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Porcine reproductive and respiratory syndrome (PRRS) is an elusive model of host/virus
relationship in which disease is determined by virus pathogenicity, pig breed susceptibility
and phenotype, microbial infectious pressure, and environmental conditions. The disease
can be controlled by farm management programs, which can be supported by vaccina-
tion or conditioning of animals to circulating PRRS virus (PRRSV) strains. Yet, PRRS still
represents a cause of heavy losses for the pig industry worldwide. Immunological control
strategies are often compounded by poor and late development of adaptive immunity in
both vaccinated and infected animals. Also, there is evidence that results of field trials can
be worse than those of experimental studies in isolation facilities. Neutralizing antibody
(NA) was shown to prevent PRRSV infection. Instead, the role of NA and adaptive immu-
nity on the whole in virus clearance after established PRRSV infections is still contentious.
Pigs eventually eliminate PRRSV infection, which may be correlated with an “educated,”
innate immune response, which may also develop following vaccination. In addition to
vaccination, an immunomodulation strategy for PRRS can be reasonably advocated in pig
“problem” farms, where a substantial control of disease prevalence and disease-related
losses is badly needed. This is not at odds with vaccination, which should be preferably
restricted to PRRSV-free animals bound for PRRSV-infected farm units. Oral, low-dose,
interferon-α treatments proved effective on farm for the control of respiratory and repro-
ductive disease outbreaks, whereas the results were less clear in isolation facilities. Having
in mind the crucial interaction between PRRSV and bacterial lipopolysaccharides for occur-
rence of respiratory disease, the strong control actions of low-dose type I interferons on
the inflammatory response observed in vitro and in vivo probably underlie the rapid clinical
responses observed in field trials.

Keywords: pig, PRRSV, vaccination, immunomodulation, interferon-alpha

INTRODUCTION
There are two basic principles underlying the possible success of
a vaccination strategy against viral diseases. On the one hand, a
reasonable cause–effect relationship must be recognized between
a virus agent and an infectious disease or an infectious syndrome,
fulfilling whenever possible Koch’s postulates. On the other hand,
having defined an etiological agent, a protective immune response
must be generated after vaccination against structural and/or non-
structural proteins (NSPs) of the virus in a naive host to prevent
infection and/or disease occurrence. On the basis of the observed
parameters (extent of infection and/or disease symptoms), pro-
tection may be defined as virological, clinical, or both. In this
conceptual framework, effective vaccines have been developed for
a plethora of viral agents in the veterinary field, leading, e.g., to the
eradication of rinderpest (1). Along with such successful vaccines,
major failures were experienced as well; among these, the exam-
ple of African swine fever (2) is probably outstanding in terms
of both disease importance and extent of the applied research
efforts. Porcine reproductive and respiratory syndrome (PRRS) is
probably in-between such extremes in vaccine history, whereby
contradictory reports accumulated about PRRS vaccine efficacy,

and various options are being evaluated to obtain more effec-
tive immunizing products. In hindsight, the two aforementioned
requirements for a vaccine were neither consistently confirmed
nor rejected for PRRS virus (PRRSV) by the scientific community,
despite long and exhaustive research efforts worldwide (3). There-
fore, after the first isolation of PRRSV in Europe in 1991, showing
a formal respect of Koch’s postulates (4), consistent susceptibil-
ity to experimental infection was only shown in late pregnant
sows. Therefore, many other attempts to reproduce disease symp-
toms were unsuccessful, and many uncertainties still exist about
fundamental issues of the host/virus relationship in the PRRS
model (5).

THE DISEASE
Porcine reproductive and respiratory syndrome emerged in the late
80s, in USA, and later on, in Europe, spread quickly and became
enzootic in the pig population in most countries all over the world.
Late-term reproductive failure in sows with transplacental trans-
mission of the virus, preweaning mortality of piglets, respiratory
distress, anorexia, and possible cutaneous hyperemia in wean-
ers and growers are the most evident clinical signs of PRRS (6).
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PRRSV is currently one of the most important swine pathogens,
causing heavy economic losses in pig farms all over the world.
These were reckoned in the height of $ 560 million/year in USA
(7), and a similar impact can be also envisaged in other coun-
tries with intensive pig farming activities. The impact is related
to both disease occurrence (direct losses) and an increased preva-
lence of secondary infections and/or growth check. The causative
agent is an enveloped, positive-strand RNA virus of the Arteriviri-
dae family (8). Whereas PRRSV infection is present in the large
majority of pig farms, the prevalence of both PRRS and PRRS-
associated diseases is highly variable. Two swine arterivirus types
have been identified, to date, as etiological agents: the European
(EU) type I, with the first strain isolated in 1991 and named
“Lelystad”; the North American type II, isolated in 1992 with
the acronym ATCC VR-2332 (8). A recent map of the global
distribution of type I and type II PRRSV can be found online
at http://www.pig333.com/what_the_experts_say/introduction-
dissemination-and-perpetuation-of-prrs-virus-in-a-region_6616/.
There is only 50–60% sequence identity between the EU and
North American types (9), which implies the existence of two
distinct genotypes derived from a common ancestor (10). On
the whole, virus infection and disease may differ between type
I and type II PRRSV, the latter being more frequently associ-
ated with disease symptoms. As a result, infection and protection
models were preferentially established for type II, as opposed to
type I PRRSV. In particular, type I PRRSV is primarily a repro-
ductive pathogen, whereas its direct role in respiratory disease
under field conditions is ill defined (11). On the contrary, the
virulence of the two PRRSV genotypes is not significantly dif-
ferent toward the male reproductive system (12). Disease control
has been traditionally founded on a combination of management
and biosecurity measures, generally aimed at “stabilization” of
the herd as a priority, i.e. a condition in which clinical signs of
PRRS are absent in the breeding-herd population, and PRRSV
is no more transmitted from sows to their offspring (13). After
reaching this preliminary status, eradication may be possible by
herd closure (14), which is eased by proper air filtration devices
to prevent airborne infection (15). In addition to management
and biosecurity measures, various immunological approaches
(vaccination and/or “conditioning” to circulating PRRSV strains)
are also used for control of both respiratory and reproductive
disease (6).

RISK FACTORS FOR DISEASE OCCURRENCE
Although Koch’s postulates were formally fulfilled for PRRSV at
the very beginning of PRRS history, most experimental infection
studies failed to provoke overt disease (16), and virus is often
found in clinically healthy pigs. Also, the findings of field studies
defined PRRS as a multifactorial disease, in which PRRSV strains
showed different features of pathogenicity and agonist interaction
with both microbial and non-microbial environmental parame-
ters, which are hardly reproducible under experimental conditions
in isolation facilities (11).

The concurrence of microbial and non-microbial components
for disease occurrence should be examined in detail. First, there is
wide circumstantial evidence reported by swine practitioners that
prevalence of respiratory disease is often related to hygiene and

welfare conditions; the adjustment of basic housing conditions
such as the animals’ concentration in the weaning crates can deeply
affect respiratory disease morbidity and related losses. Second,
disease occurrence is probably eased in intensive pig farms by
the present lean type pig phenotypes and the synergism between
PRRSV and bacterial Lipopolysaccharides (LPS); this underlies the
occurrence of respiratory disease, as opposed to either PRRSV or
LPS alone (17). The mechanism can be probably traced to PRRSV-
driven activation of inflammosomes in LPS-primed macrophages
through the small envelope protein E, which gives rise to increased
IL-1β release (18). The consequences may be conceivably worse in
lean type pigs, characterized by constitutive high levels of oxida-
tive stress (19). This can definitely exacerbate the crucial synergism
between PRRSV and LPS, because of the well-known process of
inflammatory auto-amplification through nuclear factor-kappaB
(NF-kB) activation by reactive oxygen metabolites (20). Thus, the
heavy exposure of lean type pigs to air-driven LPS (21) in inten-
sive farms further increases this kind of risk. Interestingly, there
is evidence that PRRSV had circulated in Eastern Europe for a
long time before the recognition of clinically overt PRRS (22),
which seems to be temporarily connected with the advent of lean
pig phenotypes in Western Europe in the 80s and their contact
with the virus after the reunification of Germany in 1990. Non-
lean pigs show a reduced susceptibility to PRRSV (23), as also
shown by the comparative evaluation of PRRSV infection of a
local German breed and of commercial Pietrain pigs (24). This
latter feature is relevant to strong rising evidence of a genetic
component in susceptibility to PRRSV (25). In vitro, the early
induction of a type I interferon (IFN) response may underlie the
reduced susceptibility of Landrace pig macrophages to PRRSV
replication (26).

Finally, the age of pigs plays an important role, non-adult ani-
mals showing the greatest susceptibility to both infection and
disease (27). Pregnant sows are consistently susceptible to repro-
ductive infection in late pregnancy (72–93 days of gestation under
experimental conditions), following the accumulation of highly
susceptible macrophages in the placenta (28).

Owing to the above, disease occurrence in pigs of the same
age is likely to be the product of three distinct components
(Figure 1):

1. Virus pathogenicity (ill-defined to date).
2. Pig breed (susceptibility: Hampshire > Large White > Duroc >

Landrace) and phenotype (lean > non-lean) (25).
3. Environmental conditions.

Any of the three above components may dramatically affect
disease occurrence and/or prevalence on farm. Thus, PRRS may
be ranging from subclinical to fatal disease with wide fluctua-
tions of both morbidity and mortality, as well as of direct and
indirect economic losses (6). The disease may be occasionally char-
acterized by extreme virulence, as in the outbreaks sustained by
the Chinese high fever virus, abortion “storm” viruses and some
Belarus PRRSV strains (29–31). However, even for these strains,
the synergism between PRRSV and bacterial LPS is likely to play
a crucial role in amplifying the inflammatory response of infected
macrophages (32).
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Full-blown disease on farm

Virus pathogenicity
Pig breed and 

phenotype

Environmental 

conditions

Type I or Type II strain, inflammatory response, 

dysregula!on of innate immunity.

Suscep!bility: Hampshire > Large White > Duroc > 

Landrace. Different phenotype: lean > non-lean.

Exposure to LPS, crowding, microbial infec!ous 

pressure, commingling of groups, management of 

nursing and post-weaning phases. 

Correla�on?

PRRSV experimental infections

FIGURE 1 | Occurrence of clinically overt PRRS on farm.

BIOLOGICAL PROPERTIES OF PRRS VIRUS
Porcine reproductive and respiratory syndrome virus shows
extreme variability of its nucleotide sequence, which may imply
amino acid changes of major importance for diagnostic pur-
poses (33).

There is strong evidence that PRRSV suppresses T-cell recogni-
tion of infected macrophages (34), which can be eased by the poor
accessory features of porcine alveolar macrophages (PAM) (35).
Distinct signs of immunosuppression are frequently observed in
PRRSV-infected pigs, which can be conducive to an increased
incidence and severity of secondary bacterial infections (36), and
contribute to the “porcine respiratory disease complex” (PRDC).

As for the majority of PRSSV strains, there is evidence of an
inadequate response of the innate immune system in the early
phase of PRRSV infection, compared with other virus infections
of swine, as well as of a late, erratic onset of neutralizing antibody
(NA) and virus-specific IFN-γ responses (37). In the authors’expe-
rience, the aforementioned delay observed under experimental
conditions may well correspond in non-adult pigs to a substan-
tial lack of a virus-specific IFN-γ response for a long time under
field conditions (38), in agreement with the results obtained in
non-adult pigs exposed to a type II PRRSV strain (27). An early,
non-specific IFN-γ response during PRRSV infection may be
observed as well (39, 40).

The main immunosuppressive features of PRRSV have been
actively investigated to identify the structural and non-structural
virus components exerting such activities. As for the downreg-
ulation of the type I IFN response, a main role was evidenced
of PRRSV NSPs 1α, 1β, 2, 4, and 11, with effector mechanisms
related to inactivation and block of nuclear translocation of inter-
feron response factor (IRF) 3, interferon-stimulated gene factor
3 (ISGF3), and signal transducer and activator of transcription
(STAT) 1, as well as to processing of ISG15 (an ubiquitin-like
protein coded by the ISG15 gene) and IκB kinase (IKK)α (IFN
response and NF-kB signaling, respectively) (41). In practice, there
is evidence that multiple suppressive functions are exerted by
NSPs, whereas further suppressive activities could be related to IL-
10 production through the nucleocapsid (N) protein (41). These

suppressive features may be counteracted by compensatory mech-
anisms related to the redundancy of the regulatory pathways in the
immune system. In particular, as highlighted in a previous review
(42), the final levels of IL-10 and IFN-β will be dependent on both
PRRSV infection and LPS-driven activation of toll-like receptor 4
(TLR4); also, the final NF-kB signaling levels will be determined
by N protein’s positive and NSP’s negative regulatory effects.

Immunosuppression can be also accounted for by T regulatory
(Treg) cells, which develop following infection by type II PRRSV
strains (43).

On the whole, the immunosuppressive impact of any PRRSV
strain can be conveniently evaluated on the basis of the IFN and IL-
10 responses both in vivo and in vitro. In this respect, the profiles
of cytokine responses during PRRSV infection and the existence
of outright “immunotypes” of PRRSV underlying such profiles
(44) have been implied as possible pathogenicity factors. In par-
ticular, the property of PRRSV to induce and amplify an IL-10
response in infected pigs and the possible synergism with other
microbial agents have been highlighted both in vitro and in vivo
(45). Decreasing serum concentrations of IFN-γ and persisting IL-
10 responses might cause upregulation of CD163 in macrophages
(46), which might contribute to enhanced PRRSV replication and
long duration of viremia.

The above features of most type I PRRSV strains differ from
those of virulent EU subtype 3 and Chinese type II virulent strains,
which induce instead IFN-α and inflammatory cytokine responses
early after infection and persisting IL-10 responses later on, often
correlated with a serious clinical outcome of PRRSV infection
(47, 48). These features (IFN-α and IL-10 responses) were in
agreement with the properties of a moderately virulent type I
PRRSV strain, whereas an early IFN-γ response with cessation of
viremia was shown after infection with an attenuated PRRSV strain
under the same experimental conditions (40). Also, an early IFN-
α response was shown after PRRSV infection of gilts at gestation
day 85 (49). Such a response can be reproduced in vitro by some
PRRSV strains in cultures of pig plasmacytoid dendritic cells (50).
Most important, concomitant IL-10 and IFN responses can cause
a gain of pro-inflammatory activity, as shown in human models of
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Infection by different PRRSV 

strains with high genetic 

divergence

PRRSV immunotypes: 

different cytokine profiles in 

infected pigs

Attenuated strains Suppressive strains Inflammatory strains

Poor, erratic, innate immune responses, 

possible long-lasting viremia in PRRS-

naïve pigs

Short viremia,

early IFN-γ responses

Often serious clinical 

outcomes without higher 

virus replication

FIGURE 2 | PRRSV phenotypes.

endotoxemia (51). Therefore, it is tempting to speculate that both
extent and timing of the IL-10 response in PRRSV-infected ani-
mals are crucial in terms of inflammatory response and relevant
clinical repercussions.

On the whole, PRRSV strains give rise to different cytokine
responses fluctuating between the aforementioned, extreme virus
phenotypes (Figure 2):

• Attenuated: short if any viremia is observed with an early,
probably non-virus-specific IFN-γ response.
• Suppressive: these strains induce a delayed and erratic devel-

opment of innate and adaptive immunity, often correlated with
long-lasting viremia after infection of non-adult, PRRS-naïve
pigs.
• Inflammatory: early, strong inflammatory cytokine responses

with persisting IL-10 plasma levels are observed, which is often
correlated with serious clinical signs. This virus phenotype may
fulfill Koch’s postulates after both reproductive and respiratory
infection of PRRS-naïve pigs.

In turn, the three virus phenotypes are in conceptual agree-
ment with the aforementioned virus “immunotypes” shown
in vitro (44).

MECHANISMS OF IMMUNE PROTECTION AND VIRUS
CLEARANCE
Whereas a cause/effect relationship between the swine arterivirus
and PRRS can be proved for many type II strains, this is not the
case for the vast majority of type I (EU) strains, which usually give

rise to subclinical infections and relatively low levels of viremia
under experimental conditions (3). Also, major discrepancies are
reported for both EU and North American strains between exper-
imental trials under controlled conditions and observations made
in the field on farm (52). This highlights the complex pathogene-
sis of the disease, which underlies the accumulation of conflicting
reports and sets of data related to both field trials and protocols of
experimental infection.

Most important, the definition of clear correlates of immune
protection is still controversial. The antibody response observed
by ELISA is not protective and a fraction of these immunoglob-
ulins have been associated with an immunopotentiating effect
of PRRSV infection (53). The inhibition of antiviral cytokine
responses through ligation of porcine FC gamma receptor I in
pulmonary macrophages may account for the observed adverse
effects (54), which could be also correlated with anti-idiotypic
antibody responses (55). A few reports are available about the
mucosal antibody response to PRRSV, which has been somewhat
neglected by the scientific community. In the authors’ experience,
the IgA antibody response to PRRSV in oral fluids during primary
infection is concomitant with the serum antibody response, even
if the duration tends to be shorter and followed by subsequent
“waves” of antibody production (Amadori, Razzuoli, unpublished
data).

Cytotoxic T lymphocytes do not eliminate PRRSV-infected
macrophages (56) and antibody-dependent lysis by complement
and phagocytic cells does not work since viral glycoproteins are
not expressed on the plasma membrane (57). Accordingly, in a
primary infection of PRRS-naive pigs, the decay of viremia is not
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dependent upon the adaptive immune response to PRRSV (37).
In particular, the height and duration of viremia is not affected by
the PRRSV-specific IFN-γ response in the first 3 weeks after chal-
lenge (58). The decay of viremia may be correlated with an early,
non-virus-specific production of IFN-γ by activated natural killer
(NK) cells (39). Instead, in a later phase (the third week after infec-
tion), the serum concentrations of IFN-γ were shown to correlate
with serum viral RNA loads and the severity of clinical signs (59).
A role of NA and PRRSV-specific IFN-γ responses was highlighted
for the protection after vaccination or primary infection (60, 61).
In particular, a protective role of NA was demonstrated by passive
transfer to adult and non-adult pigs (62, 63). Similar results were
observed in the arterivirus infections of horses and mice (61). The
findings are less clear and definitely contentious with respect to
virus clearance after PRRSV infection. Thus, a recent experimental
study (64) showed that viremia may coexist for weeks with NA and
that, under some circumstances, heterologous neutralization may
be more efficient than the homologous one. Also, a commercial
inactivated vaccine was shown to evoke a vigorous post-challenge
anamnestic NA response and no protection (65). On the whole,
serum-NA and PRRSV-specific IFN-γ secreting cells (SC) do not
fully depict the immune effector functions related to protective
immunity (3), which probably underlies the accumulation of con-
tradictory reports. In particular, some virus strains may fail to
induce a satisfactory NA response to themselves, whereas other
PRRSV strains can induce cross-reacting NA. This is probably
related to the “glycan shielding” status, i.e. the glycosylation of
crucial neutralizing epitopes (66). On the whole, in vitro neutral-
ization should be further investigated, in that a NA response can be
either associated with protection (62) or coexist with viremia for a
long time (64). This probably means that neutralization measured
in vitro may or may not correspond to an effective immune effec-
tor function in vivo. Also, classical anamnestic antibody responses
do not occur in PRRSV-infected or vaccinated animals (3). Finally,
there is strong evidence that immune activation measured in vitro
(assay of PRRSV-specific, IFN-γ SC) is not dependent on the
genetic divergence of the PRRSV strains used for immunization
of pigs and recall in vitro tests, respectively (67).

The above findings about PRRSV infection should be off-
set against studies of the closely related lactate dehydrogenase-
elevating virus (LDV), a macrophage-tropic arterivirus of mice.
After the acute phase of infection, LDV levels in the blood remain
high for the rest of the host’s life (68). Viremia is maintained at
a constant level, and the same course of the infection is observed
in immunologically tolerant mice and in those mounting virus-
specific humoral and cell-mediated responses (69). This implies
that adaptive immunity plays little, if any, role in the control of
established arterivirus infections in the murine model. This tenet
would be confirmed in the PRRS model after infection with a vir-
ulent, type I, subtype 3 Belarus PRRSV strain (Figure 3). This
gives rise to greater clinical signs and lung pathology with an
enhanced and earlier adaptive immune response (IFN-γ SC and
antibody), compared with subtype 1 strains (48). The effects can
be accounted for by an enhanced inflammatory response, and not
by higher virus replication (48). The same results were repro-
duced by immunization of pigs with DNA vaccines containing
open reading frame (ORF) 5, 6, and 7 of PRRSV. An exacerbation

FIGURE 3 | Role of adaptive immune responses to established
arterivirus infections: LDV and PRRSV models. (A) LDV model in mice.
(B) PRRSV model in pigs.

of the disease after challenge was observed in DNA-immunized
pigs that mounted a greater and earlier antibody response and
rise of PRRSV-specific, IFN-γ SC, accompanied by higher lev-
els of IL-1β in serum, compared with control, non-vaccinated
animals (70). Apart from adaptive immunity, the lack of PRRSV-
susceptible macrophage cells at some time during infection (34,
71, 72) could play an important role in the decay of viremia and
in the further control of virus infection. On the whole, the above
findings would imply that established PRRSV infections could be
effectively controlled following (a) the lack of virus-permissive
macrophages and (b) the development of macrophages refractory
to productive infection as a result of an effective innate immune
response. Also, an effective control of the inflammatory response
could play a crucial role in preventing serious clinical signs in
PRRSV-infected pigs.

NK MEMORY CELLS: THE MISSING LINK?
The innate immune response to PRRSV could be displayed in dif-
ferent forms. Among these, the recent report about the antiviral
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activity of some peptides of the defensin and cathelicidin families
in the PRRS model (42) deserves utmost attention; their antiviral
activity could underlie, in fact, a potent mechanism of protection
at the very sites of virus entry in the upper respiratory tract.

The innate, non-specific IFN-γ response (65), allegedly by
CD3−CD8α+ NK cells (73, 74), could play an important role
during PRRSV infection, in view of the constitutive expression of
IFN-γ in swine PBMC (75). Interestingly, in the authors’ experi-
ence, the discrimination between virus-specific and non-specific
IFN-γ responses in PRRSV-infected pigs gets ill defined when-
ever a cryolysate of non-infected cells is used as control antigen
representing damage-associated-molecular patterns (DAMPs); the
in vitro IFN-γ response to DAMPs is often equal or greater than
the recall response to PRRSV (38).

Most important, recent data showed that an “education” of the
innate immune system is possible. Thus, the system could better
react to a second encounter with a virus by more effective effector
functions (76), in contrast to established dogmas about the lack of
memory in the innate immune response. In this respect, the strong
circumstantial evidence about “adaptation” of pigs to field PRRSV
strains could be set into a credible conceptual framework. Which
mechanisms could be surmised? NK cells can acquire some form
of immunological memory, and enhanced NK functions can be
displayed during secondary, compared to primary exposure (76).
This tenet is in line with the selective education process of NK
cells and their clonal-like expansion during virus infections. Is this
model relevant to PRRS in swine? Although only speculations can
be made for the time being about the role of NK memory cells in
PRRSV infection, there is indirect evidence in agreement with this
latter hypothesis. Thus, PRRS-naïve, non-adult pigs experience a
dramatic decrease of NK cell-mediated cytotoxicity very early after
PRRSV infection on farm, which is related to massive virus repli-
cation and sustained viremia (77). In older pigs, the NK response
could become more robust. In our experience, a substantial upreg-
ulation of CD3−CD8α+, allegedly NK cells (78) takes place early
after infection with an attenuated PRRSV strain, which is coin-
cident with the decay of viremia (40). CD3−CD8α+, allegedly
NK cells, could also play a crucial role in local antiviral immunity
in PRRSV-positive endometrium (28). Furthermore, after expo-
sure to a field PRRSV strain, the same lymphocyte population was
shown to be upregulated in animals inoculated with a live attenu-
ated PRRS vaccine, as compared with the control, non-vaccinated
ones (79). This finding was correlated with an increased expres-
sion of inflammatory cytokine genes, a prompt increase of growth
hormone and greater early cortisol response with respect to con-
trols. Vaccinated pigs also showed a more efficient shut-off of the
TNF-α, IL-6, and IL-10 responses in the late phase of natural infec-
tion (80). These results imply that innate immune mechanisms
maintain their importance for the host’s protection after primary
infection or vaccination. Finally, a stepwise maturation of NK cell
functions was shown during in vitro recall responses of PBMC
from PRRSV-infected pigs (81).

ROLES OF INNATE AND ADAPTIVE IMMUNITY
There is a general consensus in the scientific community about an
active suppression of innate immune responses early after infec-
tion by many PRRSV strains. However, there is also evidence in

the long term of a reduced susceptibility to a further PRRSV infec-
tion after both homologous and heterologous challenge exposure
(64). These findings may outline a new scenario, whereby failure
or sub-optimal expression of innate immunity would often take
place in the early phase of PRRSV infection, but not in the later
ones, in agreement with the final virus clearance in the infected
host (82). This concept can be conducive in our opinion to better
disease control strategies. As a caveat, the above data obtained in
studies of experimental infection may not be totally relevant to a
field scenario, where subsequent “waves” of subclinical infection
may take place over several weeks in non-adult pigs in PRRS unsta-
ble sow herds (38, 83). In this respect, the authors believe that the
aforementioned exposure to microbial agents and airborne LPS,
as well as to airborne barn dust (84) on farm is likely to play a cru-
cial role. This could deeply modify fundamental parameters of the
host/virus relationship and contribute to long-term persistence
of PRRSV by (a) impairing and/or delaying the development of
crucial immune responses, and (b) sustaining a poorly controlled
inflammatory response.

Innate immunity should be complemented by PRRSV-specific,
antibody, and cell-mediated responses, which were correlated with
a better performance of PRRS vaccines against homologous, com-
pared with heterologous challenge (85). Yet, we believe that even a
homologous vaccine or field strain is not likely to induce a protec-
tive response if parameters of innate immunity are not adequately
stimulated. This probably accounts for reports about equal or bet-
ter virological protection by some heterologous PRRSV strains
(64), and the existence of outright “immunotypes” of the virus
(44). This implies that “immunotypes” of PRRSV better stim-
ulating innate immunity are more likely to induce protection
in pigs.

THE EFFICACY OF VACCINES
In terms of clinical protection and prevention of economic losses,
farm hygiene, biosecurity measures, and welfare-friendly housing
conditions in a PRRS-stable farm can be conducive to a favor-
able outcome of PRRSV infection. Pigs can “adapt” to field virus
strains and show good productive figures in both reproductive and
growing/finishing units, despite an ongoing PRRSV infection (11).
In this scenario, PRRS vaccines should provide an added value by
inducing effective immunity to field PRRSVs. Vaccines should pre-
vent infection, virus-driven immunosuppression, growth check,
virus transmission, and disease onset, as possible efficacy para-
meters. Also, PRRS vaccines are requested in the breeding sector
to prevent transplacental transmission of the virus to pig fetuses.
Most important, vaccines should provide an advantage in terms
of disease control over the natural course of the infection, which
eventually results in PRRSV clearance (82). In this respect, there
is evidence that a commercial live virus vaccine may not substan-
tially reduce virus transmission, since the relevant R0 values (basic
reproduction number, the number of cases one case generates on
average over the course of its infectious period) can exceed the crit-
ical 1.0 threshold (86). Regardless of this feature, vaccines should
be conducive to a better disease status in PRRS unstable farms. In
general, the performance and the role of both inactivated and live-
attenuated PRRS vaccines have been controversial and not easily
intelligible. A substantial efficacy of live attenuated, as opposed
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to inactivated PRRS vaccines, was advocated in some studies (65,
87). Yet, the efficacy of inactivated vaccines against reproductive
disease was demonstrated in other studies in terms of piglets born
alive and healthy, as well as of reduction of premature farrowings,
abortions, and increased farrowing rates (88, 89).

Live-attenuated vaccines show variable levels of efficacy: both
genetic relatedness to field strains and (more probably in our
opinion) “immunotype” of vaccine and challenge strains might
account for such outcomes. Regardless of this issue, the absence of
a possible reversion to virulence (90) and of immunosuppressive
properties should be much sought after features of live attenu-
ated vaccines. On the basis of the findings reported about PRRSV
immunotypes (44), a proper screening in vitro of candidate vac-
cine strains should include a thorough evaluation of the cytokine
responses by leukocytes (PBMC, macrophages, dendritic cells),
including in particular IL-10, type I, and type II IFN responses.
Interestingly, a clear correlation was observed between induction
of IL-10 in vitro and poor performance of an attenuated vaccine,
regardless of the genetic similarity between vaccine and challenge
strains, and development of NA before challenge (91).

In vivo, an attenuated vaccine strain should give rise to moder-
ate IFN-γ responses in serum in the first week after parenteral
injection, with little if any IL-10 response. Viremia should be
over in a couple of weeks and cross-reacting NA should be
detected within 3–4 weeks after injection. On the whole, the bal-
ance between induction of IL-10 and development of IFN-γ-SC
should be taken into account for a proper evaluation of a candidate
vaccine strain (91). Also, the presence of differentiating infected
from vaccinated animals (DIVA) features would be an important
added value for such vaccines, which has already prompted some
research in this area. The demonstration of disposable segments
in NSPs (92) lends support to the development of live-attenuated
DIVA vaccines for PRRS. A modified live virus (MLV) containing
a positive marker green fluorescent protein (GFP) was reported as
well (93).

In general, the efficacy of vaccines may be negatively affected
by the extreme variability of PRRSV strains, in terms of
both genetic relatedness and virus “immunotype.” Interestingly,
vaccine-induced protection cannot be restricted to genetic simi-
larity between vaccine and challenge strains, and even against a
closely related virulent strain, the protection can be only partial
(94). Vice versa, immunization with a type I PRRSV vaccine can
provide substantial protection against challenge with a highly vir-
ulent type II strain (95). Also, circumstantial evidence on farm
does not point at a clear-cut correlation between nucleotide diver-
gence of isolates from the vaccine strains and clinical impact of
PRRS under field conditions. It should be stressed that clinical
protection of PRRS-vaccinated pigs may substantially differ from
virological protection (79), which means that virus loads in tissues
do not account for severe clinical symptoms during PRRSV infec-
tion. On the basis of the above findings, one might wonder if the
better performance of many vaccines against homologous PRRSV
strains may be partly correlated with better adaptation of the host
to PRRSV strain-specific regulation of innate immune responses.

Another crucial factor related to vaccine efficacy is the tim-
ing of vaccination with respect to the exposure to PRRSV field
strains, having in mind that vaccination is often applied on farm

to PRRSV-infected animals. In the authors’ experience, the effi-
cacy of a live-attenuated vaccine under such conditions on farm
may be negligible (96). Interestingly, a substantial efficacy of the
same commercial vaccine was reported instead in another study, in
which it was administered to PRRS-free young pigs, later moved to
a PRRSV-infected site (79). The use of vaccines in subjects experi-
encing a wild-type infection deserves due consideration. Favorable
effects of emergency vaccination were reported if a MLV vaccine
was administered on the same day of contact exposure to PRRSV-
infected animals (97). As for the vaccination of PRRSV-infected
pigs, results are less clear. Under very favorable experimental con-
ditions (wild-type virus homologous to the MLV vaccine), virus
transmission and persistence were reduced in a late phase of infec-
tion (beyond 4 months) by one or more shots of vaccine (98).
However, no significant difference was observed in terms of clini-
cal signs and virus persistence after a heterologous infection; there
was just a slight improvement in terms of virus transmission (99).

These and other results confirm a decreased susceptibility to
PRRSV infection in convalescent animals. Vaccines could improve
such a process in the long term, which may account for the
favorable reports about disease-control schemes based on both
vaccination and management of pig flow (100). Notice, however,
that the presence of long-lasting viremias in infected, non-adult
animals is conducive to further spread of infection whenever dis-
posable needles are not used for vaccination of PRRSV-viremic
subjects under field conditions.

On the basis of the above data, five major issues should repre-
sent as many priorities for a correct evaluation of any immunizing
product against PRRS:

• Which parameters of protective immunity should be adopted?
• Can they be adequately stimulated by vaccines?
• If PRRSV is indeed immunosuppressive, can we develop MLV

vaccines devoid of such side effects?
• Can inactivated vaccines be made more effective by proper

adjuvants?
• Are PRRS vaccines effective, useless, or noxious vis-à-vis

concomitant exposure to field PRRSV strains?

In the authors’ opinion, correct solutions to these problems
will be conducive to a sound and meaningful evaluation of exist-
ing and new PRRS vaccines. In this respect, the findings generated
by experimental studies should be complemented whenever pos-
sible by field data. Yet, as suggested in a previous study of our
group (96), no single field trial of PRRS vaccine products is likely
to provide conclusive efficacy data, pending a clear definition of
the environmental parameters affecting the results, and relevant
standardization features of field vaccine studies.

NEW VACCINES
It is far beyond the scope of this review to perform a detailed eval-
uation of the extensive research efforts in the area of PRRS vaccine
research. Therefore, only some outstanding results will be taken
into account and analyzed in the light of the above five major
issues; for more information, the reader is referred to updated
comprehensive reviews (3, 101).
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In general, the efficacy of PRRS vaccines is affected by the
immune evasion strategies of PRRSV; therefore, new vaccines
will have to overcome these negative features and induce a broad
immune response in vaccinated animals (66). This goal can be
pursued by means of effective immunogens and/or new ways
of antigen delivery, formulation, and injection. In particular, it
is questionable whether vaccines can successfully antagonize the
PRRSV-induced negative regulation of the immune response at
the time of infection (102).

Regardless of the vaccine type to be developed (live vs. inacti-
vated), recent findings suggest that two areas of research deserve
particular attention: mucosal vaccines and bromo-ethylene-imine
(BEI)-inactivated vaccines. As for mucosal vaccines, the results
based on type II MLV strain VR2332+ whole cell lysate (WCL) of
Mycobacterium tuberculosis (mtb) administered intranasally (103)
are remarkable in terms of clinical protection (symptoms, lung
lesions, and weight gain) and reduced viremia after a heterologous
challenge, which highlights the importance of “immunotypes”and
antigen presentation as crucial parameters for vaccine efficacy,
rather than genetic relatedness between vaccine and challenge
strains. Vaccine efficacy was correlated with a global increase
of T helper (Th)1 responses (IFN-γ, IL-12, IFN-γ SC), NK cell
frequency, and function, NA response, as well as with reduced
production of IL-10 and Treg cells (103, 104). Also, there was
an increased proliferation of CD8+ lymphocytes on restimula-
tion among lung and peripheral blood mononuclear cells, and
an increased content of nitric oxide in the lung homogenate
(105). Similar favorable results were observed following intranasal
inoculation of poly(lactic-co-glycolic acid, PLGA) nanoparticle-
entrapped killed PRRSV (106). On the whole, the above results
suggest that mucosal administration of PRRS vaccines with proper
adjuvants can give rise to effective immune responses.

The development of inactivated vaccines can be based on
proper inactivation procedures of PRRSV with ultraviolet light,
BEI, and gamma irradiation, i.e., methods with a main effect
on viral genome, preserving PRRSV entry-associated domains
(107). The preservation of such critical domains is correlated
with good immunizing properties of BEI-inactivated, oil-in-water
PRRS vaccines, characterized by a good NA response and a signif-
icant reduction of viremia after challenge (108); partial protection
against a heterologous strain can be demonstrated as well (72).
Therefore, it is conceivable to boost the immunity induced by
attenuated vaccines with properly inactivated vaccines of high
antigenic mass (72). The immunizing properties of killed vac-
cines could be also enhanced by TLR ligands like polyriboinosinic
polyribocytidylic acid (poly I:C) and CL097 (a derivative of the
imidazoquinoline compound R848), with lighter clinical signs and
lower viremia after infection as compared to control vaccine and
challenge control groups (109).

The development of PRRS recombinant vaccines has been
seriously hampered by uncertainty about the viral targets of pro-
tective immunity (3) and by the serious problems in obtaining
a gene-deleted attenuated strain (66). A more promising, feasi-
ble approach is the preparation of chimeric MLV vaccines, based
on the exchange of one or more ORF regions between a virulent
and an attenuated PRRSV strain (110). Whereas DNA vaccines
usually require multiple injections and are thus not compatible

with mass vaccination programs, recombinant proteins expressed
in safe, suitable vectors could be a possible option in the future to
induce broad NA and/or cell-mediated responses to promiscuous
T-cell epitopes (5). These products could be used for either pri-
mary or recall vaccination programs. In this respect, some viral
vectors (pseudorabies virus, poxvirus, adenovirus, transmissible
gastroenteritis virus, TGEV) have the capability of expressing high
levels of heterologous PRRSV genes; these vectors can induce
PRRSV-specific antibody and partial protection against a challenge
infection (111).

Several adjuvants for PRRS vaccines were investigated in
previous studies. As stressed in a previous review (112), both
interleukin-2 and CpG oligodeoxynucleotides (CpG ODN) were
shown to enhance the protective efficacy of PRRS vaccines in chal-
lenge models. Interestingly, these results refer to DNA and killed
vaccines, whereas no adjuvant was shown to enhance the protec-
tive efficacy of PRRS MLV vaccines for parenteral injection (112).
Vaccines targeting dendritic cells or suppressing negative regula-
tory functions of Treg cells could be of major importance, but
probably cost-prohibitive for immunization of swine (110).

IMMUNOMODULATION: CONCEPTUAL BASIS IN THE PRRS
MODEL
The uncertainty about the viral targets of protective immunity
and the poor definition of clear immunological correlates of pro-
tection are as many serious hurdles in the development of novel
effective PRRS vaccines (3). Thus, there is a case for complemen-
tary disease control strategies based on the modulation of innate
immune effector functions, which are conducive to both clinical
and virological protection. The issue of an immunomodulation
strategy for PRRS is very complex, since PRRSV itself is definitely
an immunomodulator (suppression of IFN responses, stimula-
tion of polyclonal IgG responses, etc.). In the authors’ opinion,
three aims should be considered within an immunomodulation
strategy:

1. To maintain the homeostatic regulatory functions of IFNs
during PRRSV infection.

2. To antagonize the PRRSV-driven amplification of the inflam-
matory response to LPS.

3. To boost antiviral innate immunity.

In other words, combating PRRSV-induced negative regulatory
effects in the early phases of infection (102) defines the scope of an
immunomodulation strategy for PRRS. This could properly stim-
ulate CD3−CD8α+, allegedly NK cells in endometrium by target
cell receptor-specific immunoconjugates (28).

Aims 1 and 2 should be meant in terms of clinical rather viro-
logical protection. Aim 3 could be relevant to both. Non-adult
pigs, as well as pregnant sows would be obviously the main tar-
gets of an immunomodulation strategy. An immunomodulator for
PRRSV infection could have been inadvertently under use for some
years, because of a possible role as immunomodulators of inacti-
vated porcine circovirus type 2 (PCV2) vaccines. The evidence
underlying this statement is both diverse and complementary.
First, circumstantial evidence in the field shows that the dramatic
decline of PCV2-associated pathologies after the introduction of
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inactivated PCV2 vaccines has often gone along with a decrease of
clinically overt respiratory PRRS and PRRSV-related disease cases.
Second, the findings of a field trial showed an improved clinical
response to PRRSV infection in PCV2-vaccinated pigs (96). In the
same study, the significant downregulation in vitro of TNF-α gene
expression vis-à-vis PRRSV in leukocytes of PCV2-vaccinated pigs
pointed at a regulatory function of PCV2 vaccines on the immune
response to PRRSV (96). In another field study (113), a PCV2
vaccine based on recombinant ORF2 was shown to improve the
clinical score, the daily weight gain, and the time to market in
a PRRSV-infected farm, affected by PRDC. In a PCV2 vaccine
trial based on recombinant ORF2 (114), more lung samples from
placebo-treated animals than from vaccinated animals were found
to be positive for Mycoplasma hyorhinis and PRRSV. Obviously,
the authors do not rule out an indirect effect of PCV2 vaccines; an
effective immune response to PCV2 could curtail the substantial
synergism between PCV2 and other pathogens in the framework
of PRDC, as confirmed by the overlapping post mortem findings
of PCV2 infection and PRDC (115). Further studies are needed to
elucidate and confirm these findings, as well as to clarify the role
of PCV2 vaccines in disease control programs in swine herds.

A typical Th1 cytokine like IL-12 can significantly decrease
PRRSV titers in lungs and blood of infected animals and prevent
significant growth retardation; also, IL-12 induces IFN-γ in PAM
and reduces PRRSV titers in vitro (116).

THE INTERFERON SYSTEM AS TARGET AND TOOL OF AN
IMMUNOMODULATION STRATEGY
The IFN system could be an important target of an immunomod-
ulation strategy for PRRS, having in mind the negative regulatory
functions of PRRSV on this crucial arm of the innate immune sys-
tem (41). PRRSV is susceptible to the direct antiviral mechanisms
displayed by IFN-α (117) and IFN-γ (118). Most important,

IFNs were shown to reverse distinct immunosuppressive func-
tions of PRRSV. Thus, IFN-α can block in vitro the develop-
ment of Treg cells induced by co-culture of lymphocytes with
PRRSV-infected dendritic cells (43). In vivo, positive effects were
observed in pigs injected with a non-replicating human aden-
ovirus 5 vector expressing porcine IFN-α, in terms of lower febrile
response, lesser involvement of lungs, delayed viremia, and anti-
body response after challenge with PRRSV 1 day later (58). Yet,
the peak and duration of viremia were not significantly different
between treated and control animals (58), which points once again
at the profound discrepancies between clinical and virological
protection.

A substantial stimulation of antiviral innate immune responses
can be pursued by low-dose, oral IFN-α treatments (119). Human
IFN-α can be conveniently administered to pigs since the pro-
tein is biologically active on porcine cells and compatible with
freeze-drying (120). The biological effects are exerted following an
interaction with the oral lymphoid tissues (121). Therefore, IFN-
α does not need to resist proteases and to be absorbed through
the gut after passing the stomach in an active form (acid-stable
cytokine).

Owing to the above, two field trials of oral, low-dose human
IFN-α treatment (10 IU/kg b.w./daily) were carried out by our
group in problem herds, affected by recurrent outbreaks of PRRS;
the results of these trials were reported in a previous review paper
on IFN-α (122). The first trial was carried out in a large multi-site,
farrow-to-weaning herd, affected by a typical, clinically serious
respiratory form of PRRS in pigs of about 40 days of age, with the
demonstrated involvement of both PRRSV and PCV2. The oral,
low-dose IFN-α treatment caused a significant reduction of dead
piglets and “poor-doers” (P < 0.01); the treatment also caused a
much greater average daily weight gain from 22 to 86 days of age
(Table 1). Similar results were obtained in trial 2, carried out in a

Table 1 | Oral, low-dose IFN-alpha treatments on farm for respiratory PRRS.

(A)Trial 1

Groups Piglets Mean weight at

22 days (kg)

Mean weight at

86 days (kg)

ADWG (kg) Dead piglets and

“poor-doers” (%)

IFN α-treated 280 5.6 37.1 0.48 0.3*

Control 280 5.6 33.8 0.44 4.5*

(B)Trial 2

Groups Piglets Mean weight at

24 days (kg)

Mean weight at

72 days (kg)

ADWG (kg) Dead piglets and

“poor-doers” (%)

IFN α-treated 458 7.20 28.61 0.446 0.7*

Control 430 6.98 27.38 0.425 3.5*

*P < 0.01 (Fisher’s exact test).

The two trials were carried out in as many herds affected by recurrent respiratory PRRS and PCV2-associated pathologies after weaning. Freeze-dried human lym-

phoblastoid IFN-alpha was mixed with the starter feed of piglets at weaning to provide 10 IU/kg of body weight for 15 days in a row, on the basis of the mean weight

at weaning and the expected growth rate of piglets. The control groups received the same starter feed without IFN-alpha. The whole report in Italian language is

available at: http:// www.izsler.it/ izs_bs/ ftp/ /doc/ Archivio/ 2002/ 2002Agosto.pdf .

ADWG, average daily weight gain.
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farrow-to-finish herd also affected by respiratory PRRS (Table 1).
Following these trials, we were requested by swine practitioners
to perform this treatment in two farms heavily affected by repro-
ductive PRRS. In the former, the treatment was carried out on
sows housed in farrowing crates, whereas in the latter, the treat-
ment was applied to all pregnant sows regardless of the pregnancy
phase. In both cases, there was clear circumstantial evidence of a
great reduction of both abortions in sows and mortality in suckling
piglets within 2 weeks after administration of IFN-α, even though
the lack of control groups did not enable us to evaluate the real
efficacy of the applied treatment. In particular, we cannot rule out
that IFN-α somehow stimulated a rapid development of PRRSV-
specific immunity, providing protection to later farrowing animals
before they reached the critical late-gestation period of maximum
sensitivity to PRRS disease.

On the basis of these field findings, we decided to investigate
their possible reproduction under the “clean” conditions of an
experimental infection of weaners with an EU PRRSV strain inside
isolation facilities, with little if any infectious pressure exerted on
the pigs. In this case, we observed no overt disease symptoms, and
only minor clinical differences were shown between IFN α-treated
and control piglets; there was just a significant decrease of pyrectic
days (P < 0.05) and a transient decrease of circulating CD8+ T
and NK cells for a possible homing to PRRSV-infected tissues, not
observed in control pigs (data not shown). Interestingly, the sig-
nificantly fewer days of fever in IFN α-treated pigs was not related
to the duration of viremia, in agreement with the aforementioned
results of adenovirus type 5 vector expressing porcine IFN-α (58).
In a completely different context, the same discrepancy between
viremia levels and improvement of clinical score after an oral, low-
dose IFN α-treatment was observed in feline immunodeficiency
virus-infected cats (123). On the whole, the comparative evalua-
tion of trials on farm and in isolation facilities indicated that the
control action of IFN-α was not exerted on the viral infection, but
rather on the mutual interactions between PRRSV, environmental
bacteria, and/or airborne LPS (17), obviously lacking in isolation
facilities. The absence of a direct antiviral effect of low-dose IFN-α
is also in line with the possible enhancement of PRRSV infec-
tion in IFN α-treated PAM via upregulation of the sialoadhesin
receptor (124).

EFFECTOR MECHANISMS OF ORAL, LOW-DOSE IFN-ALPHA
TREATMENTS
The authors believe that the LPS/PRRSV synergism (17) is pivotal
to understanding the activity of low-dose, oral IFN-α. As shown
by our in vitro data (120), very low concentrations of hIFN-alpha
(0.5–5 IU/ml) downregulate CD14 expression in swine PBMC, as
opposed to higher concentrations. This may dramatically affect
signaling by LPS/LPS binding protein, and the released CD14 may
be a potent scavenger of LPS. Most important, our laboratory
has recently demonstrated a potent role of IFN-α in the control
of inflammatory cytokine responses through the release of sec-
ondary mediators from IFN α-treated tonsil cells, which underlies
the rationale for an oral, low-dose treatment with type I IFNs
(125). The anti-inflammatory control actions of IFN-α are also
directly exerted in vitro on epithelial cells at both moderate and
low concentrations (125).

In this scenario, IFN-α could prevent a negative clinical out-
come following exposure to PRRSV and bacterial LPS by checking
abnormal inflammatory cytokine responses. This is in line with the
observed correlation between the serious clinical course of PRRSV
infection and a strong inflammatory response (48).

The control action of IFN-α on inflammatory cytokines could
be performed through different, non-mutually exclusive, dose-
dependent pathways: mRNA stability control by tristetraprolin
(TTP) induction (126), Tyro3, Axl, and Mer (TAM) receptor-
mediated activation of suppressor of cytokine signaling (SOCS)
proteins (127) through type I IFN receptor (IFNAR-1) signaling
(128), downregulation of CD14 expression (120).

CONCLUDING REMARKS
On the whole, the accumulated findings indicate that PRRS should
be considered as a peculiar model of host/virus relationship, where
the final clinical outcome is actually determined by the combi-
nation of virus infection, bacterial co-infections, pig and virus
genetic features, and fundamental environmental data (hygiene
and welfare conditions). In this scenario, PRRS has evolved in its
history from a subclinical infection in non-lean pigs to a some-
times serious disease in lean type pigs. The infectious pressure
on farm and the intensity of exposure to airborne LPS are often
of major importance for an unfavorable clinical outcome of the
infection.

The pig eventually gets rid of an established PRRSV infection.
This is mainly due in the authors’ opinion to as yet undefined fea-
tures of innate immunity, which are also likely to play an important
role in protection against primary infection and/or re-infection.
This kind of protection can be also afforded by adaptive immune
responses, in particular by NA. Vaccines may promote the devel-
opment of effective innate and adaptive responses. This is more
likely to happen if vaccination is carried out in PRRSV-free ani-
mals, whereas advantages are dubious in PRRSV-infected animals.
If vaccination of PRRSV-free animals should not be possible, pri-
ority should be given to good farming practices (all in–all out and
all-forward practices, hygiene, strict control of animal concen-
trations, limitation of nursing practices) to reach or maintain a
“PRRS-stable” status; this can be associated with satisfactory clin-
ical conditions and productive performance. The foundation of
this working scheme is possibly the stepwise maturation of the
innate immune response as a result of a controlled exposure of
animals to field PRRSV strains.

To achieve a “PRRS-stable” status, immunomodulation could
be conveniently associated with proper farm management mea-
sures. This is true in particular for pig farms where (a) funda-
mental logistics and infrastructure features do not allow for a
rapid enforcement of sound hygienic measures and (b) recent
anamnestic data confirm heavy losses due to circulating PRRSV
strains.

Positive clinical results can be obtained on farm by oral, low-
dose IFN-α treatments, as opposed to the negligible outcome
under experimental conditions in isolation facilities. This indi-
rectly confirms the role of environmental bacterial agents in clini-
cally overt PRRS. Accordingly, the regulation of the inflammatory
response by oral IFN-α is likely to play a crucial role in preventing
a clinically serious outcome of PRRSV infection.
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On the whole, a sound combination of clinical surveillance,
good farming practices, welfare-friendly conditions, and immuno-
prophylaxis is badly needed for an effective control of PRRS in the
long term. In this scenario, immunomodulators could be of some
use in “problem” farms showing recurrent PRRS outbreaks. At the
same time, the fundamental mechanisms of PRRSV clearance and
protection against re-infection still pose a challenge to the scientific
community. This will probably demand the development of new
working hypotheses and experimental models beyond established
dogmas and outdated investigation schemes.
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