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Ovarian cancer (OV) is a considerable threat to the health of women due to its

complex mechanisms and atypical symptoms. Various currently available treatments fail

to substantially increase the survival rate of OV patients. The tumor microenvironment

(TME) is gaining attention due to its role in tumorigenesis and tumor progression.

This study mainly investigated the immune characteristics of OV by CIBERSORT and

MCP-counter. We reclassified OV into four TME cell subtypes with different prognoses

and evaluated the infiltration of the cells in each subtype. The immune risk of diverse

subtypes was evaluated based on the immunoscore calculated by Cox regression

analysis. The molecular mechanisms and hallmark pathways of the four subtypes were

analyzed. The results indicate that the immune procancer cell subtype is associated with

the worst prognosis, closely related to the high immune risk group, and characterized

by low expression of checkpoints and MHC class I and II molecules, high expression

of hypoxia-related genes, high enrichment of the EMT and hypoxia pathways, and

low enrichment of the DNA repair and interferon α response pathways. This study

contributes to the investigation of immune mechanisms and identifies more effective

targets for immunotherapy of OV.
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INTRODUCTION

Ovarian cancer is a highly lethal malignancy that ranks as the seventh leading cause of female
cancer worldwide; there will be approximately 21,750 new cases of OV in 2020 (National Cancer
Institute, 2020). Therefore, OV is a considerable threat to the health and lives of women.
Current treatments for OV mainly involve a combination of surgery and chemotherapy based on
platinum and paclitaxel. Studies of OV have validated a number of new therapies (targeted therapy
and immunotherapy) (Lamichhane et al., 2017; Reislander et al., 2019). However, due to drug
resistance and recurrence of OV, the mortality of OV remains higher than that of all gynecological
malignancies, and the 5-year survival rate of OV has kept at approximately 45% (Ghisoni et al.,
2019). Therefore, new perspectives and in-depth investigation of OV are needed.

The tumor microenvironment (TME) is the complex environment of a tumor that is mainly
composed of the vasculature, cells, and extracellular matrix (Henke et al., 2019; Baghban et al.,
2020). Fibroblasts, endothelial cells, and immune cells (lymphocytes, monocytes, macrophages,
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granulocytes, mast cells, etc.) are the major cellular components
of the TME (Quail and Joyce, 2013; Guo and Deng, 2018;
Peltanova et al., 2019); these cells are known as tumor
microenvironment cells (TME cells). TME cells closely interact
with the tumor cells that consequently influence the local
immune response and progression of the tumors. Studies on TME
in OV have identified multiple TME cells that are relevant to the
prognosis of OV (Drakes and Stiff, 2018). However, the majority
of publications on TME cells in OV are based on only a single or
a few cell types and rarely integrate all TME cells to define their
relationship with OV.

Therefore, we aimed to analyze the immune characteristics
and roles of TME cells in OV in detail. An important step in our
study was to link the RNA-seq data to TME cells by CIBERSORT
(Drakes and Stiff, 2018) and MCP-counter (Becht et al., 2016).
CIBERSORT is the most frequently cited immune cell infiltration
analysis tool based on the principle of deconvolution linking
the expression of 547 genes to 22 types of immune cells. MCP-
counter includes 10 cell types, and fibroblasts and endothelial
cells were used in our study because all other cell types in MCP-
counter overlap with the cell types of CIBERSORT. Thus, our
study used these two algorithms to estimate the proportion of
TME cells to reclassify OV into four new subtypes; then, the TME
cell infiltration pattern and immune risk of each subtype were
assessed, and relevant molecular mechanisms were investigated.

MATERIALS AND METHODS

Acquisition of Gene Profiles and Clinical
Datasets of OV
The Cancer Genome Atlas (TCGA) RNA-seq data and clinical
characteristics of OV were obtained from UCSC Xena1. The
format of the TCGA RNA-seq data was fragments per kilobase
million (FPKM). The primary solid tumor samples with the
detailed FIGO stage, histological grade, and overall survival
(OS) were selected. To validate the results, two additional raw
datasets GSE26193 and GSE9891 were downloaded from the
Gene Expression Omnibus (GEO)2.

OV Data Processing
The Ensembl IDs of the TCGA data were converted to gene
names by the annotation dataset downloaded from the Ensembl
genome browser3, and the probe IDs in the GEO data were
processed using the relevant platform dataset. If multiple
Ensembl or probe IDsmatched a gene name, the average of all IDs
was used to calculate the expression value of a gene. The FPKM
OVdata of TCGAwere transformed to the transcripts permillion
(TPM) data format because TPM can be used to transform the
RNA-seq expression data similar to the gene expression data
(Vera Alvarez et al., 2019). The GEO OV data were normalized
using the mas5 algorithm in the Affy R package (Gautier et al.,
2004). All data used in the study were in a non-log format.

1http://xena.ucsc.edu
2https://www.ncbi.nlm.nih.gov/geo
3https://uswest.ensembl.org

Evaluation of the Proportion of TME
Cells in OV
CIBERSORT andMCP-counter were used to transform the RNA-
seq data into the proportion of TME cells. The TCGA data were
reformatted as required for CIBERSORT4. LM22 was selected as
the signature file, and 1,000 permutations were used to acquire
22 immune cell fractions in 359 OV samples; the sum of the
22 immune cell fractions of each sample was assumed to be 1.
The p-values of all TCGA samples were calculated, and P < 0.05
indicated the predominance of the immune cells in the sample.
Screening of the results based on P < 0.05 yielded 172 TCGA
samples with a certain fraction of 21 immune cell types (one cell
type was removed because the fraction was zero in the results).
The MCP-counter R package was used to evaluate the expression
of two additional TME cell types, fibroblasts and endothelial cells.
Then, the z-score was used to normalize the data acquired by two
separate methods, and the results were combined to finally obtain
the proportion of 23 TME cell types in 172 OV samples.

Clustering Methods
To determine a better classification method for investigating OV,
consensus clustering of 172 OV data samples was performed
by the ConsensusClusterPlus R package (Wilkerson and Hayes,
2010). The optimal inflection point (k = 4) of the elbow plot
was used to define the best cluster number of OV samples.
Finally, four new OV subtypes were defined based on TME
cells; these subtypes were different from the stage or grade.
Additionally, 23 TME cell types were also clustered into four
groups by hierarchical clustering based on Euclidean distance
and Ward’s linkage.

Cox Regression Analysis of TME Cells
Univariate Cox regression analysis of the proportion of 23 TME
cell types and OS was performed for each sample. Six TME cell
types were selected according to the hazard ratio and p-value
of the Cox regression results to generate an immune risk model
based on linear regression (Hijazi et al., 2016).

immunoscore =

n∑

i=1

βjExp(celli)

In the model, Exp(celli) corresponds to the proportion of TME
celli and βj corresponds to the regression coefficient of celli
obtained by the Cox regression analysis. Each sample was
assigned an immunoscore based on the model, and the median
of all immunoscores was defined as a cutoff value to divide the
OV data into the high and low immune risk groups.

Survival Analysis
Kaplan-Meier analysis was used to determine the relationship
between the four subtypes and OS and to evaluate the prognostic
significance of various subtypes by the survival R package (Lin
and Zelterman, 2002). The survival analysis of the two immune
risk groups was performed to determine the OS differences
between the groups.

4https://cibersort.stanford.edu
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Gene Set Variation Analysis
Gene Set Variation Analysis (GSVA) was performed by the
GSVA R package (Hanzelmann et al., 2013), which was used
to calculate the GSVA score of each hallmark pathway in 172
TCGA OV samples. Each hallmark pathway was characterized
by exclusive gene sets downloaded from GSEA5. GSVA converted
the expression of the gene sets into the GSVA score of
the corresponding hallmark pathway in each sample. A high
GSVA score corresponds to the high enrichment of a hallmark
pathway in a sample.

Statistical Analysis
Two groups were compared using Student’s t-test, and
multivariate groups were compared by Kruskal-Wallis test.
The receiver operating characteristic curve (ROC curve)
was used to evaluate the sensitivity and specificity of the
immunoscore-based prediction of OS. The area under the curve
(AUC) was calculated by the timeROC R package (Blanche et al.,
2013) to acquire the best predicted indicator. All analyses were
implemented in R 3.6, and all p-values in the analyses were
considered significant at P < 0.05.

RESULTS

The Immune Landscape of OV Identified
Four New Cell Subtypes
A total of 359 primary solid tumor samples of OV with
detailed clinical information were downloaded from the TCGA
dataset (Table 1). The gene expression data of these samples
were converted to the ratio of 22 immune cell types by
CIBERSORT filtered by the p-value to obtain the results (P< 0.05
corresponding to a high proportion of immune cells compared
to non-immune cells in the tumor tissue; Newman et al.,
2015). Two additional cell types (fibroblasts and endothelial
cells) were acquired using the MCP-counter R package. As
a result, the final data included the proportion of 23 TME
cell types in 172 OV samples (CD4+ naïve T cells were
removed because the proportion of this cell type was zero).
Detailed clinical characteristics and cell proportions are listed in
Supplementary Table S1.

To analyze the immune landscape of OV, consistent clustering
was used to divide OV samples on the basis of the proportion
of the 23 TME cell types. As a result, four new cell subtypes of
OV were identified and named according to the functions of the
cells: the immune procancer cell subtype (IPCCS, n = 52) (Kalluri
and Zeisberg, 2006; Yuan et al., 2017; Lee et al., 2019), immune
killer cell subtype (IKCS, n = 62) (Uzhachenko and Shanker,
2019), immune proantibody cell subtype (IPACS, n = 24) (Oracki
et al., 2010), and immune helper cell subtype (IHCS, n = 34)
(Banchereau and Steinman, 1998; Crotty, 2019; Figure 1A and
Supplementary Table S2). The OS analysis indicated that IPCCS
was associated with the poorest prognosis, and the other three
subtypes were associated with similar or better prognosis than

5https://www.gsea-msigdb.org

TABLE 1 | The clinical features of 172 TCGA OV samples.

Clinical feature Variable n

Age <58 78

≥58 94

Stage I 1

II 12

III 137

IV 22

Grade 1 1

2 17

3 153

X 1

Event Alive 82

Dead 90

Lymph node metastasis Yes 59

No 18

Not available 95

Residual tumor diameter No macroscopic 30

1–10 mm 77

11–20 mm 13

>20 mm 29

Not available 23

The total number of each clinical feature is 172.

IPCCS (P < 0.001, Figure 1B). The landscape of TME cell
infiltration in OV was used to assess the proportion of each cell
type and detailed clinical features of 172 TCGA OV samples
(Figure 1C). Therefore, IPCCS may be a new OV type that can
predict prognosis regardless of clinical characteristics. TME cell
types included in IPCCS were different from those in three other
subtypes (Figure 1C). Thus, additional investigation of IPCCS is
needed to identify the mechanism of association with poor OS.

Different Cell Subtypes Manifest Specific
TME Cell Infiltration Patterns
Significant discrepancies in IPCCS and the other three subtypes
were identified in the case of 20 out of 23 TME cell types
(Figure 2A and Supplementary Figure S1). M0 macrophages,
M2 macrophages, activated mast cells, neutrophils, endothelial
cells, and fibroblasts were considerably enriched in IPCCS, but
a relatively low proportion of M1 macrophages and CD8+ T
cells was found. IKCS was characterized by a high proportion
of activated NK cells, CD8+ T cells, and regulatory T cells
(Tregs). IPACS included a high number of naïve B cells
and plasma cells. Activated dendritic cells, follicular helper
T cells, and resting memory CD4+ T cells demonstrated
high infiltration in IHCS, and Tregs were characterized by
low infiltration.

Not all p-values corresponding to M2 macrophages were
significant; however, the expression of M2 macrophages was
high in IPCCS similar to that of M0 macrophages (Figure 2A).
The proportion of M2 and M1 macrophages demonstrated an
opposite trend. This phenomenon confirmed that macrophage
polarization to M1 and M2 may have different effects on the
occurrence and development of cancer (Cheng et al., 2019).
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FIGURE 1 | Division and analysis of four new cell subtypes in OV. (A) A clustergram of OV by the ConsensuSubtypePlus R package (k = 4). (B) The survival curves of

four subtypes of OV. (C) The heatmap of 172 TCGA OV samples with four subtypes and clinical features.

CD8+ T cells and NK cells destroy cancer cells, play a critical role
in immune effector activity and are advantageous to the outcome
of multiple tumors (McGrail et al., 2018). These observations
are similar to our findings that CD8+ T cells and activated NK
cells were low expression in IPCCS, which is associated with
the worst prognosis of all four subtypes. Thus, CD8+ T cells
and activated NK cells may kill tumor cells in OV, and a new
cell subtype identified by us can predict the prognosis of OV
based on the proportion of TME cell types. Cancer-associated
fibroblasts (CAFs) are important TME cells that release factors
and boost angiogenesis leading to poor tumor outcome and
resistance to treatment (Gascard and Tlsty, 2016). Our data
indicated that CAFs were considerably increased in IPCCS, which
was associated with the worst prognosis.

The distribution of TME cell types in relation to various
OV clinical features (FIGO stage, histological grade, lymph
node metastasis, and residual tumor diameter) was investigated.

The results indicated that neutrophils and fibroblasts were
distributed in stages II, III, and IV of OV (Figure 2B). These
two cell types have completely opposite trends. Lee et al. (2019)
reported that an increase in neutrophils in the premetastatic
omental niche could be stimulated in early stage of OV. Zhao
et al. (2017) showed that fibroblasts are characterized by high
expression of CXCL 14 that is overexpressed in advanced-stage
OV. Activated mast cells were present in variable proportions
in lymph node metastasis of OV (Figure 2C). Crivellato et al.
(2008) showed that mast cells can stimulate tumor angiogenesis
and lymphangiogenesis and that the inhibition of mast cells
decreased the lymph node metastasis. At the same time, naïve
B cells and endothelial cells had different distribution in various
residual tumor diameters (diameter of residual tumor in the
pelvic and abdominal cavity after surgical treatment of OV)
(Figure 2D). Cecilia S. Leung et al. demonstrated that endothelial
cells can promote tumor progression and chemoresistance
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FIGURE 2 | The distribution of TME cells in four subtypes and different clinical features of OV. (A) The proportion of each TME cell type in four subtypes of OV.

(B) The distribution of neutrophils and fibroblasts in stages II, III, and IV of OV. (C) The distribution of activated mast cells in the lymph node metastases of OV.

(D) The distribution of naïve B cells and endothelial cells in various residual tumor diameter of OV (statistical comparison between the two groups was performed by

Student’s t-test, and multivariate groups were compared by Kruskal-Wallis test. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

(Leung et al., 2018) to subsequently increase the probability of
residual tumor.

Certain Distinctive TME Cells Contribute
to Diverse Immune Risk Grouping of Cell
Subtypes
Given that TME cells are closely associated with the tumor, we
generated amodel that used TME cells to predict the immune risk

of OV. Cox regression analysis identified six TME cell types (M1
macrophages, plasma cells, follicular helper T cells, neutrophils,
fibroblasts, and M0 macrophages) with P < 0.05 according to
the results of the analysis. These six TME cell types were used to
establish an immune risk model of OV, and the results are shown
as a forest plot (Figure 3A). The risk model included the results
of the fraction levels multiplied by the regression coefficient of
each of the six cell types. The immunoscore of 172 OV samples
was calculated, and the median was used to separate the samples
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FIGURE 3 | Calculation and application of the immunoscore. (A) The Cox regression analysis of 23 TME cell types of OV. (B) The survival curves of the immunoscore

in OV. (C) The distribution of the immunoscore in four subtypes of OV. (D) The number of four subtypes of OV samples in the high and low immunoscore groups

(statistical comparison between the multivariate groups was performed by Kruskal-Wallis test. *P < 0.05, ****P < 0.0001).

into the high and low immune risk groups (Supplementary

Table S3). The Kaplan-Meier survival analysis of these two
groups demonstrated considerable differences, and the high
immune risk group was associated with poor OS (Figure 3B).

Comparison of the immunoscores of four subtypes indicated
that IPCCS had the highest immunoscore and that the
immunoscore of the four subtypes was gradually and slightly
decreased (Figure 3C). This result is in agreement with the data of
our previous survival analysis. IPCCS had the highest proportion
in the high immune risk group and the lowest percentage in
the low immune risk group, which was opposite to that of
IPACS and IHCS (Figure 3D). The results indicated that IPCCS
had a positive correlation with the high immune risk group. In
contrast, IPACS and IHCS were positively correlated with the low
immune risk group.

Different Subtypes Have Characteristics
of Various Molecular Mechanisms and
Pathways
To analyze the molecular mechanisms corresponding to
various subtypes, current literatures were searched for data on

chemokines and chemokine receptors (Nagarsheth et al., 2017),
immune checkpoints (Huang et al., 2017), MHC class I and
II molecules (Johnson et al., 2018), and hypoxia-related genes
(Eustace et al., 2013). Initially, the expression of chemokines and
chemokine receptors was compared in the four subtypes and two
immune risk groups. The results showed that CXCL8, CXCL5,
CXCL3, CXCL12, CXCR1, and CXCL1 were expressed at high
levels in IPCCS and the high immune risk group (Figure 4A and
Supplementary Figure S2A). Certain studies demonstrated that
these chemokines or chemokine receptors are associated with the
aggregation and activation of macrophages (Qin et al., 2017; Roca
et al., 2018), neutrophils (De Filippo et al., 2013), and fibroblasts
(Feig et al., 2013; Naito et al., 2019), which were also enriched in
IPCCS; these factors may in part account for different TME cell
infiltration patterns.

The majority of immune checkpoints were expressed at low
levels in IPCCS and the high immune risk group (Figure 4B

and Supplementary Figure S2B), especially including well-
known PD-1 (PDCD1), PD-L1 (CD274), LAG-3, and CTLA-4
molecules, similar to those described in a study of Xiao et al.
(2019). Thus, checkpoints do not play an important role in the
progression of OV in IPCCS. Hence, we hypothesized that the
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FIGURE 4 | The expression of various molecules and hallmark pathways in the four subtypes. (A) The expression of chemokines and chemokine receptors in the

four subtypes. (B) The expression of immune checkpoints in the four subtypes. (C) The expression of MHC class I and II molecules in the four subtypes. (D) The

expression of hypoxia-related genes in the four subtypes. (E) The GSVA score of the hallmark pathways in the four subtypes (statistical comparison between the

multivariate groups was performed by Kruskal-Wallis test. ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

effect of immunotherapy with checkpoint blockers in IPCCS
may not be as pronounced as that in the other subtypes. The
expression of most MHC class I and II molecules was also
low in IPCCS and the high immune risk group (Figure 4C

and Supplementary Figure S2C). Low proportion of various T
cells in IPCCS may suggest that T cells cannot proliferate and

recognize tumor cells due to low expression of MHC class I
and II molecules.

Most hypoxia-related genes were expressed at high levels in
IPCCS and the high immune risk group indicated a certain degree
of hypoxia in the environment of OV cells (Figure 4D and
Supplementary Figure S2D). Bhandari et al. (2019) estimated
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FIGURE 5 | Verification of the immunoscore in independent cohorts. (A) The survival curves of immunoscore in GSE9891. (B) The survival curves of immunoscore in

GSE63885. (C) The survival curves of immunoscore in TCGA OV. (D) The ROC curves of the clinical features and immunoscore in TCGA OV (numbers after the

clinical features and immunoscore represent the corresponding AUC).

that OV has a higher hypoxia score, and hypoxia contributes to
deterioration and chemotherapy resistance of OV (Dorayappan
et al., 2018). Therefore, hypoxia may influence the proportion of
TME cells and lead to poor prognosis of OV.

To determine the differences in the enrichment of hallmark
pathways between various subtypes and immune risk groups,
GSVA of the hallmark pathways was performed using 172
TCGA OV data. The GSVA score of the hallmark pathways
demonstrated that certain pathways (such as EMT, TNFα
signaling via NF-kB, hypoxia, angiogenesis, and notch signaling)
were highly enriched in IPCCS and the high immune risk group
(Figure 4E and Supplementary Figure S2E). These well-known
pathways are known to be related to cancer progression (Chi
et al., 2006; Takebe et al., 2014; Ottevanger, 2017; Markowska
et al., 2017; Yang et al., 2018). In contrast, some pathways (such
as DNA repair, spermatogenesis, oxidative phosphorylation,

interferon γ response, and interferon α response) had negative
effects in IPCCS and the high immune risk group compared
to those in other subtypes and the low immune risk group
(Figure 4E and Supplementary Figure S2E). Differential
enrichment of these pathways may be used as an indicator of the
mechanism of differences in immune infiltration and to improve
individualized treatment of the patients with various subtypes
and immune risks.

Verification of Immune Risk Grouping in
Independent Cohorts
To confirm the prognostic accuracy of immune risk grouping, the
model was applied in two independent GEO cohorts (GSE63885
and GSE9891) and the entire TCGA cohort (n = 359). The same
six TME cell types were used to compute the immunoscore of
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each sample in the GEO and TCGA cohorts, and each cohort was
divided into the high and low immune risk groups according to
the median immunoscore (Supplementary Table S4). We found
significant differences in the OS of the high and low immune
risk groups in the GEO and TCGA cohorts (Figures 5A–C). The
survival analysis indicated that the high immune risk group had
worse prognosis similar to our previous results.

The sensitivity and specificity of the clinical features and
immunoscore in predicting OS were evaluated in 172 TCGA
samples. The results of the ROC curves analysis indicated that
the AUC of the immunoscore was gradually increased from 1
to 5 years (Supplementary Figure S3), and the immunoscore
had the largest AUC compared to those of all clinical features
(Figure 5D). Thus, the immunoscore had the highest associations
with predicted OS in the TCGA OV samples. In summary, the
immune risk grouping developed in the present study can be a
powerful means to evaluate the prognosis of OV.

DISCUSSION

Previous tumor studies have focused on aberrant genes,
epigenetics, or non-coding RNA. Subsequent studies have
gradually revealed associations between inflammation, immune
cells, and the TME and tumorigenesis and tumor development.
The effect of the TME on tumors is a complex and dynamic
process. The proportion and activation status of TME cells
differentially influence the proliferation, invasion, and metastasis
of tumor cells (Quail and Joyce, 2013). Therefore, we investigated
the effect of the TME on OV by a new approach designed in
the present study.

Current studies on the TME of OV are based on a single
or a few cell types; the expression of these cell types depends
mainly on detecting several specific gene markers. Our study
defined 21 TME cell types by CIBERSORT and 2 TME cell types
by MCP-counter thus expanding the data coverage of our study
of the TME of OV. Each cell type had dozens of representative
genes that can increase the accuracy of the estimation of their
expression. MCP-counter was selected mainly because it includes
fibroblasts and endothelial cells, which have been shown to play
key roles in the occurrence and development of cancer (Maishi
and Hida, 2017; Thuwajit et al., 2018).

CIBERSORT and MCP-counter analyses of the TCGA OV
data yielded the proportions of 23 TME cell types of OV.
A classification diagram was used to divide all OV data into four
subtypes based on the proportion of 23 TME cell types indicating
that TME of OV has four main categories. These subtypes
were different from the routine stage and grade characteristics,
and each subtype had unique cell types that may account for
different prognosis of OV. The Cox regression analysis of these
cell types was used to select six TME cell types (P < 0.05) to
construct an immune riskmodel. Themodel was used to calculate
the immunoscore and evaluate the immune risk in each OV
sample. The results indicated that different cell subtypes of OV
are associated with variable immune risk. IPCCS was associated
with high immune risk and the worst prognosis. In contrast,
IPACS and IHCS were associated with low immune risk and

better prognosis. The data indicated that the model can reliably
distinguish differences in the survival time of the patients in
the high and low immune risk groups; the high immune risk
group was associated with poor prognosis. Consistent results
were obtained by validating the model using the GEO database.
The ROC curve analysis also showed that the immunoscore had
higher sensitivity and specificity in the prediction of prognosis
compared with that of other clinical features.

Previous studies demonstrated that chemokines and
chemokine receptors play positive roles in inflammation
and oncogenesis by regulating the trafficking of various
inflammatory cells (Bian et al., 2019). Immune checkpoints
play an important role in TME and can be potential targets for
cancer treatment (Toor et al., 2020). MHC I and II molecules
can present protein fragments to T cells that are essential for
cell-mediated immunity and tumor immunity (Rock et al., 2016;
Alspach et al., 2019). At the same time, hypoxia is frequent in
TME and can change the components of TME leading to poor
prognosis of cancer (Jing et al., 2019). Therefore, these genes
are related to TME and have to be considered in the studies of
immune characteristics of OV. The present study evaluated the
expression of the chemokines, chemokine receptors, immune
checkpoints, MHC class I and II molecules, hypoxia-related
genes, and enrichment of the hallmark pathways in four subtypes
to determine the mechanisms of different immune infiltration
patterns. The results indicated that differences in TME cell
infiltration in the subtypes were closely related to the expression
of the chemokines and chemokine receptors because of the
characteristics of these molecules that induced directional
migration of immune cells (Sokol and Luster, 2015). High
expression of the hypoxia-related genes in IPCCS was caused by
hypoxic conditions in the TME (Jing et al., 2019). Low expression
of immune checkpoints (such as PD-1, LAG-3, CTLA-4) which
mainly exist on the surface of T cells (Dyck and Mills, 2017) in
IPCCS mainly due to the lower proportion of various T cells in
this subtype than the other three subtypes (IKCS, IPACS, and
IHCS). Studies stated that checkpoints blockade might as new
targets for cancer immunotherapy (Feng et al., 2019). Therefore,
we could speculate that the therapy of checkpoints blockade
might have better effects in the other three subtypes of OV.
Numerous studies demonstrated that a number of pathways
are linked to the progression and prognosis of OV (Wang
et al., 2017; Garsed et al., 2018; Guo et al., 2018; Zeng et al.,
2018). We compared differential enrichment of the hallmark
pathways in four subtypes, and the results indicated that the
mechanisms of the action of different cell subtypes are related to
different pathways.

Although the OV dataset used in the present study was
downloaded from TCGA, the number of OV samples was cut
by almost 50% by CIBERSORT. In the future, the collection
of additional clinical data on OV, corresponding clinical
characteristics, and survival time is needed to increase the
accuracy of our study. Our findings may require verification in
additional investigations of TME cells and pathways. Differences
in gene mutations, expression of ncRNAs, copy number
variations, and other factors in the four subtypes require
further studies.
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CONCLUSION

In summary, our study reclassified OV into four subtypes
(IPCCS, IKCS, IPACS, and IHCS) according to TME cell types
and demonstrated infiltration of exclusive cell types in each
subtype of OV. Then, six TME cell types were selected by Cox
regression analysis to calculate the immunoscore that could assess
the immune risk and predict the prognosis of OV. The results
showed that IPCCS was associated with high immune risk and
poor prognosis. Finally, the analysis of themechanisms of various
subtypes of OV was performed, and the results may assist in
identifying effective therapeutic targets for OV.
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