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Abstract: The discovery of immune checkpoint proteins such as PD-1/PDL-1 and CTLA-4 represents
a significant breakthrough in the field of cancer immunotherapy. Therefore, humanized monoclonal
antibodies, targeting these immune checkpoint proteins have been utilized successfully in patients
with metastatic melanoma, renal cell carcinoma, head and neck cancers and non-small lung cancer.
The US FDA has successfully approved three different categories of immune checkpoint inhibitors
(ICIs) such as PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 inhibitors
(Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab). Unfortunately,
not all patients respond favourably to these drugs, highlighting the role of biomarkers such as
Tumour mutation burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ, and ECM in
predicting responses to ICIs-based immunotherapy. The current study aims to review the literature
and updates on ICIs in cancer therapy.
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1. Introduction

In recent years, considerable progresses have been achieved particularly in the field of
personalised medicine, and cancer therapeutics [1]. Immunotherapy such as adoptive cell
transfer (ACT), and immune checkpoint inhibitors (ICIs), is a type of cancer therapy, taking
advantage of immune system components to fight tumour cells [2]. Immunotherapy alone
or in combination with conventional treatments, such as radiotherapy and chemotherapy
has achieved considerable success as a standard treatment in a number of cancers [3].
Programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) are
co-inhibitory receptors expressed on the surface of T cells to negatively regulate T cell-
mediated immune responses; however, tumour cells exploit these inhibitory molecules
in order to induce tumour tolerance and T cell exhaustion [2]. Accordingly, ICIs such as
anti-CTLA-4, anti-PD-1, and anti-PD-L1 can attach to these co-inhibitory receptors, thereby
reactivating the immune response against tumour cells [4]. Three different groups of
ICIs, including PD-1 inhibitors (Nivolumab, Pembrolizumab, and Cemiplimab), PDL-1 in-
hibitors (Atezolimumab, Durvalumab and Avelumab), and CTLA-4 inhibitor (Ipilimumab)
have been approved by the US Food and Drug Administration (FDA) for the treatment
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of various types of cancer [5]. Nevertheless, only a subset (20–40%) of patients benefit
from this therapy, highlighting the growing need to develop predictive biomarkers [6].
Tumour mutational burden (TMB), PDL-1 expression, microbiome, hypoxia, interferon-γ,
extracellular matrix (ECM) and molecular and cellular characterization within the tumour
microenvironment (TME) are all related to immunotherapy outcomes [2]. In addition,
patients with advanced hepatocellular carcinoma (HCC) showed a poor overall survival
(OS) to novel treatments, highlighting the role of biomarkers in predicting responses to
ICIs [7]. Furthermore, it was reported that combination therapy of ICIs plus tyrosine kinase
inhibitors (TKIs) in patients with metastatic renal cell carcinoma (mRCC) were more bene-
ficial compared to sunitinib monotherapy in these patients [8]. Therefore, analysing the
gene expression and spatial organization of the complex and heterogeneous tumours and
their microenvironment could aid in the discovery of predictive biomarkers of response to
immunotherapy [9–12]. The current study aims to study the recent advances in ICI-based
immunotherapy and related biomarkers in predicting responses to immunotherapy.

2. Immune Checkpoint Inhibitors (ICIs)

ICIs are cancer immunotherapies that boost anti-cancer immune responses by targeting
immunologic receptors on the surface of T-lymphocytes (Table 1) [13]. Therefore, ICIs
were considered a novel treatment option in 2011 with the approval of ipilimumab [14],
revolutionizing cancer treatment. These medications allowed for long-lasting results with
a lower toxicity profile in some circumstances [15]. In contrast to traditional therapeutic
strategies, ICIs work by reinvigorating the host immune system to fight tumour cells [16].
Immune checkpoints maintain a balance between pro-inflammatory and anti-inflammatory
signals under homeostatic conditions [16]. These immunological checkpoints are a group
of inhibitory and stimulatory pathways that influence immune cell activity [17]. Antibodies
targeting immune inhibitory receptors, such as CTLA-4, PD-1, and PD-L have been the most
widely used immunotherapeutic agents in the last decade [4]. Several antibodies and small
compounds targeting various immune checkpoint proteins are in clinical development
including B7H3, CD39, CD73, the adenosine A2A receptor, and CD47 [18].

Table 1. The list of ICIs with the cancer type indication.

Drug Target Approval FDA-Approved Indications References

Nivolumab PD-1 March 2015 Stage III-B or IV Squamous NSCLC [19]

Pembrolizumab PD-1 October 2016 Stage IV nonsquamous and
squamous NSCLC [20]

Atezolizumab PD-L1 October 2016 Stage III-B or IV nonsquamous and
squamous NSCLC [21]

Cemiplimab PD-1 September 2018 metastatic cutaneous squamous
cell carcinoma [22]

Ipilimumab CTLA-4 August 2010 stage 3 or 4 malignant melanoma [23]

Avelumab PD-L1 March 2017 histologically confirmed metastatic
Merkel cell carcinoma [24]

Durvalumab PD-L1 February 2016 Stage III non-small-cell lung
cancer (NSCLC) [25]

Pembrolizumab + cis/carboplatin
+ pemetrexed - August 2018 Nonsquamous NSCLC [26]

Pembrolizumab +
paclitaxel/nab-paclitaxel +
carboplatin

- October 2018 Stage IV Squamous NSCLC [27]

Atezolizumab + carboplatin +
paclitaxel + bevacizumab - December 2018 Stage IV NSCLC [28]

Recent studies have identified several new immune checkpoint targets, such as lym-
phocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3
(TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of
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T cell activation (VISTA), and so on [29]. These experiments indicated that the blockade of
a single immune checkpoint may lead to compensatory upregulation of other checkpoint
receptors in TME [30]. The similar compensatory mechanism between TIM-3 and PD-1 was
observed in lung cancer [31].

2.1. PD-1 Inhibitors

PD-1 is an inhibitor receptor, playing a key role in programmed death signaling in
order to regulate T- cell mediated responses [32]. PD-1 engagement can reduce cytokine se-
cretion such as IL-2, IFN-γ, and TNF-α as well as cell proliferation through interfering with
CD28-costimulatory signalling pathway [33]. The expression of PD-1 has been detected on
various types of immune cell within TME, including activated monocytes, dendritic cells
(DCs), natural killer (NK) cells, and T cells as well as B cells [33]. It has been demonstrated
that immunotherapies, targeting PD-1 pathway, have revolutionized the treatment land-
scape of different cancers, including Merkel cell carcinoma (MCC), melanoma, head and
neck squamous cell carcinoma (HNSCC), and non-small-cell lung cancer (NSCLC) [34]. The
US FDA has approved three monoclonal antibodies namely Nivolumab, Pembrolizumab,
and Cemiplimab as PD-1 inhibitors (Figure 1) [34].
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Figure 1. Immune checkpoint inhibitors approved by FDA. Pembrolizumab, Nivolumab, and Cemi-
plimab as anti-PD-1 antibodies, Ipilimumab as an anti-CTLA-4 antibody, as well as Atezolizumab,
Avelumab, and Durvalumab as anti-PD-L1 antibodies.

Nivolumab (BMS-936558, ONO-4538, or MDX1106, trade name Opdivo; Bristol-Myers
Squibb, Princeton, NJ, USA) is a first-in-class fully human immunoglobulin G4 (IgG4)
monoclonal antibody (mAb) inhibitor that suppresses PD-1 activity through selectively
targeting and blocking the interaction between ligands (PD-L1 and PD-L2) and PD-1
receptor [35]. Tumour cells have been shown to avoid immune surveillance by hijacking the
PD-1/PD-L1 pathway, resulting in a reduced cellular immune response [35]. Nivolumab
was approved by the FDA in 2014 and 2015 for the treatment of melanoma and renal cell
carcinoma, respectively (Table 1). Furthermore, the FDA approved nivolumab in 2015 for
the treatment of squamous cell lung cancer (SCLC) and NSCLC [36]. In 2010, Brahmer
et al. demonstrated clinical activity of MDX-1106 in patients with various tumour types
such as colorectal cancer, renal cell cancer, melanoma, NSCLC, and castration refractory
prostate cancer [37]. Despite the presence of immune-related adverse events (irAE) such
as renal, gastrointestinal, pulmonary, hepatic, cutaneous, rheumatological, and endocrine
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manifestations in patients with metastatic renal cell cancer, nivolumab proved to have a
favorable safety profile [38].

Pembrolizumab (Keytruda, Merck) is another humanized IgG4 mAb that disrupts the
PD-1/PD-L1 pathway [5]. Pembrolizumab has been approved by the FDA for the treatment
of a variety of tumour types based on the observed robust objective responses and an excel-
lent pharmacokinetic and safety profile [5]. The FDA recently confirmed (13 October 2021)
that a combination of pembrolizumab and chemotherapy drugs, with or without beva-
cizumab, can have therapeutic benefits for patients with recurrent metastatic cervical cancer
whose tumour cells express high levels of PD-L1 [39]. Several studies have found that
pembrolizumab induces complete and robust responses in a tumour-agnostic manner,
targeting the immune system rather than the tumour cell itself [40]. FDA recently approved
the pembrolizumab as first tissue-agnostic/site-agnostic drug for treatment of patients
with mismatch repair deficient/metastatic microsatellite instability—high (dMMR/MSI-
H) [40]. FDA-approval of pembrolizumab introduces this mAb as a potential therapeutic
agent for patients with advanced rare cancers; however, clinical evidence for the drug’s
efficacy/safety profile in these patients needs to be investigated further [41]. As shown by
Sundahl et al., pembrolizumab might enhance overall survival (OS) in patients suffering
from metastatic urothelial carcinoma (UC) [42]. A phase II clinical trial (NCT02335424)
of pembrolizumab on 370 patients with UC reported a satisfactory durable response rate
(DRR) in cisplatin-ineligible patients [43]. It also demonstrated considerable anticancer
efficacy in HNSCC, as shown by enhanced overall response rate ORR. A phase III study
(KEYNOTE-048) date demonstrated that Pembrolizumab compared to chemotherapy has
remarkably improved OS in recurrent/metastatic (R/M) HNSCC patients with PD-L1
combined positive score (CPS) ≥20 and its combinations with chemotherapy was more effi-
cacious compared to chemotherapy in R/M HNSCC patents with PD-L1 CPS ≥1, proposing
c [44]. A study (NCT02358031) reported a successful combination of pembrolizumab with
platinum and 5-FU, highlighting their potential therapeutic option as a first-line treatment
in patients with HNSCC [45].

Cemiplimab (Libtayo®, Regeneron Pharmaceuticals/Sanofi) is considered a fully
humanized IgG4 mAb that inhibits the interaction of the PD-1 receptor with its ligands
and is used to treat patients with metastatic or locally advanced cutaneous squamous cell
carcinoma (CSCC) who are ineligible for curative resection or radiotherapy (approved by
FDA in September 2018, and by the European Medicines Agency (EMA) in June 2019) [46].
Cemiplimab was the first drug approved by the FDA for the treatment of CSCC, and it is
also mentioned and recommended in the 2020 European interdisciplinary guidelines (issued
by the EDF, EADO, and EORTC) as the first-line therapy for cancer patients who cannot be
treated with radiotherapy or surgery [47]. Furthermore, the UK National Institute of Health
and Care Excellence (NICE) and National Comprehensive Cancer Network (NCCN) have
recommended Cemiplimab as a treatment option for treating locally advanced or metastatic
CSCC in patients who are not candidates for curative resection or radiation therapy [48]. In
patients with metastatic CSCC, Cemiplimab has exhibited remarkable anticancer activity
with a reasonable safety profile [49]. Fatigue (27.0 percent) and diarrhea (23.5 percent) are
the most prevalent side effects reported in patients with CSCC during or after therapy
with Cemiplimab (3 mg/kg) [50]. Cemiplimab was also linked to improved OS and PFS in
CSCC patients in comparison to EGFR inhibitors and chemotherapy, showing that it has a
lot of potential in treating CSCC patients [50]. It may result in better OS and PFS compared
to platinum-based chemotherapy in patients with advanced NSCLC, indicating a possible
new treatment option for these patients [51].

2.2. PD-L1 Inhibitors

PD-1 ligand 1 (PD-L1) and PD-L2 are the two ligands for PD-1 [52]. Both tumour and
immune cells can express PD-L1 which is a useful biomarker in predicting response to
anti-PD-1/PD-L1 antibodies in some patients with different types of cancer [53]. PD-L1,
also known as B7-H1 or CD274, plays a part in inhibiting cancer-immunity cycle through
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binding to negative regulators of T-cell activation such as PD-1 and B7.1 (CD80) [54].
Therefore, PD-L1 ligation is known to inhibit migration and proliferation of T cell, thereby
restricting tumour cell killing (Figure 1) [55]. The US FDA has approved three PD-L1
inhibitors namely Atezolimumab, Durvalumab and Avelumab that have been used in some
solid tumours, including NSCLC, HNSCC, melanoma, and MCC [34].

Atezolizumab (MPDL3280, Tecentriq, Genentech, Inc., San Francisco, CA, USA) is
a IgG1 monoclonal antibody, designing with Fc domain modification in order to reduce
antibody-mediated cellular cytotoxicity, thereby preventing T cell depletion expressing
PD-L [56]. It has been approved by the FDA for adjuvant therapy following surgery
and chemotherapies in patients with stage II and IIIA NSCLC whose tumours have PD-
L1 expression on ≥1% of tumour cells in October 2021 [57]. Furthermore, based on the
Phase 3 IMpassion130 trial, the FDA granted atezolizumab accelerated approval in March
2019 [58]. These trial results demonstrated that Atezolizumab improved progression-free
survival in patients with metastatic breast cancer. Atezolizumab inhibits PD-L1 to lower
immunosuppressive signals in TME, thereby increasing T cell-mediated immunity against
malignancies [59]. In 2016, the FDA approved Atezolizumab for progressed metastatic
NSCLC patients, receiving platinum-containing chemotherapy [60]. Patients with recurrent
NSCLC tumours, expressing medium or high levels of PD-L1, Atezolizumab demonstrated
a statistically significant survival advantage in comparison with docetaxel (HR = 0.54;
p = 0.014) in a randomized phase II trial (POPLAR) [61]. A study evaluated the effectiveness
and safety of nab-paclitaxel with or without Atezolizumab in 451 patients with treatment-
naive metastatic triple negative breast cancer (TNBC) until progression of the disease.
A median follow-up taking up to 12.9 months revealed that the Atezolizumab to Nab-
paclitaxel combination decreased by 40% the risk of progression or death in patients
PD-L1-positive tumours in comparison with nab-paclitaxel alone [62].

Avelumab (MSB0010718C) is another completely human IgG1 monoclonal antibody,
binding to PD-L1, thereby inhibiting PD-L1 and PD-1 interactions. This could lead to
T cells mediated antitumour responses as well as [63]. Based on the evidence from Part
A of the JAVELIN Merkel 200 clinical trial, avelumab was designated as a breakthrough
therapy by the FDA in November 2015 for treating patients with metastatic MCC who had
disease progression after previous chemotherapy [64]. In March 2017, avelumab was finally
designated as a breakthrough therapy and was approved by the FDA for patients with
metastatic MCC, regardless of previous chemotherapy [63].

A three-year follow-up of a trial investigating long-term safety revelated no adverse
events in patients with MCC following Avelumab administration, highlighting avelumab’s
efficacy as a SOC therapy for these patients [65]. Furthermore, Avelumab, in combination
with Axitinib, is currently regarded as first-line therapy for patients with advanced renal
cell carcinoma (RCC) [66,67]. In contract to Sunitinib, an FDA-approved receptor tyrosine
kinase inhibitor, the addition of avelumab to Axitinib could enhanced progression free
survival (PFS) in these patients [67].

Durvalumab (MEDI4736) is an FDA-approved immunotherapy, binding to PD-L1 with
high affinity and specificity, thereby inhibiting its interactions to PD-1 and CD80 [68,69]. It
was designated by the FDA as a breakthrough therapy in February 2016 based on early clin-
ical data from a Phase I trial for treating patients with metastatic urothelial bladder cancer
whose tumour cells express PD-L1 and who had advanced disease during or after one stan-
dard platinum-containing chemotherapy regimen [70]. Durvalumab was also approved by
the FDA in May 2017 for the treatment of patients with urothelial carcinoma (metastatic or
locally advanced) who progressed during or after platinum-based chemotherapy, including
those who had disease progression within one year of treatment with a platinum-based
regimen in the neoadjuvant or adjuvant setting followed by surgical resection [70]. In 2018,
FDA also approved this drug for patients with unresectable stage III NSCLC that their
disease has not progressed after concomitant platinum-based chemotherapy and radiother-
apy based on PACIFIC trial results [71]. It was thought that using it in combination with
chemotherapy, immunotherapy, and targeted treatment would optimize benefit. However,
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patients with PD-L1 ≥25%, receiving Durvalumab, had numerically longer median OS
(16.3 months) compared with those received chemotherapy (12.9 months), whereas patients
treated with Durvalumab/Tremelimumab combination had the median OS of 11.9 months,
which was less than Durvalumab/chemotherapy combination, suggesting Durvalumab as
an appropriate option for NSCLC patients [72].

2.3. CTLA-4 Inhibitor

CTLA-4 was found as a protein belonging to the immunoglobulin superfamily that
was expressed primarily by activated T cells in a cytotoxic T lymphocyte cDNA library [73].
CTLA-4 is expressed solely on T cells and governs the amplitude of T cell activation
throughout the early phases. CTLA-4 primarily inhibits the function of CD28, a T-cell
co-stimulatory receptor [74]. Despite the fact that CTLA-4 binds to the same ligand B7 on
B cells and APCs as its homologue CD28, stimulation of CTLA-4 resulted to T cell-mediated
suppression of antibody formation and avoidance of allograft rejection [75,76]. CTLA-4
expression kinetics were discovered to be substantially different from CD28 expression
in 1994. CTLA-4 expression is increased for 2–3 days after TCR/CD3-mediated T cell
activation, commencing about 24 h after TCR triggering, whereas CD28 is expressed on
naive T cells. These findings suggest that CTLA-4 is critical in the regulation of activated T
cells, as the absence of CTLA-4 results in unregulated T cell proliferation. Because of these
new insights into CTLA-4’s mode of action, researchers decided to see if blocking CTLA-4
may increase antitumour immune responses [77].

CTLA-4 inhibition improves a wide range of immunological responses that rely on
helper T cells, whereas CTLA-4 interaction on Treg cells improves their suppresisive ac-
tivity. Treg cells produce CTLA-4 constitutively because it is a target gene of the forkhead
transcription factor FOXP3 [78], whose expression determines the Treg cell lineage [79].
Treg cell-specific CTLA-4 deletion or inhibition greatly decreases their ability to control
both autoimmune and antitumour immunity, despite the fact that the mechanism by which
CTLA-4 promotes the immunosuppressive activity of Treg cells remains unknown [80]. As
a result, both increase in effector CD4+ T cell activity and reduction in Treg cell-dependent
immunosuppression are likely essential aspects in CTLA-4 blockade’s mode of action.

Ipilimumab (Yervoy) is a human IgG1 mAb that can inhibit the function of CTLA-4
and was first approved and recommended for the treatment of melanoma in 2011 [81].
Ipilimumab is also used in the treatment of advanced renal cell carcinoma, MSI-H/dMMR
metastatic colorectal cancer, malignant pleural mesothelioma, NSCLC, and hepatocellular
carcinoma when combined with Opdivo (nivolumab) [82]. In 2020, the FDA announced
that Opdivo (nivolumab) plus Yervoy (ipilimumab) (given as intravenous injections) have
therapeutic benefits for adult patients with unresectable malignant pleural mesothelioma
(MPM), and NSCLC (with tumour PD-L1 expression ≥1% and no EGFR/ALK aberrations)
as a first-line treatment [83]. Nevertheless, CTLA-4 as a negative regulator of T cell im-
munological responses, is implicated in autoimmunity prevention; therefore, its blockage
with ipilimumab may cause immune related adverse effects (irAEs) such as colitis and
enterocolitis [84].

Recently, ICI therapy has become a promising therapeutic strategy with encouraging
therapeutic outcomes due to their durable anti-tumour effects. Though, tumour inherent
or acquired resistance to ICIs accompanied with treatment-related toxicities hamper their
clinical utility [85]. Accordingly, several studies have exhibited that combination therapy
with ICIs plus other therapeutic approaches, such as chemotherapy [86], radiotherapy,
cancer vaccines, and also CXCR4 blockade therapy [87] can efficiently circumvent tumour
resistance to ICI therapy.

Researchers have found that the combination of cyclophosphamide, ICI, and vinorel-
bine inhibits TNBC growth mainly by inducing APC recruitment and also activation
in vivo [88]. Additionally, CTLA-4 inhibitors monotherapy as well as combination therapy
with CTLA-4 inhibitors and either gemcitabine or cyclophosphamide showed promising
results in BC and also CRC mouse models [89]. The phase 1 clinical trial of 15 patients with
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refractory and metastatic HNSCC showed that combination therapy of cyclophosphamide
and radiation therapy in combination with GM-CSF (granulocyte macrophage-colony-
stimulating factor) could demonstrate significant therapeutic benefit [90]. Recent research
demonstrated that treatment with PD-L1 and CTLA-4 inhibitors in conjunction with cancer
stem cell-pulsed dendritic cells (CSC-DC) improved T cell proliferation, inhibited TGF-β
secretion, intensified IFN-γ secretion, and improved host-specific CD8+T cell response
versus CSCs in B16-F10 mice melanoma tumour model [91]. In melanoma, prostate, and
also PDA murine model, GMCSF cell-based vaccines combined with CTLA-4 inhibitor
decreased tumour growth and restored the antitumor immunity [92–94]. The combination
of RT with targeting CTLA-4 and/or PD-1/PD-L1 has been shown to trigger CTL-mediated
antitumor immunity [95]. For instance, in glioma xenograft-bearing mice, combining PD-1
blockade and dose brain-directed radiation (10 Gy) glioma xenograft-bearing mice resulted
in a 75% complete pathologic response, as well as improving OS largely due to activation
of CTLs and macrophages [96].

Drugs blocking these pathways are currently utilized for a wide variety of malignan-
cies and have demonstrated durable clinical activities in a subset of cancer patients. New
inhibitory pathways are under investigation, and drugs blocking LAG-3, TIM-3, TIGIT,
VISTA, or B7/H3 are being investigated. Given its unique mechanism of action compared
to other anticancer strategies, next generation of immune checkpoints appears to have a
synergistic effect when combined with chemotherapy or other ICIs [97].

3. Biomarkers for ICI-Based Immunotherapy

Various biomarkers such as PD-L1 expression, tumour mutation burden (TMB), mi-
crosatellite instability, microbiome, hypoxia, interferon-gamma (IFN-γ), and extracellular
matrix have been reported on order to increase response to immunotherapy in patients,
receiving ICIs.

3.1. PD-L1 Expression

PD-1 is a signalling receptor expressed on the surface of T lymphocytes [98]. PD-1 and
its ligand programmed cell death protein-1 ligand (PD-L1) have been studied broadly in
clinical trials as biomarkers for ICI based immunotherapy [99,100]. Expression of PD-L1
was found to be increased by inflammatory factors particularly, interferon-γ in TME [101].
The expression of PD-L1 was also found to impair cytotoxic T lymphocyte (CTL) protection
and reduce chronic viral infections [100]. The PD-L1 expression is scored by pathologists
and is defined with immunohistochemistry (IHC) [102]. To reinvigorate the immune system
to fight tumour cells, the PD-1/PD-L1 interaction could be considered a potential target for
some monoclonal antibodies (mAbs), resulting in the inhibition of this interaction [103]. In
a study conducted by Bellmunt et al., 542 patients with advanced urothelial cancer were
evaluated, and it was found that Pembrolizumab had an improved survival and fewer
side effects than chemotherapy [104]. KEYNOTE-522 compared patients who received
Pembrolizumab and chemotherapy to patients who received placebo and chemotherapy
and found that the first group had better pathological outcomes [105]. KEYNOTE-024 trail
revealed that a fixed dose of Pembrolizumab (200 mg) was associated with the improved
OS and PFS and lower treatment-related adverse events in NSCLC patients with PD-L1
tumour proportion score (TPS) ≥50% in comparison with chemotherapy [86]. Furthermore,
KEYNOTE-048 results showed that Pembrolizumab improved OS in patients with R/M
HNSCC as PD-L1 increases, demonstrating the role of the PD-L1 expression is a demonstra-
tor of response for ICIs [44]. According to the results of CHECKMATE 040, combination
therapy of Nivolumab plus Ipilimumab has been approved as second-line therapy for
hepatocellular carcinoma (HCC) in patients receiving sorafenib [106].

3.2. Tumour Mutation Burden

TMB has been defined as the number of mutations in cancer cells’ DNA, which is
reported as mutations per megabase (mut/Mb) [107]. TMB is determined using either
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NGS or PCR, and it may aid in the selection of the best ICIs [108]. In patients with NSCLC,
it was reported that if TMB was equal to or greater than 10 mut/Mb, the combination
of Nivolumab and Ipilimumab would have a better overall response (OR) regardless of
PD-L1 expression [109]. TMB ≥ 10 mut/Mb is considered as High TMB (TMB-H), and
it has been linked to improved survival in a variety of tumour types, including small
cell lung cancer (SCLC) [110]. KEYNOTE-158 discovered that Pembrolizumab, as an
ICI, is effective in various types of cancers with TMB ≥10 mut/Mb, particularly solid
cancers [111]. Yefarchoan and colleagues evaluated the correlation between TMB and the
objective response rate (ORR) in 27 tumour types among patients, receiving anti-PD-1 or
anti-PDL-1 therapy, and observed that some cancers such as MCC responded to therapy
better than what was predicted by TMB, suggesting that the emergence of viral antigens on
some tumours may increase the response to anti-PD-1 therapy [112].

3.3. Microsatellite Instability (MSI)/DNA Mismatch Repair (dMMR)

Generally, DNA mismatch repair system (MMR) is a pivotal system to recognize and
repair base-base mismatches and misincorporation errors occurred during DNA repli-
cation [106]. Therefore, any deficiency in this system could lead to hypermutation in
cancer [113]. Microsatellite instability (MSI) status has been evaluating as a potential pre-
dicting biomarker in cancer immunotherapy [113]. Currently, discovered that MSI/dMMR
could be a prognostic test in ICI-based immunotherapy to show how tumours respond to
antibodies, particularly in cancers such as colorectal, gastric cancer and endometriosis [114].
IHC and PCR are of great importance to detect mismatch repair proteins such as MSH2/6,
MLH1, and PMS2 and also small genomic alterations, respectively [115]. Microsatellite
unstable tumours have been categorized into two phenotypes namely MSI-low (MSI-L) and
MSI-high (MSI-H) that the latter enhanced significantly the neoantigen load, leading to ac-
tivating lymphocyte, thereby rendering tumour cells sensitive to ICIs [116]. It was reported
that its combination with TMB and PD-1/PD-L1 expression could play an important role in
predicting responses to immunotherapy [116]. The CHECKMATE 142 study reported that
Nivolumab could provide a durable response in patients with dMMR/MSI-H metastatic
colorectal cancer, proposing Nivolumab as a new treatment option in these patients [117].

3.4. Microbiome

Microbiota in the human body can be found in all parts of the body, but particularly
in the skin, saliva, and gastrointestinal tract [118]. The microbiome can influence ICI
therapy by influencing the immune system [119]. An in vivo study using CT26 tumour-
bearing mice revealed that high microbial diversity could affect ICI response efficiently by
increasing IL-2 and IFN- secretion when compared to mice given antibiotic injection [120].
As a result, it has been proposed that the microbiome can enhance immune response,
stimulate inflammation, or disrupt the balance of proliferation and cell death, thereby
increasing tumourigenesis [120]. It has been reported that the gut microbiome activates T
cell-mediated responses, resulting in the direct targeting of tumour cells [121]. Furthermore,
melanoma patients treated with anti-PD-L1 had higher levels of Bifdobacterium longum,
Collinsella aerofaciens, and Enterococcus faecium, highlighting the importance of the
microbiome [122]. In recently published work, Zheng et al. reported some dynamic
alterations within gut microbiome in patients with HCC during their immunotherapy.
Moreover, metagenomic sequencing data showed higher taxa in faecal samples of patients,
responding to immunotherapy compared to non-responders, highlighting the role of
microbiome in regulating immune responses [123].

3.5. Hypoxia

Hypoxia is measured using specialized techniques such as PO2 electrode measure-
ment, fibre optic probe, and nuclear magnetic resonance (NMR) [124,125]. A lack of oxygen
causes hypoxia-inducible factor-1 (HIF-1), a transcription factor, to be activated within
the TME, and its subunit can promote angiogenesis and metastasis [126,127]. Hypoxia
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has been shown to modulate the expression of immune checkpoints such as CTLA-4,
CD47, PD-1/L-1, and TIM3 in order to manipulate immune cells’ mediated anti-tumour
response, thereby inhibiting immune surveillance [126]. In hypoxic conditions, the com-
bination of adenosine and the A2a receptor increases immune checkpoint expression,
resulting in T cell suppression [126]. Zandberg et al. reported that in an animal model of
HNSCC, disease control rate (DCR) and survival were altered in mice with intra-tumoral
hypoxia, rendering them resistant to anti-PD-1 immunotherapy [128]. Furthermore, the
study 111/KEYNOTE-146 trial (NCT02501096) showed that Pembrolizumab plus lenva-
tinib, a VEGFR1/2/3 kinases inhibitor, resulted in a promising antitumour response as
well as a manageable safety profile in patients with metastatic renal cell carcinoma (RCC)
who have been previously treat with ICI therapy [129].

3.6. Interferon-γ

Different immune cells within the TME, such as lymphocytes and NK cells, can pro-
duce a variety of inflammatory mediators and cytokines [130]. Interferon- (IFN-) is a type II
interferon that has both antitumour and proliferative effects [131]. Although CD8+ cytotoxic
T lymphocytes (CTLs) are the primary producers of IFN- γ, IL12, IL15, and IL18, as well
as pathogen-associated molecular patterns (PAMPs), have been shown to stimulate IFN-γ
secretion [132–134]. The main IFN-γ signalling pathway is JAK/STAT, which regulates
immune responses and tumourigenesis [131,132]. IFN-γ promotes chemotaxis and immune
cell recruitment to TME by inducing the transcription and production of C-X-C motif
chemokines (CXCL) 9, 10, and 11, as well as their receptor CXCR3 [133]. However, IFN-γ
can promote tumourigenesis by increasing the expression of indoleamine 2,3dioxygenase 1
(IDO1), CTLA-4, and PD-L1 [135,136]. IDO1 is an enzyme that reduces CD8 cell activity
by converting tryptophan to kynurenines, emphasising its immunosuppressive role [137].
Given this information, the IFN-γ signature, which includes CXCL10, CXCL9, HLA-DRA,
IDO1, STAT1, and IFNG, is significant in predicting responses to ICIs therapy [131].

3.7. Extracellular Matrix

Extracellular matrix (ECM) is a three-dimensional network composed of extracellular
macromolecules that provides biochemical support to tissue [138,139]. Desmoplasia, or
connective tissue growth, has been linked to a poor prognosis in patients with solid
tumours due to high collagen and fibroblast infiltration within TME [140]. This can result
in stiffness, which is the primary distinction between normal and cancerous ECM [141].
Metalloproteases (MMPs) can break down ECM ingredients to generate some fragments
of macromolecules, showing either pro-or anti tumourigenic functions in different types
of cancers [142]. As a result, collagen IV-derived fragments such as tetrastatin, canstatin,
and tumstatin can reduce the invasiveness and proliferative properties of tumour cells by
binding to integrins (α3β1, α5β1, or αVβ3) [142,143]. Furthermore, Lysyl oxidase (LOX)
inhibits T cell migration to ECM and suppresses immune response. The KPC model was
used to demonstrate that inhibiting LOX can increase T cell infiltration, thereby improving
responses to ICI-based immunotherapy [142,143].

4. Conclusions and Future Perspectives

ICI treatment has completely transformed cancer immunotherapy. We looked at the
history and development of the most well-known ICIs, as well as the issues they pose
in the clinic, such as treatment resistance and adverse events (irAEs). While ICIs are the
most often utilized, they are not the only FDA-approved immunotherapies. The FDA’s
approval of anti-CTLA-4 therapy, followed by reports of promising preliminary clinical
results for anti-PD-1 therapy, has sparked a renewed interest among oncologists in the
endogenous immune system’s potential antitumour activity after the immune system’s
‘brakes’ have been released. The discovery of immune checkpoints such as CTLA-4 and
PD-1 has unquestionably aided the advancement of cancer immunotherapy. Although
these molecules were initially identified to serve a function in T cell activation or death,
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additional preclinical studies revealed that they also play a crucial role in the maintenance
of peripheral immunological tolerance.

Depending on the preclinical model, blocking CTLA-4 and PD-1 resulted in the
formation of anticancer immune responses that were successful as single agents or required
further therapy [4]. As a result, it is remarkable that single-agent anti-CTLA-4 and anti-PD-1
anticancer therapies are so successful. Immune checkpoint drugs have ushered in a new
era in metastatic cancer treatment. Other immune checkpoints or inhibitory receptors have
been revealed that can be targeted by monoclonal antibodies based on their cell surface
expression, in addition to CTLA-4 and the PD-1/PD-L1 axis. Inhibitory receptors such as
TIM-3, LAG-3, and BTLA are examples of inhibitory receptors, some of which appear to
have a function in immunological tolerance while others appear to play a far more modest
role [144].

As a result, in addition to examining the function of existing molecules in cancers
other than melanoma, NSCLC, and RCC, novel combinations will be tested in early clinical
trials. Furthermore, depending on clinical responses in diverse cancer types, checkpoint
inhibitors, as single medicines or in combination, will likely be investigated in adjuvant
or neoadjuvant methods, with the goal of improving the overall survival of many cancer
patients. These treatments have revolutionized cancer immunotherapy by demonstrating,
for the first time in many years of research, an improvement in overall survival in metastatic
melanoma, one of the most immunogenic human cancers, with an increasing number of
patients benefiting long-term from these treatments. However, the function of systemic
immunity in these modalities is not fully known. Researchers must also look at the systemic
effects of various immunotherapies in order to gain a better knowledge of how the immune
system begins and maintains an effective antitumour response. Taken together, much
work has been carried out and more is required to uncover the underlying mechanisms
in response to ICIs in patients with various types of tumours. It seems that combination
therapy with other ICIs, chemotherapy, targeted agents, radiotherapy, and T- cell based
therapies could improve ICI outcomes, particularly in patients who have not experienced a
favourable response to ICI-based therapies.

Even though ICIs have shown promising results in adults, there is limited data re-
garding their safety in children [145]. It was demonstrated that dose dependent adverse
events of CTLA-4 blockade ranging from mild to moderate occurred in more than 70%
of patients [146]. Furthermore, a meta-analysis of 18 clinical trials revealed an increased
risk of treatment-related mortality (TRM) in patients receiving higher dose (10 mg/kg) of
CTLA-4 inhibitors [146]. The toxicities corelated with PD-1/PD-L1 blockades were less
severe compared to CTLA-4 inhibitors, and fatigue as the most common adverse event,
occurring in 16–37% of patients receiving PD-1 inhibitor, and 12–24% of those who received
PD-L1 inhibitor [147]. It is particularly concerning that unpredictable off-target effects on
critical organs can pose a life-threatening risk to children whose organs are less mature,
thereby presenting a potential life-long disability danger [147]. Moreover, TME as a major
composition of cancer and immune cells is of great importance that may complicate the
treatment process.
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