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Leprosy remains a health problem in several countries. Current management of patients 
with leprosy is complex and requires multidrug therapy. Nonetheless, antibiotic treatment 
is insufficient to prevent nerve disabilities and control Mycobacterium leprae. Successful 
infectious disease treatment demands an understanding of the host immune response 
against a pathogen. Immune-based therapy is an effective treatment option for malignan-
cies and infectious diseases. A promising therapeutic approach to improve the clinical 
outcome of malignancies is the blockade of immune checkpoints. Immune checkpoints 
refer to a wide range of inhibitory or regulatory pathways that are critical for maintaining 
self-tolerance and modulating the immune response. Programmed cell-death protein-1 
(PD-1), programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte-associated 
protein 4, and lymphocyte-activation gene-3 are the most important immune check-
point molecules. Several pathogens, including M. leprae, are supposed to utilize these 
mechanisms to evade the host immune response. Regulatory T cells and expression 
of co-inhibitory molecules on lymphocytes induce specific T-cell anergy/exhaustion, 
leading to disseminated and progressive disease. From this perspective, we outline 
how the co-inhibitory molecules PD-1, PD-L1, and Th1/Th17 versus Th2/Treg cells are 
balanced, how antigen-presenting cell maturation acts at different levels to inhibit T cells 
and modulate the development of leprosy, and how new interventions interfere with 
leprosy development.

Keywords: immunotherapy, leprosy, t-regulatory cells, immune checkpoint blockade, PD-1:PD-L1, cytotoxic 
t-lymphocyte-associated protein 4

iNtrODUctiON

Leprosy remains a relevant health problem in Brazil and India even after the introduction of 
multidrug therapy and has spread worldwide (1–3). Leprosy presents different clinical features 
that are determined by the host immune response against Mycobacterium leprae; at the pole of 
this spectrum are tuberculoid and lepromatous disease. In tuberculoid leprosy (TT), Th1 polariza-
tion, characterized by the production of IFN-γ, which activates CD8 T  cells, macrophages and 
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bactericidal mechanisms that control M. leprae growth, is critical 
for the protective response (2, 4, 5). By contrast, lepromatous 
leprosy (LL) presents with impaired specific cellular immunity. 
The immune response often differentiates into a Th2 profile, 
with abundant production of IL-4 and predominant B  cell 
activation, which allows for evasion by the bacillus. M. leprae 
shows strategies to limit the host protective immune response 
leading to chronic infection (6, 7). In chronic infections, T cells 
are exposed to persistent antigen stimulation as a gradual loss of 
effector functions and cytokine production as well as persistently 
increased expression of multiple inhibitory receptors (6, 8). The 
immunomodulatory properties from mycobacteria have been 
explored to understand macrophage function (5, 9). In addi-
tion, M. leprae antigens interfere with T-cell proliferation (10) 
and are involved in Treg-cell expansion through HSP-60 (11). 
Evidence has indicated that Treg cells, besides expression of 
immune checkpoint molecules with inhibitory activity, such as 
PD-1, PD-L1, and cytotoxic T-lymphocyte-associated protein 4 
(CTLA-4), induce specific T-cell anergy, leading to disseminated 
and progressive disease (7, 12, 13). Immune checkpoint (ICP) 
molecules play an important role in T-cell activation and deter-
mine the functional outcome of T cells, reducing the proliferation 
and secretion of inflammatory cytokines, such as IL-2, IFN-γ, and 
TNF-α (14, 15). Those molecules also interfere with dendritic 
cell (DC) maturation and macrophage effector function (5, 16). 
ICP, particularly PD-1/PD-L1 and CTLA-4, have been widely 
explored as therapeutic targets in cancer because these biomark-
ers are also highly expressed in the tumor microenvironment  
(14, 15). In infectious diseases, this therapeutic approach has 
been applied against HIV, HCV, and tuberculosis as an adjuvant 
of antimicrobial drugs (17–19).

Herein, to discuss new approaches for leprosy monitoring and 
treatment, we reviewed some of the ICP for leprosy persistence 
and mechanisms associated with T-cell lymphocyte anergy to  
M. leprae antigens as well as the role of Treg cells to modulate 
disease development.

iMMUNe cHecKPOiNts iN LePrOsY

Although ICP have been studied for approximately two decades, 
many features of their biology and signaling pathways remain 
unknown. ICP receptors are associated with autoimmunity, 
suggesting that these molecules play a critical role in immune 
tolerance and homeostasis (7, 8). In chronic infections, T lym-
phocytes are under persistent exposure to antigens, and this 
stimulus is commonly associated with T exhaustion (20). Various 
ICP molecules are highly expressed on exhausted T  cells (14, 
20), and this literature indicates that ICP blockade can restore 
immunity after reversion of the exhaustion phenotype of T cells 
(8). In leprosy, some recent data have shown a strict relationship 
between ICP expression and disease persistence.

Cytotoxic T-lymphocyte-associated protein 4 is an impor-
tant molecule that controls lymphocyte activation (21). This 
molecule binds to CD80/CD86, antagonizing CD28 signaling, 
on antigen-presenting cell (APC) cells, leading CD4+ and 
CD8+ T  cells to assume an anergic phenotype (14, 22). Some 
CTLA-4 signaling pathways are still unknown, and it is unclear 

how this receptor interferes with lymphocyte activation as well 
as how CD3 phosphorylation, ZAP-70 activation, or tyrosine 
phosphatase SHP-2 act as intracellular mediators of those path-
ways (21). Indeed, CTLA-4 is essential for Tregs function. Treg 
cells highly express CTLA-4, which controls DC maturation, 
leading to internalization of CD80 and/or CD86 in addition 
to indoleamine-2,3-dioxygenase (IDO) activation, leading to 
expression of the immunosuppressive mediator kynurenin  
(16, 21, 23). These signals can also promote nuclear localization 
of Foxo, a transcriptional factor that suppresses transcription of 
the genes encoding IL-6 and TNF-α, both of which are crucial 
effector cytokines for the control M. leprae infection (6, 22).  
In LL patients, CTLA-4 has been described as a biomarker in 
blood and inflammatory infiltrating cells (24, 25). Increased 
expression of CTLA-4 was detected in LL lesions compared with 
that in TT lesions (24). Our group has found increased expres-
sion of CTLA-4 on lymphocytes and Treg cells from LL patients 
in contrast to reduced CTLA-4 expression on the same cell 
populations of TT patients1 (Figure 1). We also observed that 
CD4+CD25− T cells obtained from LL patients suppressed allo-
genic proliferation in functional tests (Figure 1). A suppressive 
role of CTLA-4 has also been demonstrated in FoxP3− T cells, 
and these data might explain the suppressive profile presented 
by LL patients (26). We also observed that CD4+CD25− T cells 
obtained from LL patients suppressed allogenic proliferation on 
functional tests (Figure 1). In TT patients, in vitro blockade of 
CTLA-4 restored peripheral blood mononuclear cell (PBMC) 
proliferation (12), but there is no clinical trial showing those 
effects on LL patients. Immunotherapy (IT) with CTLA-4 
blockade has mostly been conducted against tumoral cells; 
nonetheless, recent evidence has shown that CTLA-4 expres-
sion is associated with reduced secretion of TNF-α and IFN-γ 
and enhanced frequency of memory CD8+ lymphocytes in 
experimental L. monocytogenes infection (27). Similarly, 
CTLA-4 blockade induced higher production of IFN-γ and NO 
when T cells were stimulated with Trypanosoma cruzi antigens, 
although it did not restore lymphocyte proliferation (28). 
Furthermore, despite few clinical trials concerning CTLA-4 
blockade to control infectious diseases, HCV patients demon-
strated promising results after this therapy (29). Taken together, 
these data suggest that immunotherapies might modulate the 
immune system in patients with a latent leprosy infection or 
active disease, enabling better control of M. leprae replication. 
Therefore, new discoveries concerning the role of CTLA-4 in 
the immune response during M. leprae infection could provide 
critical insight that can be applied to other infectious diseases.

Programmed cell-death protein-1 (PD-1) and its ligands 
PD-L1/L2 have also been identified as relevant ICP that promote 
immune evasion of tumor cells and infected cells (8, 14, 15). 
Those molecules are promising targets in anticancer therapy and 

1 Peripheral mononuclear blood cells were obtained from untreated patients diag-
nosed with leprosy at the Dermatology Clinic of the Lauro de Souza Lima (ILSL) in 
Bauru, São Paulo, Brazil. The experimental protocol used was approved by Ethical 
Comitee of Bauru School of Dentistry of Bauru (protocol number #148/2009), 
University of São Paulo, and informed, and written consent was obtained from all 
subjects before performing the studies.
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FigUre 1 | Phenotype and functional characterization of CD4+CD25+ T cells in leprosy patients. Peripheral blood mononuclear cells (PBMCs) were isolated from 
patients with tuberculoid (TT, n = 12) and lepromatous leprosy (LL, n = 12), as well as from healthy control subjects (n = 12). (A) The frequency of CD25+ and 
FoxP3+ cells and expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), GITR, ICOS, and PD-1 were determined by flow cytometry. (B) Allogeneic 
PBMC (1 × 105 cells/well) was cultured with medium only, PHA, PHA plus CD4+CD25+ T, or CD4+CD25− T cells (1 × 104 cells/well) from patients or control subjects. 
Proliferation was determined after 4 days of culture by CFSE dilution analyzed by flow cytometry. The results are expressed as the means ± SEM of the stimulation 
index of proliferation. IFN-γ (c), TNF-α (D), IL-4 (e), IL-5 (F), IL-10 (g), and TGF-β (H) levels were determined in supernatants from cultures of suppression assays. 
The results are presented as the means ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, compared with control subjects using ANOVA and the Bonferroni posttest. 
For the suppressive assay (B), the results are expressed as the means ± SEM; *p < 0.05, **p < 0.01, and ***p < 0.001, compared with the proliferation of allogeneic 
PBMCs cultured with PHA. ND, not detected.
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are implicated in dysfunctional acquired immune responses, 
reducing the TCR signal to lymphocyte proliferation through 
ITIM (immune receptor tyrosine-based inhibition) motifs (30). 
The PD-1 signaling axis has been strongly related to T-cell anergy, 
pathogen persistence, and peripheral immune tolerance (14, 30). 
Although not yet targeted clinically, PD-1 is a promising target 
for leprosy IT. In leprosy, patients have presented with increased 
expression of PD-1 and PD-L1 on CD4+, B cells, and CD11+ cells 
(12, 13, 24, 31, 32), and in vitro blockade of PD-1 increased IFN-γ 
and IL-17 production by T cells (33). In accordance, our group 
found increased expression of PD-1 and GITR on lymphocytes 
and Tregs from LL patients (Figure 1). Blockade of PD-1 signaling 
in infectious disease has been associated with pathogen control 
in animal models for HBV, HIV, Plasmodium spp., Leishmania 
spp., Trypanossoma spp., and M. tuberculosis infection (34–38). 
These results suggest that ICP might be an important mechanism 
to regulate the immune response of LL patients. Thus, antibodies 
targeting the PD-1 pathways may improve the clinical outcome 
by restoring T-cell-mediated M. leprae immunity. However, in the 
infectious diseases context, immunotherapies based on ICP have 
not been tested or developed to the same extent as they have in 
cancer (39).

More recently, the signaling pathways and inhibitory mecha-
nisms of lymphocyte-activation gene-3 (LAG-3) and TIGIT 
(T-cell immunoglobulin and ITIM domain) have also been 
explored as suitable new targets for immune blockade (14, 40, 41).  
TIGIT, a member of the CD28 family, is expressed on effector 
and memory T cells, Tregs, and natural killer (NK) cells, and its 
ligands, CD155 and CD122, are expressed on APC, T cells, and 
non-hematopoietic cell types, such as tumor cells (14, 40). TIGIT 
blockade might influence both adaptive and innate immune 
responses. TIGIT+ Treg cells seem to control the Th1/Th17 ratio 
through enhanced IL-10 secretion, leading to a Th2 phenotype 
in animal models (42). In addition, TIGIT also controls NK cell 
function, limiting IFN-γ secretion and granule production 
(43–45); however, there are no available data concerning the role 
of this molecule on NK  cells during leprosy. In HIV-infected 
subjects, PD-1, TIGIT and LAG-3 are considered to be bio-
markers of persistent infection because CD4+ T cells expressing 
these molecules present viral markers, even under antiretroviral 
therapy (41). Analysis of TIGIT expression on Th2 lymphocytes 
and Tregs from LL patients as well as its correlation with disease 
progression are highly warranted.

Regarding LAG-3, this molecule is also expressed on Treg cells 
and has been associated with increased suppressive events, such 
as in the immune response against HIV and Plasmodium spp., 
as well as many types of cancers (14, 41, 46). In leprosy patients, 
the role of LAG-3 remains unknown, although LAG-3+CD8+ 
T cells were detected when human PBMC cells were cultured with  
M. leprae as well as in human mycobacteria-induced granulomas 
(47). Some clinical trials have explored LAG-3 blockade to 
achieve tumor reduction and control cancer progress. Although 
the LAG-3 signaling pathway is not completely understood in  
M. leprae immunity, its homology to CD4 and cross-linking with 
MHC class II lead to impaired maturation of DC and Treg devel-
opment (48, 49), suggesting LAG-3 as a new target for therapeutic 
intervention. Therefore, new discoveries concerning the role of 

this molecule in the immune response during M. leprae infection 
could provide insights that can be applied to other infectious 
diseases.

Recently, some evidence has indicated that combined ICP 
blockade might be a better strategy to explore the synergic effect 
of multiple immune checkpoints. Single-agent ICP approaches 
seem to induce compensatory upregulation of other ICPs as a 
cell mechanism to evade IT effects, and its failure index has been 
observed in one-half of oncology patients under this therapy  
(50, 51). One possibility would be to associate independent 
and non-redundant inhibitory pathways of these molecules, 
as observed in the CTLA-4 or PD-1 combination (50, 51). In 
addition, each infectious disease has its own ICP pattern of 
expression, as observed in HBV patients whose PD-1 expres-
sion is higher than that of CTLA-4. Therefore, combined ICP 
blockade might be a relevant mechanism for immune response 
regulation in leprosy and, likely, a feasible pathway to be explored 
as therapeutic targets.

t regULAtOrY ceLLs (tregs)

T regulatory cells (Tregs) are a heterogeneous subset of T CD4+ 
lymphocytes that might be developed at the thymus or on periph-
eral tissues under the control of many different signals from the 
microenvironment, such as TGF-β and IL-10 cytokines, retinol, 
and pathogen-associated molecular patterns (52, 53). Treg cells 
control many innate and adaptative immunological events, limit-
ing tissue damage and maintaining homeostasis. Tregs explore 
many different mechanisms that control the immune response, 
such as increasing expression of CD25, to reduce lymphocyte 
proliferation through IL-2, increasing secretion of anti-inflam-
matory cytokines and increasing expression of granzyme and 
perforin, as well as ICPs, such as PD-1, CTLA-4, GITR, TIGIT, 
and LAG-3 (14, 40, 52–54). Treg cells in the infection site seems 
to be associated with the immune hyporesponsiveness observed 
after infection with many parasites, including T. cruzi, P. brasil
iensis, L. brasiliensis, and S. mansoni (52–58). Some studies have 
shown the potential of Treg-cell depletion to augment antitumor 
immune responses (59) and infectious disease outcome (60) 
and have indicated that Treg-mediated T-cell suppression is 
an important mechanism by which pathogens evade immune 
responses (39, 53). In leprosy, an increased frequency of Treg cells 
was observed, and those lymphocyte subsets seem to contribute 
to pathogen persistence (13, 31–33, 61, 62). Our group assessed 
the suppressor features of Treg cells isolated from leprosy patients 
(Figure 1). Functional suppressive assays demonstrated impaired 
proliferation of allogenic PBMCs that were CFSE-labeled when 
cocultured with CD25+ T cells isolated from LL patients. In addi-
tion, the IFN-γ and TNF-α production levels were reduced in the 
presence of CD4+CD25+ T cells from LL patients. Moreover, our 
results showed that Treg cells (Foxp3+CD25+ cells) express high 
levels of CTLA-4 and PD-1. Such regulatory features were not 
hallmarks of Treg cells from TT patients (Figure 1). Expression 
of CTLA-4 by Treg cells serves as a mechanism of Treg cells to 
suppress excessive T-cell responses. Blocking CTLA-4 in  vivo 
has been shown to inhibit Treg cells and promote antitumor 
immunity (63).
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Activated Tregs produce IL-10, IL-35, and TGF-β, which act 
to suppress the immune response (64). Tregs downregulate the 
immune reactions through production of anti-inflammatory 
cytokines, lowering the antigen-presenting function in DCs, 
and macrophages with correspondingly decreased counts of 
Th1, Th2, Th17 CD4+ T cells, and cytotoxic CD8+ T cells, as well 
as the cytokines produced by them, and induction of apoptosis 
[reviewed in Ref. (65)]. High levels of TGF-β and IL-10 produc-
ing Foxp3+ T cells were reported to be increased in the leproma-
tous state in the circulation and skin lesions (61). Recent work 
has demonstrated that Tregs play a role in M. leprae-specific 
Th1 unresponsiveness during lepromatous disease (33). In LL,  
Th2/Treg polarization seems to be important to disease pro-
gression, and multiple factors may be responsible for these 
events, such as antigen exposure and innate immune activation 
(7). Otherwise, TT patients present a cellular immune response 
polarized to Th1/Th17 (31–33). Recent work has shown that 
in patients with a type 2 reaction, downmodulation of Tregs 
favors the development of Th17 responses (66, 67). The FoxP3+ 
Treg phenotype seems to be reverted into Th17, exploring the 
signaling through IL-12 and IL-23 (31). Th17 and Treg cells 
are new players associated with immunopathology in leprosy 
and its reactions (62). In this context, the ideal treatment for 
LL patients seems to require modulation of the T lymphocytes 
subsets to expand Th17 lymphocytes and control Treg cells, 
favoring the cellular immune response (5, 33). This strategy 
to shift the immune response to Th1/Th17 probably might 
achieve better outcomes in leprosy treatment; however, it might 
be associated with an increased risk of developing reactional 
states, such as erythema nodosum (66, 67). Reactional episodes 
have been associated with immune stimulation and can occur 
at any moment during leprosy infection and represent one of 
the most adverse events associated with disease (2, 5). Future 
work will need to confirm the efficacy of Treg cells for IT of 
infectious diseases. In addition, it is important to analyze the 
combinations of Treg cell targeting with ICP blockade to make 
IT more effective.

ANtigeN-PreseNtiNg ceLLs

Because leprosy is an intracellular infection, T-cell activation and 
responses are important for protective immunity. It is well known 
that macrophages and DCs regulate the activity of lymphocytes 
in adaptive immune responses, which could allow them to play 
important roles in IT (68). This capacity makes them potent 
adjuvants for the induction of antigen-specific T cells in infected 
hosts. In leprosy, data have shown that a delicate balance of 
costimulatory pathways between T-cell and APCs is essential for 
T-cell activation.

Dendritic cells play important roles in both innate and 
acquired immunity responses to M. leprae infection. These cells 
induce Th1 immunity and CTL responses (2, 69). However,  
M. leprae have evolved mechanisms to inhibit the ability of DCs 
to present antigens, thereby promoting a protective immune 
response. Exposure of DCs to M. leprae impairs its maturation 
and inhibits CD80, CD86, HLA-DR and CD40 expression  
(70–72). Recognition of M. leprae antigens, such as LAM, through 

DC-SIGN has also been described as an important signaling 
pathway to control DC maturation, leading to increased IL-10 
secretion, increased lipid metabolism and bacterial persistence 
(73, 74). Furthermore, IDO is another molecule associated with 
DC maturation and its tolerogenic phenotype. IDO has also 
been detected at high levels in LL patients (75). IDO catalyzes 
the conversion of tryptophan to N-formyl-kynurenine, and 
this molecular messenger controls cell proliferation, induces 
apoptosis, and shifts T-naïve cells to develop into Tregs (52, 75). 
DC-based IT has been used to improve the immune response 
against tumor cells using DC vaccines and blocking ICP asso-
ciated with DC tolerogenic phenotypes (76). To improve the 
immune response in chronic infectious diseases, such as HBV 
infection, PD-L1 blockade has been used to restore the produc-
tion of Th1 cytokines, such as TNF-α, IL-2, and IFN-γ (34). On 
the other hand, DC vaccines have also been used to improve 
the immune response to the Th17 profile against Leishmania 
spp. infection (77). Application of DCs in IT against M. leprae 
has not been explored despite the potential for the stimulation 
of an efficient antibacterial immunity. In other disease, the 
results indicate that DC-based IT might be more effective in 
combination with conventional treatments because the associa-
tion should modulate the immune system in a way that helps 
the host control or eliminate pathogens (68, 77, 78). Therefore, 
exploring strategies to shift the immune response to Th1 might 
achieve better outcomes in leprosy treatment, leading to reduced 
expression of M. leprae virulence factors, such as LAM, PGL-I, 
and lipid metabolism (9, 10). Future studies should also address 
the possible advantage of combining DC-based IT with ICP 
blockade or other therapeutic approaches, such as antimicrobial 
and anti-inflammatory drugs.

cONcLUDiNg reMArKs AND 
PersPectives

Altogether, evidence indicates that multiple factors are respon-
sible for antigen-specific unresponsiveness in leprosy. We sum-
marized some of these features and showed how ICP interfere 
with T-cell activation. We suggest that ICP blockade might 
interfere with leprosy pathogenesis (Figure 2). In our opinion, 
leprosy has been shown to have many interesting features con-
cerning regulation that can be explored to better understand 
immunological mechanisms (11).

Immune checkpoint blockade has been widely applied in 
oncology as an adjuvant to chemotherapy and radiotherapy.  
In infectious diseases, ICP blockade is still a recent approach.  
In leprosy, it is even more critical because it is a neglected disease 
and probably ICP blockade might not be used as a large-scale 
therapy. There are some different strategies that can be used 
to achieve better treatment outcomes and improve the cellular 
response against M. leprae. In this context, BCG (re)vaccination 
for LL patients has been fulfilled without predictive results (79). 
For refractory patients, IT might be an additional strategy to 
control chronic disabilities.

Despite these promising results, IT based on ICP blockade 
has been associated with autoimmune and inflammatory 
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FigUre 2 | Immune checkpoints. Activation of T effector cells is initiated with competent/mature antigen-presenting cells (APCs), such as mature dendritic cells 
(DC) (1, 2). For the first signal, APC displays the antigen to the naïve T cell via a complex with MHC II on their surfaces that is recognized by TCR on the surface of 
T cells; the second signal is nonspecific, resulting from the binding of B7 ligand on the APC with its receptor, CD28, on the T cell (2). When both signals are provided 
(3), T cells (different types of T helper and CTLs) exert their effector functions, such as release of cytokines by different Th cells (IL-6, IL-2, IFN-γ, IL-12, and TNF-α) 
and cytotoxicity from CTL (4). The presence of chronic immune stimulation due to persistent microbial antigens impairs specific cellular immunity (5, 6). Expression 
of co-inhibitory molecules, such as PD-1, TIGIT, lymphocyte-activation gene-3 (LAG-3), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), on lymphocytes 
and their respective ligands on the APC surface (PD-L1, CD122/155, MHC class II, and B7) induce specific T-cell anergy, leading to disseminated and progressive 
disease. In addition, there is higher differentiation of natural and induced types of Treg cells (nTreg/iTreg), as well as an imbalance of Th cells (7). The release of IL-10 
and TGF-β from heterogeneous Treg cell subsets controls the immune response by the inhibition of effector functions, as well as induces tolerogenic phenotypes in 
DCs (8). The blockade of immune checkpoints, such as PD-1, CTLA-4, LAG-3, and TIGIT, might be a strategy to control the tolerogenic features observed in 
lepromatous leprosy patients (9, 10).
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events, such as oral mucositis and hepatitis (80, 81). In leprosy, 
increased immune stimulation has been associated with reac-
tional states in LL patients and might be a disadvantage of this 
therapy. Certainly, more studies and clinical trials are needed to 
determine the role of Treg cells, ICPs and DCs as therapeutic 
targets to control M. leprae and leprosy progression.
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