG, IL10 and TNF, and maintained their 

overwhelming dominance even when we discarded all explicit references to global family 

mentions in the text (e.g. TNF-family). We detected a low global correlation between a 

cytokine’s date of discovery and its degree, suggesting inter-cellular communication 

knowledge has not reached saturation, either for hubs or for less connected cytokines 

(Supplementary Fig. 4, r=−0.27, −0.26 Pearson’s for incoming and outgoing interactions 

respectively, driven by a few highly dominant hubs). Analysis of recent 5-year change in 

connectivity degree suggested for some hubs, such as FGF2, their iX degree likely reflects 

cellular interactivity potential, whereas others, such as IL6 and IL22, were still accumulating 

new connections at a high rate (Fig. 3b).

To assess how well the literature-derived knowledge represents experimental data, we 

compared iX cytokine degrees to those obtained from ImmProt, a high-resolution 

proteomics compendium quantifying proteins’ expression in rested and activated states in 

more than 20 sorted immune cell types34. We approximated outgoing and incoming 

interactions based on the expression of cytokine and cytokine receptor proteins in ImmProt 

cellular profiles. Comparison of incoming cytokine degrees in the resulting experimental 

network with the literature-derived ones (Fig. 3c) demonstrated significant correlation 

(ρ=0.38 by Spearman, p-val<0.001, based on 82 cytokines present in both datasets), with 

lower correlation for the opposite direction (ρ=0.26 by Spearman p-val=0.1, 41 shared 

cytokines), likely due to ImmProt secretion profiles measured in a single condition.

Prediction of cell-cytokine interactions

Using the iX knowledgebase up to 2014, we systematically predicted cell-cytokine 

interactions, using three orthogonal approaches (Fig. 4a, Online Methods): an unsupervised 

or supervised analysis of cytokine-cell interactions iX profiles independent of external data 

or by contrasting iX information versus receptor/cytokine gene expression data on cell 

subsets as reflected in the ImmProt34 and ImmGen databases35 (e.g., LTA in Fig. 3c). This 

systematic prediction process yielded 472 incoming and 367 outgoing ranked interaction 

candidates (Supplementary Tables 14, 15). Of these, we manually evaluated 78 predictions 

by extensive literature searches (Fig. 4b). This process identified 55% of candidates as 
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already observed, true positive interactions, 3% with evidence published only following the 

prediction 2014 training set and 3% with evidence of cytokine receptor expression only. This 

high rate of recovery of known interactions was reassuring and suggested that the remaining 

40% of candidate interactions were enriched for previously unrecognized interactions.

We tested the validity of two top-rated candidate interaction predictions: For IL7, our 

supervised cytokine family prediction approach suggested an outgoing interaction (i.e. 

secretion) in monocytes (the literature currently describes the opposite interaction only, that 

is, IL7 affects monocytes36). In agreement with the prediction, we observed IL7 production 

by monocytes in activated human PBMC population. In addition, as expected, we detected 

dendritic cell production of IL7 and no IL7 production in CD8+ T cells, as reported in the 

literature (Fig. 4c). Similarly, our unsupervised prediction approach suggested that IL34 

activates signaling in T-cells. We also detected expression of a corresponding receptor, 

CSF1R, on resting CD8+ T cell subsets in ImmProt34 (Supplementary Fig. 5). We stimulated 

human PBMCs with IL34 and observed robust phosphorylation of Erk in monocytes, as has 

previously been reported37. We also observed activation of pNFKB, pSTAT5 by IL34 in 

CD8+ effector memory T cells (Fig. 4e). Moreover, our prediction also supported our recent 

validation of CD4+ memory cells induction by IL34 signaling following upregulation of the 

CSF1R during activation34.

Immune-centric classification of diseases

We reasoned that the structured format and breadth of iX can be leveraged to obtain an 

immune-centered perspective on diseases and their relations. To do so, we picked a set of 

188 broadly studied diseases whose associated abstracts we sampled to obtain a 

characteristic inter-cellular immune profile (Fig. 5a, Supplementary Fig. 6, Supplementary 

Table 16). These we clustered in an unsupervised manner to assemble an immune-centered 

map of disease similarities and differences (Online Methods).

Analysis of this clustering outcome divided diseases into 18 modules based on associated 

cells, cytokines and interactions (Fig. 5b). We observed mixed agreement of this 

classification with a clinically based one (SNOMED): Some modules clustered clinically 

similar phenotypes: for example, Module 2 showed strong clustering of cardiovascular 

diseases, whereas Module 9 captured inflammatory bowel disorders and psoriasis. Similarly, 

cancers were grouped into four modules based on tissue type. In contrast, in some cases the 

immune-centered clustering yielded modules that included diseases from presumably 

unrelated clinical conditions: Modules 14 and 15 suggested a high degree of immune 

similarity between metabolic disorders and a subset of cardio-vascular diseases (e.g., 

Myocardial infarction and Acute coronary syndrome) - an observation also supported by 

high inter-connectivity of Modules 14 and 15 with Module 2.

We used iX to automatically generate an inter-cellular immune interaction map for type 2 

diabetes, based on 5,484 abstracts (Fig. 5c, Online Methods). The network recapitulated the 

molecular basis of the disease, capturing the key role of tissue resident inflammatory 

macrophages, monocytes, fat cells and pre-adipocytes in secreting the pro-inflammatory 

cytokines TNF, IL6 and IL1B, triggering the release of adipokines that contribute to 

development of insulin resistance38. This profile co-clustered with other diseases in Module 
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15, consisting of metabolic and cardiovascular diseases, an appreciated link39. Enrichment 

analysis of Module 15, as well as its closely associated Module 2, compared to all others 

(Fig. 5d, Online Methods), showed a strong association with the pro-inflammatory adipokine 

RETN and its interaction with monocytes. RETN has been proposed to link the heightened 

inflammatory state in aged and obese individuals to insulin resistance, vascular 

inflammation and LDL cholesterol levels thus contributing to the risk of developing 

metabolic syndrome40. Moreover, elevated RETN directly induces IL6 secretion41, 

contributing to the constant low-grade inflammatory state associated with age and cardio-

vascular conditions42,43. Thus, whereas phenotypically Modules 15 and 2 represent different 

pathological conditions, their molecular commonalities suggest consideration for common 

therapeutic interventions.

Prediction of cytokine-disease associations

Analysis of cytokine profiles across the 188 diseases revealed three predominant cytokine 

classes with respect to disease: disease-specific, module specific and backbone cytokines 

that are associated with the overwhelming majority of tested diseases (Fig. 6a, 

Supplementary Table 17, Online Methods). We noted a high overlap between backbone 

cytokines and those previously identified as hubs (Fig. 2b), suggesting that their pan-disease 

universality stems from the dominant role in the overall inter-cellular interaction network.

We hypothesized that given the unequal within-module knowledge per disease we may be 

able to predict de-novo cytokine-disease associations. For each module, we hierarchically 

clustered disease subsets across all cytokines and systematically predicted cytokine-disease 

associations (Online Methods). This yielded over 466 ranked candidates, stemming from all 

18 modules (Supplementary Table 18). As we assembled the disease immune profiles by 

sampling, we checked the predicted cytokine-disease associations on the full, non-sampled, 

iX knowledgebase, which validated 81% of predicted interactions as true positives, 

suggesting a likely enrichment for unappreciated cytokine-disease associations in the 

remaining set (Supplementary Fig. 7).

To test this, we looked for experimental confirmation of two of the top-rated candidate 

associations, CCL8 and CCL24 in psoriasis, which to the best of our knowledge have not 

been reported. We analyzed two publicly available gene expression data sets for 

psoriasis44,45 and found CCL24 and CCL8 to be significantly upregulated in psoriatic 

lesions vs healthy skin in one45 and both datasets respectively (paired two-sided Wilcoxon 

signed rank test, p-val=0.0048, 2.47e-05 and 1.04e-07 respectively, Fig. 6b and Fig. 6c).

DISCUSSION

Knowledge of the immune inter-cellular network is crucial for understanding immune 

response in health and disease. However, the high system complexity leaves even expert 

researchers struggling to maintain a mental picture of the immune milieu and often leads to 

knowledge biases. We leverage a computational model of inter-cellular interaction network 

knowledge to accelerate discovery of novel interactions and the context in which they occur, 

identify disease-associated immune profiles and build an immune centric disease 
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classification. Viewing diseases from such an angle yields a modular disease organization 

with partial overlap with clinical disease classification.

The knowledge we capture is unique in breadth and resolution, yet it can be expanded even 

further. Full-text article support, as well as identification of interactions described beyond 

sentence boundaries and using more complex sentence structures, would boost the volume of 

captured evidence and our ability to obtain more reliable and richer view of interactions, 

with less bias, particularly those that are understudied. We foresee extension of this 

approach to also include additional events such as direct cell-cell interactions and 

downstream inter-cellular signaling to capture complex cellular interaction cascades. The 

extensive meta-data we extract for each article, including MESH terms and bibliographic 

information, together with detailed characterization of the captured interactions, may be 

used for advanced filtering, allowing focus on the most authoritative knowledge. Beyond 

this, we envision that the structured formatting of knowledge we have achieved can be 

leveraged by machine learning applications, using statistical analyses of domain frequency 

and chronological pattern biases to identify potential discrepancies and erroneous claims in 

the published knowledge.

Technological advances now enable to step beyond assaying a narrow set of measures to 

high dimensional phenotyping across the breadth of the immune system at an unprecedented 

scale. This data is primarily analyzed by statistical analysis methods which are geared to 

identify differences and correlations, yet lacking any backend model of the immune system’s 

structure and function, lack in their ability to leverage domain knowledge or interpret what 

these differences mean. This results in an interpretation process which primarily manual, not 

systematized and relies strongly on investigator conjecture. Intelligent systematized 

interpretation requires having a machine-readable map of how immune components are 

connected and a formalized reasoning framework on which one could test hypotheses and 

refine knowledge. Here we built immuneXpresso, a framework that structures and 

standardizes our knowledge of immune intercellular interactions, under many conditions, 

and updates periodically. Its integration with high-dimensional immune data will enable 

paradigms of reasoning over heterogeneous cell populations, making first steps towards 

transforming immunology to systemized, model-based science; a true ‘systems 

immunology’.

ONLINE METHODS

iX pipeline execution environment

The computational pipeline assembling the iX knowledgebase was executed on a high-

performance computing cluster, running a batch job scheduling system with up to 150 

simultaneous jobs allowed. Details of the specific pipeline steps appear below. It typically 

takes roughly 2 weeks to generate the iX database from start to finish for the entire corpus.

Corpus selection, parsing and indexing

Abstracts of all English articles published electronically between 1960 and July 2017 (~16 

million) were downloaded from PubMed using the EFetch utility. For each abstract, we 
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extracted additional metadata, such as the article title, year of publication, whether it is a 

review or not and its assigned MESH terms. We focus on the mammalian immune system 

due to the rapid evolution of the immune system46,47, and in particular restrict our analysis 

to abstracts assigned a mouse and/or human MESH term, as these are the prime organisms 

relevant for biomedical research for which information is available. We used the Stanford 

Parser engine48 to split abstract text to sentences and words, perform part-of-speech tagging, 

extract sentence syntactic structure and grammatical relations (i.e. “typed dependencies”). 

This information was then indexed within the Elasticsearch engine (https://www.elastic.co/), 

to allow querying for sub-corpora potentially containing biological entities of interest. 

Moreover, preserving text processing products in the index eliminates the need for future 

time-consuming abstract reparsing, if entity recognition is expanded to support additional 

entity types (e.g., drugs, tissues or pathways).

Entity recognition and ontologies

To identify mentions of biological entities of interest (diseases, cells and cytokines) within 

article abstracts, we applied a dictionary-based approach with dictionaries either adapted 

from standard public knowledgebases or assembled from scratch. For diseases, we first 

queried elasticsearch for articles containing synonym phrases, listed by manually curated 

compilation of UMLS Metathesaurus49, and then post-processed the returned abstracts, 

sentence-by-sentence, to look for the matches and extract precise information for them. In 

particular, for each identified disease mention, we recorded its position in the sentence, the 

particular synonym used, as well as the public Concept Unique Identifier (CUI) and concept 

name, as defined by the SNOMED CT controlled vocabulary of the Metathesaurus 

(Supplementary Tables 8, 13). This post-processing stage drops conditions contained within 

longer disease entities (e.g., “deficiency”, “vitamin deficiency” are dropped, retaining only 

the most specific “vitamin A deficiency” term within the sentence “The essential role of 

vitamin A in kidney development has been demonstrated in vitamin A deficiency and gene 

targeting studies.”). To achieve this, we automatically examined all diseases with 

overlapping sentence positions to retain those with the longest position span and, among 

them, containing the highest number of words.

For cells, initial testing suggested that straightforward lookup of terms contained within the 

official Cell Ontology50 would miss a substantial fraction of cell occurrences in text due to 

the large number of possible forms of describing cell subsets. This pluralism in naming is 

hard to anticipate automatically, both when describing cells by name (e.g. “human CD8+ 

terminally differentiated memory cell” does not appear in the Cell Ontology and would not 

be captured by straightforward dictionary lookup) or by cell surface marker combination 

(e.g. “CD3+CD4+CD45RA+ cell”), whose delineation in the Cell Ontology is limited. To 

resolve this, we expanded the Cell Ontology with manually curated set of synonyms, and, 

more importantly, introduced a small lexicon of seed words that served a starting point, an 

anchor, for cell recognition in sentences (e.g., cell, lymphocyte, macrophage; see 

Supplementary Table 1 for the full list).

Cytokine dictionary was assembled manually, due to lack of an established lexicon 

(Supplementary Note 1).
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For cell and cytokine entity recognition, we query elasticsearch for articles containing either 

a mention of a cytokine synonym or a cell “seed” word. The focus is on articles mentioning 

either or both cell and/or cytokine, to serve the basis for further relation extraction. Akin to 

diseases, we post-process candidate articles to better characterize the matches and, for cells, 

to expand from seeds to often multi-word hard-to-anticipate cell name phrases, using typed 

dependencies (Supplementary Note 2, Supplementary Fig. 8). In addition, the captured cell 

phrases are mapped to the Cell Ontology (Supplementary Note 3).

Last, following cell and cytokine mention candidate extraction, we analyzed their within-

sentence positions to filter out erroneous identification of overlapping entities from different 

ontologies (e.g., erroneous “granulocyte” or “macrophage” cell matches within the cytokine 

entity “granulocyte-macrophage colony-stimulating factor”). For all remaining cell and 

cytokine mentions, we recorded their start and end positions in sentence, the particular 

phrase/synonym used, as well as the representative ID and concept name, assigned either by 

official Cell Ontology for cells or by our manually constructed dictionary for cytokines 

(Supplementary Tables 6, 7; see Supplementary Tables 1, 3 for frequencies of terms captured 

per each cell seed and cytokine lexicon concept respectively).

Relation extraction

Following extraction of articles containing either cytokine synonym or cell seed word 

mentions, we applied sentence-by-sentence post-processing to detect verbs, and when 

possible, link cells, cytokines and verbs into relations. We analyze sentence typed 

dependencies48 to detect semantically related cells and cytokines within sentence boundaries 

and identify the directionality (i.e., a cytokine acting on a cell, like “IL6 promotes Th17 cell 

differentiation”, or the opposite, a cell producing a cytokine, like “T cells secrete IL2”), 

polarity (i.e., positive, negative or neutral effect of the interaction, such as up-regulation, 

inhibition or just alteration of a cell function respectively), as well as the cellular biological 

function impacted by this relation (e.g., cell proliferation or apoptosis elicited by the acting 

cytokine).

Per-sentence relation extraction process included several steps: First, we found verbs in 

sentence by looking for words tagged as VB, VBD, VBG, VBN, VBP or VBZ by part-of-

speech tagger. For each verb we examined all typed dependencies it was governing, 

attempting to resolve verb tense. In particular, we marked verbs tagged as VBN and 

governing either “passive nominal subject”, “passive auxiliary” or “agent” dependencies as 

passive. Second, to allow further relation directionality detection, we performed cell-

cytokine semantic linking by examining all possible entity combinations with a verb located 

between a cell and a cytokine. We considered a candidate (verb, cell, cytokine) tuple as 

semantically related, if the sentence contained a directional dependency tree path from one 

of the elements to the other two. For example, in the sentence “These results suggest that 

IL6 promotes IL22 secreting Th17 subset differentiation” on Fig. 1a, there is a path from the 

verb “promotes” to the cytokine IL6 and to the Th17 cell, allowing (promote, IL6, Th17) 

relation identification. Third, we used the verb tense and the cell/cytokine order in sentence 

to resolve relation directionality. In the example above, since verb tense is active, and the 

cytokine precedes the cell entity, we identify the cytokine as acting on the cell. Finally, we 
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applied a manually assembled verb classification lexicon (Supplementary Table 5) to assign 

relation polarity (i.e. positive in the example above). Verb classification lexicon lookup was 

performed using stemmed forms for both lexicon terms and the relation verb.

For the special case of cell-cytokine relations included within cell descriptions, “noun 

phrase-internal relations” (e.g. “IFNγ-producing CD4+ T cells”, “IL2-activated NK cells” or 

“NK cell IFN-gamma”), we applied a tailored rule-based approach (Supplementary Note 4).

If relation directionality could be deduced directly from the verb (e.g., express or stimulate), 

as marked by human curators of the verb lexicon, we preferred the directionality denoted by 

the lexicon to directionality-related decisions made by the algorithm above.

Finally, we applied cell entity-containing noun phrase analysis to detect cellular biological 

functions elicited by the interacting cytokine, such as “migration” in the “GM-CSF 

enhanced reactive oxygen species release and neutrophil migration in vitro”. We examined 

noun phrase words on right of the recognized cell entity to look for one or more matches 

from a manually curated cellular function list.

In terms of terminology, we refer to each detected (cell entity occurrence, cytokine entity 

occurrence, directionality, polarity, cellular function) relation in a sentence as a relation 

evidence record, while summarization of evidence records through representative labels and 

IDs of the entities produces unique candidate (cell, cytokine, directionality) interactions. 

Polarity and cellular function are ignored during summarization. We defined interaction 

context by the disease entities co-occurring in the same abstracts with the identified relation 

evidence records.

Filtering and scoring

We choose to put strong emphasis on precision over recall to ensure benefit and increase 

adoption by the community. To do so, we developed a confidence scoring methodology for 

both individual relation evidence records and summarized interactions, as well as performed 

four filtering stages as follows:

1. Baseline filtering: For each putative relation evidence record (i.e., a directional 

cell-cytokine relation extracted from an individual sentence), we compiled a set 

of sentence level features to capture the complexity of the sentence from which 

this evidence emerged. These included sentence length, number of typed 

dependencies, entities and relations detected, suspect for negation presence, cell 

ontology mapping score, as well as the distance between the cell and the 

cytokine occurrences. Next, we filtered evidence with potentially lower 

confidence, such as negated sentences or sentences with more than one non-noun 

phrase-internal relation detected or evidence with low cell ontology mapping 

score (Supplementary Note 3). This yielded a “baseline” subset of putative 

interaction evidence records used in the subsequent scoring and filtering stages.

2. Evidence record confidence scoring: all individual records were assigned 

confidence scores, based on sentence-level features (Supplementary Note 5) to 

allow focus on the highest confident evidence, both when queried by iX web-
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based interface users and during analyses, as well as serve a feature for further 

filtering, as detailed below.

3. Summary scoring: All summarized interaction (i.e., unique cell-cytokine-

directionality triples summarized across the corpus) were assigned with summary 

and enrichment scores (Supplementary Note 6) to allow focusing on highly cited 

interactions.

4. Lasso-based filtering of summarized interactions: Last, to choose optimal 

parameters for classifying and further filtering of summarized interactions (i.e., 

unique cell-cytokine-directionality triples), we built a lasso logistic regression 

model51. Here, we summarized evidence level features into the interaction level 

across all evidence records, such as minimal/maximal sentence length, minimal/

maximal cell-cytokine entity distance in sentence, the presence of mouse/human 

MESH term annotation in any of the evidence papers and minimal/maximal 

evidence confidence scores described in (2) above. Additionally, we defined 

interaction-level features, such as the overall number of evidence records, the 

summary and enrichment scores defined in (3) above. For all verbs in the training 

set, we added an interaction-level feature reflecting verb presence in any of the 

evidence records, producing 178 features in total. We trained the lasso regression 

model on a set of 203 randomly selected interactions, summarizing 788 baseline 

evidence records identified by iX. We labeled the summarized interaction as 

positive if an only if at least one of its evidence records was manually classified 

as having cell, cytokine and directionality identified correctly. The resulting set 

of manually labeled (cell-cytokine-directionality) triples was used for training 

the lasso model, separately for incoming and outgoing interactions, with leave-

one-out cross-validation. This procedure identified a linear combination of sparse 

feature weightings which we then applied to all putative summarized 

interactions, classifying them as either “true” or “false”. Most prominent features 

included maximal evidence confidence score, having “mouse” MESH assigned 

for evidence record articles, as well as presence of several verbs, such as 

“produce”, “synthesize” and “affect”. We enforced classification of “true” for 

interactions having at least one noun phrase-internal evidence record, due to their 

very high identification precision. Filtering out summarized interactions 

classified as “false”, together with all their evidence records, yielded the 

resulting dataset which we used for further performance evaluation and system-

wide analyses (Supplementary Table 11 for a breakdown of the articles, records, 

entities and interactions remaining at various stages; Supplementary Table 12 for 

PubMed articles for the resulting cell-cytokine relation evidence)

Named Entity Recognition performance evaluation

NER precision for all entity types was assessed by human curators. In addition, for cells, 

both precision and recall were examined by comparing to the gold standard Colorado Richly 

Annotated Full Text (CRAFT) corpus9 (Supplementary Note 7).
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Relation precision evaluation

Relation extraction precision assessment was based on manual evaluation of randomly 

chosen relation evidence records (Supplementary Note 8).

Reference book network assembly and relation recall evaluation

To the best of our knowledge, no gold standard for directional cell-cytokine relations exist as 

of now. Thus, to assess iX text mining process performance in capturing existing knowledge 

in general, and, evaluate relation recall in particular, 11 human curators manually annotated 

interaction mentions, specifying the cell/cytokine terms and interaction direction from a 

reference book with encyclopedic display of up-to-date knowledge about cytokines and their 

interactions29. These we mapped to the Cell Ontology and the cytokine lexicon respectively 

to summarize and acquire reference IDs consistent with those used in iX. This process 

yielded 725 unique (cell, cytokine, directionality) interaction triples which we compared to 

those captured by iX, while allowing non-exact cell type match along the Cell Ontology 

hierarchy to account for the varying level of granularity of cell type reporting in literature. 

This comparison assessed the proportion of reference book triples captured by iX, as well as 

the number of triples unique to either the reference book or iX. For the latter, to estimate 

false positive proportion, we manually evaluated 200 (cell, cytokine, directionality) triples, 

randomly selected from the iX knowledgebase not covered by the reference book. An 

interaction was classified as false positive by the human curators, if none of the evidence 

records collected by iX for that triple reported the directional interaction in question. 

Following the assessment, we unified the list of interactions identified via literature text-

mining and reference book annotation into a single knowledgebase.

Evaluation of co-occurrence based relation extraction performance

A co-occurrence based approach would not be able to capture interaction directionality, an 

essential characteristic of inter-cellular communication, as our typed dependency-based 

method inherently does. Still, we aimed to assess quality of those easier-to-extract relations. 

To the best of our knowledge, no gold standard for cell-cytokine relations exist as of now. 

Thus, to evaluate co-occurrence based relation extraction performance and contrast it with 

the typed dependency-based approach, we used the interaction network we manually 

assembled from the reference book (see “Reference book network assembly and relation 

recall evaluation” section above) and discarded interaction directionality for both reference-

derived and typed dependency-based interactions (post-lasso filtering, hereafter referred to 

as iX interactions), producing two sets of cell-cytokine pairs to compare with. We linked cell 

and cytokine entities, previously recognized as co-appearing within sentence boundaries, 

into relation evidence records and summarized them into interactions, with the number of 

distinct articles mentioning the relation defining the strength of evidence.

Cytokine degrees and power law fit

The literature-derived nature of the iX network inherently reflects the fact that study of 

cellular interactions is performed at a varying level of granularity, rather than necessarily 

using the most specific cell type. As such, to avoid situations whereby the same interaction 

is counted multiple times when calculating degree distributions, we discarded interactions of 
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less specific cell types, if a more specific cell type was known to interact with the same 

cytokine in the same direction. Cytokine degree counts, calculated separately per direction, 

took into account interactions with both hematopoietic and non-hematopoietic cells. Discrete 

power-law and log-normal distribution fit calculations were performed using the poweRlaw 

R package52.

Proteome comparison

We examined the similarity of iX and proteome interactions by inspecting each interaction 

direction separately and comparing cytokine degrees in these data sets. For outgoing 

interactions, we compared the number of distinct interacting cell types captured by iX and 

the number of those reported to express the particular cytokine in the ImmProt 

compendium34. For incoming interactions, we examined the proteomic profiles of cytokine 

receptor genes and approximated cytokine-cell interactions by mapping expressed receptors 

to the respective cytokines, based on the KEGG “Cytokine-cytokine receptor interaction - 

Homo sapiens (human)” (hsa04060) pathway entry53,54. We then compared the resulting 

proteome-derived degrees to those captured by iX for each cytokine. To avoid situations 

whereby the same interaction is counted multiple times due to literature reporting at varying 

levels of cell type granularity, we discarded iX interactions of less specific cell types, if a 

more specific cell type was known to interact with the same cytokine in the same direction. 

Moreover, to focus on similar cellular compartments, we discarded non-hematopoietic cell 

interactions from iX, thereby calculating cytokine degrees across hematopoietic cell types 

only in both data sets.

Novel cell-cytokine interaction prediction

To systematically predict novel interactions between immune cells and cytokines, we 

applied several strategies, separately for each interaction direction:

1. Based on similarity of global signaling profiles - we assembled a global 

literature-derived Boolean matrix indicating whether an interaction has been 

described for each cell-cytokine pair. We used hierarchical clustering to group 

together cytokines with similar interaction profiles across all cell types and 

hypothesized that non-interacting cell-cytokine pairs located within highly 

connected clusters might actually interact. Therefore, we scanned clusters, 

confined to all possible combinations of column and row dendrogram branches, 

and derived interaction candidates for “gaps” in clusters with at least 85% of 

interacting pairs. We scored the resulting candidates by counting the number of 

clusters that predicted the interaction to be novel.

2. Based on similarity of cytokine structure or function - we calculated the 

proportion of cytokine family members known from the literature to interact with 

each cell type and derived novel interaction candidates by hypothesizing that 

cells interacting with at least 30% of a cytokine family and with its most 

interactive member (i.e. usually the founding family member), might interact 

with other cytokines in the family as well. We used the aforementioned 

proportion to rank the resulting cell-cytokine interaction candidates.
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3. Based on differences between literature-derived knowledge and experimental 

data (Supplementary Note 9)

Manual evaluation of novel cell-cytokine interaction candidates

We evaluated 78 interactions with the best overall scoring (Supplementary Tables 14, 15). 

Candidates were scored by manual evaluation (e.g. we considered predictions made by 

multiple methodologies stronger), however incorporated multiple other criteria in defining 

which candidate interaction to validate. For example, we considered a candidate interaction 

whose reverse directionality was not reported yet, stronger than the one for which it has been 

captured by iX (as that reverse directionality might result from erroneous identification, 

invalidating prediction novelty). A subset of candidate interactions with no evidence 

identified using manual search were then chosen for experimental validation.

Experimental validation of novel cell-cytokine interaction predictions

Whole blood was obtained by consent from healthy volunteers through venipuncture. PBMC 

fraction was separated by a standard centrifugation at 1500RPM on Ficoll gradient without 

brake. For phospho-flow, cells were washed twice with Dulbecco’s PBS and subjected to 

stimulation for 15min with IL34 and CSF1 (Peprotech, Asia) at 100ng/ml. Cells were fixed 

for 10min at RT with 1.6% PFA (Pierce) and stained for 1hr at RT with a mix of metal-

tagged antibodies. Further, cells were permeabilized with ice-cold methanol, followed by 

intracellular staining with metal-tagged antibodies against a phosphorylated form of 

Erk-36/38, p-NFKB, pSTAT1 and pSTAT5. Antibodies for phosphorylated targets were 

obtained from Fluidigm.

For intracellular cytokine staining, PBMC’s were stimulated with PMA (150ng/ml)/

ionomycin(1mM) (Sigma) for 4 hours at 37C in complete medium containing monensin and 

brefeldin-A at 1:1000 dilution (e-bioscience). Extracellular epitopes were stained for one 

hour with metal-tagged antibody mix, cells were fixed with PFA as described above and 

permeabilized for 1 hour on ice with saponin permeabilization buffer (e-Bioscience). 

Intracellular staining of IL7 was performed on ice in saponin-containing buffer. All 

extracellular and cytokine-specific antibodies were conjugated in-house using MaxPar kits 

from Fluidigm or pre-conjugates purchased from Fluidigm. Cells were stained with Cell-ID 

Ir191/193 for viability stain and acquired on a CyTOF1 (DVS, Fluidigm) instrument.

Assembling disease similarity modules

We defined a context for cells, cytokines and cell-cytokine interactions by diseases co-

occurring in the same abstracts, while disease mentions were captured using manually 

curated compilation of the UMLS Metathesaurus49. To identify disease similarity modules, 

we focused on 188 top-cited diseases (co-mentioned in at least 500 papers with cytokines 

and at least 500 papers with hematopoietic cells), that we could classify as pertaining to at 

least one of the eight predefined clinical categories (e.g., disorder of cardiovascular system, 

generalized metabolic disorder, neoplasm of hematopoietic and non-hematopoietic cell 

types, autoimmune diseases and hypersensitivity conditions). To define clinical categories, 

we used SNOMED CT ontology available through UMLS Metathesaurus49 and manually 

expanded its autoimmune disease category with publicly available autoimmune-related 
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disease list (http://www.aarda.org/autoimmune-information/list-of-diseases). As a 

preliminary step to module assembly, we extracted a non-specific across-disease control 

profile by repeated paper sampling from the entire corpus of 521,625 disease-HPC and 

438,012 disease-cytokine co-occurrence papers respectively, without limiting to any 

particular context (200 iterations of 200 papers each). We examined cells and cytokines 

mentioned in the sampled papers, assembling the distribution of hits for each HPC and 

cytokine across sampling iterations, to serve a control for further disease-specific profile 

assembly.

Next, for each of the 188 diseases of interest, we assembled its underlying signaling profile 

by applying several steps: (1) performing 200 samplings of 200 random papers from the 

disease-specific sub-corpus, to control for differences in corpus size, followed by extraction 

of the distribution of hits for each cell and cytokine across sampling attempts (2) filtering out 

under-represented entities, that is, those with a hit proportion median lower in disease-

specific than in the control sampling and (3) linking cells and cytokines co-occurring in the 

same disease profile to interacting pairs, using interaction potential captured in the overall 

iX network. Last, we performed unsupervised clustering of the resulting Boolean disease 

profiles (0/1 indicating whether the particular cell, cytokine or pair is a part of the profile) 

using WGCNA R package55,56 to assemble the set of immune-centric disease similarity 

modules based on the binary distance metric.

Disease module signature extraction

To extract features (i.e. cells, cytokines and their interacting pairs) characterizing disease 

modules, we applied a hypergeometric test, independently for each feature, examining 

whether the feature is over-represented in the particular module comparing to the entire set 

of 188 diseases. We corrected for multiple testing using Benjamini-Hochberg.

Novel cytokine-disease association prediction

To test cytokine utilization across conditions, we repeatedly sampled papers from disease-

specific sub-corpora, separately for each of the 188 top-cited diseases (200 iterations of 200 

papers each). We extracted the distribution of paper hit proportions for each cytokine-disease 

pair across iterations, and used the median proportion as the measure of cytokine mention 

frequency in that particular context.

To systematically predict novel cytokine-disease associations, we employed global within-

module immune similarity and applied the following steps separately for each disease 

module: (1) assembly of literature-derived Boolean matrix indicating whether a cytokine 

was a part of the disease profile, for each disease in the module (2) hierarchical clustering to 

group together module diseases displaying similar profiles across all cytokines and 

hypothesizing that an association should exist between currently unlinked cytokine-disease 

pairs within highly linked clusters. Therefore, we scanned clusters, confined to all possible 

combinations of column and row dendrogram branches, and derived cytokine-disease 

association candidates for “gaps” in clusters with at least 30% of linked cytokine-disease 

pairs. We scored the resulting candidates by counting the number of clusters that predicted 

the particular association to be novel.
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Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

Data of the inter-cellular communication network and disease context is hosted on ImmPort 

with periodic updates and available for query and download with standardization to 

ontologies at www.immunexpresso.org.

Code availability

Analysis code available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. immuneXpresso assembles a system level directional inter-cellular interaction network
(a) Pubmed abstracts were mined to identify cell, cytokine and context entities and map 

them to ontologies. Semantically linked cells, cytokines and verbs were extracted and 

characterized to assign interaction directionality, polarity, and the biological function this 

interaction yields. Results were scored and filtered to yield a global machine-readable view 

of immune inter-cellular signaling across a large breadth of conditions. (b) Evaluation of 

cell-cytokine relation extraction precision,. 590 randomly selected evidence records (i.e., 

relations extracted from individual sentences) were evaluated by a human curator, post 

machine learning based filtering, to assess entity recognition performance, cell-cytokine 

relation extraction, including detection of verb, directionality, polarity and, where relevant. 
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biological function. (c) Venn diagram depicting the precision (90%) of literature-derived 

cell-cytokine interactions (i.e. cell-cytokine-directionality triples) and coverage (76%) of the 

manually annotated reference book29. (d) Evaluation of precision and recall of co-

occurrence based relation extraction. Cell-cytokine pairs, linked by co-occurrence within 

sentence boundaries, are filtered by their evidence strength (x-axis). Coverage of relations 

derived from the reference book and from the semantic parsing approach (“iX interactions”) 

is shown, as well as the percentage (or amount as a dotted line, right y-axis) of co-occurring 

pairs appearing in none of the resources above, likely reflecting false positive rate.
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Figure 2. System level characteristic of inter-cellular information flow in the literature-derived 
network
(a) Sankey plots showing bi-partite information flow between cellular secretion of cytokine 

families and those cytokine families affecting a variety of cell subsets. (b) A sorted 

histogram illustrating the number of unique cell types affected by each of the 144 cytokines 

(incoming interactions). Second y-axis displays the information as a cumulative sum (blue 

line). 50% of incoming edges are attributed to only 23 (16%) cytokines (grey area). 

Cytokine family classification appears as coloring of individual members along x-axis. (c) 
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Scatter plot highlighting the strong correlation in cytokine degrees between incoming and 

outgoing directions (n=145 cytokines, r=0.86 pval <0.001 Pearson’s).
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Figure 3. Immune inter-cellular network knowledge is biased and far from saturated
(a) Unequal information gain within cytokine families. Representative plot using the CC 

chemokine subfamily of the incoming interaction knowledge gain over time, in a 5-year 

window from initial date of the chemokine’s identification in the text. Colored lines 

represent individual chemokine family members and display the total number of distinct cell 

types known as interacting with the chemokine by the respective year (x-axis). (b) The 

number of distinct cell types a cytokine is known to act on (x-axis) is positively correlated 

with the number of new cytokine-cell interactions added in recent years (y-axis; n=134 

cytokines, r=0.76 pval<0.001, Pearson’s), yet up-and-coming hubs, such as IL22, are 

identifiable as well. (c) Cytokine degrees in the iX knowledgebase (incoming interactions, 

restricted to hematopoietic cells) are positively correlated with those derived from the 

characterization of cytokine receptors on cells in the ImmProt project34 (n=82 cytokines 

present in both datasets, ρ=0.38 pval<0.001, spearman). Cytokines below the line suggest 

putative currently unknown interactions.
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Figure 4. Prediction and validation of cell-cytokine interactions
(a) Diagram illustrating three different methodologies for predicting novel cell-cytokine 

interactions: (1) by unsupervised clustering and filling in of missing ‘gaps’ (2) through 

supervised analysis of cytokine families (3) by comparison to measured external mRNA or 

proteome data. (b) Manual evaluation of the predicted high-confidence interactions using 

free literature search. (c) IL7 production by monocyte, dendritic cell and CD8 T cell subsets 

of freshly isolated PBMC’s from 2 healthy donors (PMA/ionomycin, 4hrs) by intra-cellular 

cytokine staining (CyTOF).. (d) Heatmap summary of pNFKB and pSTAT5 phosphorylation 

in CD8+ effector memory cell subsets, triggered by IL34 stimulation (100ng/ml, 15min) of 

freshly isolated human PBMCs.
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Figure 5. Global interaction profile analysis across diseases
(a) Diagram illustrating the methodology of disease similarity module extraction: for 188 

top-cited diseases, papers co-mentioning the disease either with cytokines or with 

hematopoietic cells were repeatedly sampled to identify cells and cytokines mentioned 

frequently in the particular context. Those entities, together with their potential interactions 

(as reported in the overall iX knowledgebase), form disease signaling profiles, used to build 

a global disease similarity map. (b) The immune-centered global map of disease similarities 

and differences, assembled in an unsupervised manner for 188 top-cited diseases. Nodes in 
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graph correspond to diseases (colored by their known clinical disease categories), edges to 

significant correlation between diseases. Modules are colored by the most abundant 

SNOMED category, demonstrating large overlap between module separation and clinical 

classification. (c) iX extracts context-specific cells (purple), cytokines (orange) and 

interactions for a variety of conditions (here Diabetes mellitus type 2, as reported in the 

overall iX knowledgebase), providing a global view of the condition-specific immune 

signaling and emphasizing its key players. In red are cells and cytokines forming the 

sampling-based disease immune profile. (d) Circos plot showing enriched module signatures 

(cell, cytokine and interactions) compared to background for cardiovascular and metabolic 

syndrome diseases (Modules 2 and 15).
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Figure 6. iX informs less studied diseases
(a) Heatmap showing cytokine mention frequencies across 188 top-cited diseases. Color 

scale indicates the median percentage (log2-transformed) of paper hits for each cytokine 

(rows) in the context of each disease (columns, sorted by the unsupervised module 

classification), across 200 paper sampling iterations. An unequal immune system utilization 

is observed with respect to three cytokine classes: backbone cytokines highly observed 

across most modules, module specific and those specifically enriched in select diseases. 

Class examples highlighted in red. Annotation tracks on left indicate cytokine degrees. (b, c) 
CCL8 is differentially expressed in psoriasis. Shown is the expression of CCL8 in healthy 

skin versus lesion biopsies of psoriatic patients at baseline (paired two-sided Wilcoxon 
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signed rank test, p-val=2.47e-05 and 1.04e-07, n=24 and n=28 independent samples). Box-

plot elements: center line, median; box limits, first to third quartile (Q1 to Q3); whiskers, 

extend to the most extreme data point within 1.5 × IQR from the box; data points.
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