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Abstract

Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to mi-

croorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using

flow cytometry, light microscopy (including confocal laser scanning microscopy) and trans-

mission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agran-

ulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells

and after light and electron microscopy of fixed material. Also, three different populations of

circulating hemocytes were separated by flow cytometry, which corresponded to the three

hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent

granules in stained material, but showed granules of moderate electron density under TEM

(L granules) and at least some L granules appear acidic when labeled with LysoTracker

Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules

when exposed to microorganisms in vitro. The phagosomes formed differed whether hyali-

nocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulo-

cytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes

showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining.

These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes

may show merging of R granules into gigantic ones, particularly when exposed to microor-

ganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in

hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly

higher in hyalinocytes.

Extensive hemocyte aggregates (‘islets’) occupy most renal hemocoelic spaces and

hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen de-

posits were observed in most hyalinocytes in renal islets (they also occur in the circulation

but less frequently) and may mean that hyalinocytes participate in the storage and
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circulation of this compound. Injection of microorganisms in the foot results in phagocytosis

by hemocytes in the islets, and the different phagosomes formed are similar to those in cir-

culating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase diges-

tion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the

kidney as an immune barrier is proposed for this snail.

Introduction

Haemocytes are the cellular component of the molluscan immune system and their functions

include recognition and phagocytosis of invaders [1–3] or capsule formation around larger for-

eign objects [4–6]. Besides immunity, hemocytes serve a variety of functions such as blood he-

mostasis and wound healing [7], shell formation and repair [7, 8], nutrient digestion and

excretion [9]. Hemocytes also have been involved in the stress response through releasing ver-

tebrate like endocrine molecules [10, 11].

Morphological characterization of gastropod hemocytes have been made mainly in hetero-

branchs (e.g., [12, 13–17]) but there is some information on other gastropods, including Poma-

cea canaliculata [18–20]. A diversity of cell types has been described, but there is a growing

confusion caused by different terminologies developed by different authors in a growing num-

ber of species. Table 1 is an attempt to synonymize the information on hemocytes of architae-

nioglossan gastropods (which include ampullariids) on the basis of the simple terminology

Table 1. Hemocyte types according to Cheng [16] and proposed synonymy in architaenioglossan gastropods (families Viviparidae and
Ampullariidae).

Species (Family) Hyalinocytes Agranulocytes Granulocytes Methodology Reference

Bellamya

bengalensis

(Viviparidae)

Semigranulocytes Agranulocytes Granulocytes Flow cytometry, phase
contrast, Giemsa stain

[22]

Viviparus sp.
(Viviparidae)

Large hyaline
amoebocytes

Small hyaline amoebocytes Large amoebocytes
with eosinophilous
granules

Not mentioned Kollmann
(1908), cited in
[21], p. 279

Viviparus ater

(Viviparidae)
No types were
distinguished

No types were distinguished No types were
distinguished

Flow cytometry, May-
Grünwald-Giemsa stain

[23]

Viviparus ater

(Viviparidae)
No types were
distinguished

No types were distinguished No types were
distinguished

Transmission electron
microscopy, acid
phosphatase reactivity

[24]

Pila globosa

(Ampullariidae)
Granulocytes I (=
progranulocytes)
Granulocytes II

Agranulocytes = hyalinocytes Granulocytes III May-Grünwald-Giemsa
stain

[14]

Pila globosa

(Ampullariidae)
Semigranulocytes Agranulocytes Granulocytes Phase contrast, Giemsa

stain
[22]

Pomacea

canaliculata

(Ampullariidae)

Cells with electron lucid
granules

Nongranular cells Cells with electron
dense granules

Transmission electron
microcopy

[18]

Pomacea

canaliculata

(Ampullariidae)

Hyalinocytes Agranulocytes Granulocytes May-Grünwald-Giemsa
stain

[20]

Pomacea

canaliculata

(Ampullariidae)

Group II, “agranular
cells”

Group I, “blast-like cells” Goup II, “granular
cells”

Flow cytometry, May-
Grünwald-Giemsa stain,
transmission electron
microscopy

[19]

doi:10.1371/journal.pone.0123964.t001
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used by Cheng [16] and which is largely based on the work of early authors (cited by [21]): hya-

linocytes, agranulocytes and granulocytes).

Particularly in P. canaliculata (an invasive species, [25]) there is some evidence for the exis-

tence of these three hemocyte types [18–20]. However, sorting of hemocyte populations has

only been partially successful in the past [19] and the attempts to show the hemocyte ultra-

structure were insufficient because of dark micrographs [18] or a magnification insufficient to

show all hemocyte granules and organelles [19]. Also, the differential phagocytizing ability of

hemocytes as well as the changes in hemocyte granules and other acidic compartments after

microbial exposure have not been studied.

Also, hemocyte islets have been mentioned in the kidney of P. canaliculata [26, 27], a beret-

shaped epithelial organ that covers the coiled intestine and dorsally delimits the renal chamber

[28, 29]. Because of its position in the circulation, the kidney filters hemolymph from the head-

foot mass and from part of the visceral hump [28] and hence, hemocytes therein may consti-

tute an important immune barrier and they may serve the role of a hematopoietic organ. Stud-

ies of hematopoiesis in gastropods [30] are scarce if compared with other groups, notably fruit-

flies [31] and crustaceans [32–34].

The current paper was aimed to characterize the hemocytes found in the circulation and

renal islets in P. canaliculata under both light and electron microscopy, as well as their changes

after microbial (yeasts and bacteria) or fluorescent bead exposure. Also, separation of circulat-

ing hemocyte populations corresponding to the three cell types have been successfully achieved

using flow cytometry and cell sorting and the differential ability of the sorted hemocytes to

phagocytize fluorescent beads has been shown. Furthermore, the phagocytizing ability of renal

hemocytes has been shown in vivo and they have been separated from renal epithelial cells by

flow cytometry, and their phagocytizing ability has also been shown in vitro.

Materials and Methods

Animals and culturing conditions
Adult males obtained from a cultured strain of P. canaliculata were used. Collection of the orig-

inal stock did not require specific permits since it is not an endangered but rather an invasive

species (IUCN Red List status "Least concern"; population trend: "increasing"). The original

stock was collected at the Rosedal Lake, 34°34’ S; 58°25’W, Palermo, Buenos Aires, Argentina.

Palermo is the neotype locality of P. canaliculata [35]. Voucher (ethanol preserved) specimens

of the original population, were deposited at the collection of Museo Argentino de Ciencias

Naturales (Buenos Aires, Argentina; lots MACN-In 35707 and MACN-In 36046, respectively).

Temperature was regulated at 24–26°C and artificial lighting was provided 14 h per day.

Aquarium water was changed thrice a week. Animals were fed ad libitum with a mixed diet

made of fresh lettuce, supplemented weekly with carp food pellets (Peishe Car Shulet, Argen-

tina), desiccated and powdered P. canaliculata eggs and toilet paper (Higienol, Argentina).

Hemolymph collection
Hemolymph (0.5–1.5 mL per snail) was withdrawn from the ventricle as previously described

[20, 36] using a syringe soaked, unless otherwise indicated, with an antiaggregant buffered so-

lution (PcABS) designed to match normal plasma osmolality and pH of P. canaliculata (43mM

NaCl, 1.8 mM KCl, 10 mMHEPES and 30 mM EDTA; pH 7.6) according to Cueto et al. [36].

Immune Defenses in Pomacea canaliculata
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Circulating hemocyte populations: morphology and phagocytosis
HE stain and phase contrast microscopy. A drop of hemolymph (50 μL) was allowed to

settle for 10 min onto a glass slide, to permit hemocyte attachment. Afterwards, hemocytes

were fixed by adding 100 μL of Bouin’s fluid for 30 min at room temperature (2 replicates of

samples obtained from each of 6 snails). Then the slides were gently washed in PcABS and

were stained with either Harris hematoxylin-eosin (HE stain). This fixation and staining proce-

dure gave better results than the traditional Romanowsky-type stains, particularly for showing

the eosinophily of the granules. Slides were mounted with Eukitt and a coverslip. Hemocyte

morphology was examined and photographed under a Nikon Eclipse 80i Microscope using

Nikon DS-Fi1-U3 camera and Nikon NIS-ELEMENT Image Software for image acquisition.

Hemocyte counts were made with a Neubauer’s hemocytometer. Alternatively, living cells were

observed using phase contrast microscopy, after 10 min attachment.

Flow cytometry and cell sorting. Hemolymph was analyzed immediately after withdrawal

in a FACS Aria III (BD Bioscience, California, USA) flow cytometer. Dot plots for forward

light scatter (FSC) and side light scatter (SSC) were used, indicating differences in cell size and

complexity-granularity, respectively; 20,000 events per hemolymph sample were recorded.

Data acquisition and further analysis were made using DiVa software (version 6.1.3). Fractions

containing hemocytes of different sizes and complexity-granularity were obtained by cell sort-

ing and studied after HE stain or under phase contrast microscopy. Similarly sorted cells were

used for experiments involving phagocytosis of fluorescent beads (see below).

Confocal laser scanning microscopy of acidic compartments. Fresh hemolymph

(200 μL, approximately 6 x105 cells per well) was collected in a syringe soaked with buffered so-

lution without EDTA (PcBS: 43mM NaCl, 1.8 mM KCl, 10 mMHEPES; pH 7.6) was seeded in

a 24-well plate (Nunclone surface, Nunc, Denmark) at 28°C. Each well was provided with

500 μL of culture medium, according to Cueto et al. [20], and with a bottom glass coverslip to

which cells were allowed to attach for 15 min. Hemocytes were then treated with 1 μM Lyso-

Tracker Red DND-99 (Invitrogen) for 30 min. Finally, cells were fixed in 3% formaldehyde,

treated with Hoechst 33258 for DNA staining, mounted in Mowiol and examined under an

Olympus FV1000 confocal laser microscope.

Transmission electron microscopy (TEM). Circulating hemocytes were obtained by he-

molymph centrifugation (2000 rpm, 7 min at 4°C) and were resuspended in PcABS and centri-

fuged again, and fixed in 500 μL 2.5% glutaraldehyde in PcBS for 180 min. After 3 hours

fixation at room temperature, the resulting hemocyte pellet was washed twice in PcBS, and em-

bedded in 1.5% low melting point agarose. The resulting agarose ‘blocks’ were post-fixed in 1%

osmium tetroxide overnight and then washed twice in PcBS. Finally, the blocks were dehy-

drated through a graded ethanol series followed by acetone, and embedded in Spurr resin.

Thin sections (50–70 nm) were stained with uranyl acetate and lead citrate and examined in a

Zeiss 900 transmission electron microscope.

In vitro phagocytosis of different microorganisms by circulating hemocytes. Suspen-

sions of Escherichia coli (DH5α strain), Staphylococcus aureus (untyped) and Saccharomyces

cerevisiae (Levex, Argentina) were used. Bacteria were cultured in Luria-Bertani medium in a

shaker (300 rpm) at 37°C for 24 hours, and were centrifuged (10,000 g, 10 min) to remove the

culture medium, resuspended in sterile distilled water and centrifuged again. Bacterial suspen-

sions were adjusted to ~60 CFU (colony forming units)/mL. Dehydrated yeast cells were sus-

pended in sterile distilled water and adjusted to ~12.6 x 104 cells/mL in a hemocytometer. All

microorganisms were heat-inactivated by autoclaving before use.

Hemocyte reactions to microbial exposure were observed by both confocal laser scanning

microscopy (LysoTracker Red) and TEM. For LysoTracker Red observations, hemocytes

Immune Defenses in Pomacea canaliculata
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(approximately 6 x 105 cells, contained in 200 μL of fresh hemolymph) were allowed to attach

(15 min) and were later exposed to LysoTracker Red for 30 min as described above, before the

addition of 10 μL of the E. coli suspension (~60 CFU/mL). The plates were then centrifuged

(10 min, 400 g, 4°C) and incubated for 60 additional minutes at 28°C. Finally, cells on cover-

slips were fixed in 3% formaldehyde, treated with Hoechst 33258 for DNA staining, mounted

in Mowiol and examined under an Olympus FV1000 confocal laser microscope. Similarly

treated hemocytes, but that were not exposed to E. coli cells, were used as controls.

For TEM observations, 100 μL of each microbial suspension were mixed with 100 μL of

freshly withdrawn hemolymph (about 3 x 105 hemocytes) in an Eppendorf tube, and were in-

cubated for 60 min at 28°C. Cells were then centrifuged and the supernatant was replaced by

the fixative (2.5% glutaraldehyde in PcBS). Three hours later, the cells were prepared for TEM

observations as described above.

In vitro phagocytosis of fluorescent beads by sorted and unsorted circulating hemo-

cytes. Hemolymph was withdrawn from the ventricle of 6 snails with a dry syringe and the

hemocytes were separated by centrifugation (2000 g, 5 min). The hemocytes were then mixed

with 100 μL of a suspension of fluorescent beads (Fluoresbrite Yellow Green Microspheres,

1.00 μm; Polysciences Inc.) in cell-free hemolymph plasma, at a ratio of approximately 10

beads per hemocyte. Afterwards, the mixture of hemocytes and beads was spun down for 1

min and then incubated (28°C, 60 min). Each sample was then diluted with 200 μL of PcABS

and cell associated fluorescence was determined in the flow cytometer using an air cooled

argon laser, providing an excitation at 488 nm and at 633 nm. Fluorescence emission was col-

lected with 530/30 and 630/22 band-pass filters and 20,000 events were acquired per sample.

The percentage of cells containing fluorescent beads was determined in a plot displaying fluo-

rescence (FITC) and cell size (FSC). All data analyses were made using FlowJo software. Sam-

ples of the cytometer effluxes were allowed to settle for 10 min on a glass slide and observed

under Nikon Eclipse 80i Microscope (phase contrast) using a Nikon DS-Fi1-U3 camera and

Nikon NIS-ELEMENT Image Software for image acquisition.

Another set of experiments was performed to establish the phagocytizing ability of three he-

mocyte fractions separated on the basis of different size (FSC) and complexity-granularity

(SSC) and in which either hyalinocytes, agranulocytes or granulocytes predominate (see Re-

sults). Each hemocyte fraction was recovered on 50 μL plasma, centrifuged (2000 g, 5 min) and

resuspended in 100 μL fresh plasma containing fluorescent beads at a 10:1 beads/hemocyte

ratio. Hemocytes were briefly spun down and then incubated (28°C, 60 min). Afterwards, incu-

bates were diluted with 200 μL PcABS and cell associated fluorescence was determined in the

flow cytometer. Cell viability was 96–98% (propidium iodide exclusion method) and the data

presented under Results were normalized to 100%. Also, samples of the cytometer effluxes

were allowed to settle for 10 min onto a glass slide and observed under phase contrast

microscopy.

Tissue hemocytes in kidney islets: morphology and phagocytosis
HE stain. Animals were immersed in cold water at 4°C for 20–30 minutes (both for pro-

ducing relaxation and minimizing pain) and then the shell was cracked to obtain the soft parts.

Samples of the kidney (= ‘posterior’ kidney in Andrews, [28]) were fixed in Bouin’s fluid (dilut-

ed 1:1 in distilled water) for one week at 5° C, and were later preserved in 70% ethanol until the

samples were dehydrated through a graded ethanol series, cleared in xylene and embedded in a

1:1 paraffin-resin mixture (Histoplast, Argentina) and sectioned (5 μm) in a rotary microtome

(Microm HM 325), stained with Harris hematoxylin-eosin, and mounted in Eukitt.

Immune Defenses in Pomacea canaliculata
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TEM. Kidney samples were fixed in 4% paraformaldehyde and 2.5% glutaraldehyde in

PcBS for 5 hours, post-fixed in 1% osmium tetroxide for 90 min at room temperature, washed,

dehydrated through a graded ethanol-acetone series, and embedded in Spurr resin. Thin sec-

tions (50–70 nm) were stained with uranyl acetate and lead citrate.

In vivomicrobial phagocytosis by hemocytes in renal islets. Animals were injected in

the foot (200 μL) with suspensions of different heat-inactivated microorganisms (E. coli, S. au-

reus or S. cerevisiae, prepared as describe above) and kidney samples were obtained 2 h after in-

jection and processed for TEM. Sham-injected controls were used.

In vitro phagocytosis of fluorescent beads by hemocytes obtained from renal islets. Kid-

ney samples (~50 mg) were obtained from 6 snails, cut into small pieces with a razor blade and

digested in 600 μL of 0.1% collagenase (Sigma C5138) for 20 min at room temperature. Tissue

debris were decanted and 500 μL of the supernatant were centrifuged (2000 g, 5 min) and

made up to 1,500 μL with PcABS. The cell suspensions were a mixture of hemocytes, renal cells

and urinary concretions ([37] and this paper) and were further studied by flow-cytometry. The

samples were excited with an argon ion laser at 488 nm and the instrument was set to capture

the fluorescence signals at 520 nm (PI-A) and a scatter plot of size (FSC-A) and internal com-

plexity (SSC-A) was obtained (20,000 events per sample). In each case, a region in which he-

mocytes predominate was framed on a FSC versus PI plot and was sorted and exposed to

fluorescent beads. The phagocytic index was determined as described above for circulating he-

mocytes. Cell viability in parallel experiments was 58–63% (propidium iodide exclusion meth-

od) and the data presented under Results were normalized to 100%.

Results

Morphology and phagocytosis reactions of circulating hemocytes
HE stain and phase contrast microscopy of circulating hemocytes and of hemocyte pop-

ulations sorted by flow cytometry. Representative examples of the three hemocyte types

(hyalinocytes, agranulocytes and granulocytes) are shown in Fig 1A and 1B (HE stain and

phase contrast, respectively).

HE stained hyalinocytes lack cytoplasmic granules and are the most abundant in the circula-

tion (63.0± 3.8%); they show an extended basophilic or chromophobic cytoplasm and an ec-

centric nucleus of variable shape (either round, bean-shaped or bilobed). Agranulocytes

(28.1 ± 1.6% of circulating cells) also lack granules under light microscopy and are character-

ized by a round nucleus and a scarce cytoplasm. Granulocytes represent a small proportion of

cells in the circulation (8.9 ± 2.6%). They are large cells showing an eccentrically located nucle-

us of variable shape and their cytoplasm is loaded with large eosinophilic granules.

Correlative findings were obtained with phase contrast microscopy of living hemocytes

(Fig 1C). Living cells were generally larger than the fixed ones, and the nuclei were always

rounded. Granulocytes showed their characteristic large granules but both hyalinocytes and

agranulocytes showed some ‘granularity’ which may be correlated with other granules and or-

ganelles seen under TEM (see below). Hyalinocytes were seen emitting lamellipodia and filopo-

dia, while some agranulocytes were only emitting filopodia. No circulating granulocytes

appeared emitting either lamellipodia or filopodia.

Flow cytometry was performed on freshly withdrawn hemolymph samples and three re-

gions were delimited on the basis of different cell size and complexity- granularity by cell sort-

ing, and predominantly contained hyalinocytes, agranulocytes or granulocytes (regions hya,

agr and gra, respectively; Fig 1C).

Hemocyte acidic compartments. Most cells appeared spread and attached onto the sub-

strate and two distinct types of acidic granules were observed in them: small round granules

Immune Defenses in Pomacea canaliculata
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which did not displace the nucleus (Fig 2A) and large elongated granules which were numerous

and displaced the nucleus to an eccentric position (Fig 2B). Because of their size and distribu-

tion in the cytoplasm, the latter granules should correspond to the eosinophilic granules seen

with HE staining, the large granules seen under phase contrast microscopy, and the R granules

observed in granulocytes under the electron microscope (see next section). These granules

were also merging into even larger granules in some cells (Fig 2C) and the same was observed

under phase contrast (not shown). The small round acidic granules may correspond to L

Fig 1. Circulating hemocyte types and their separation by flow cytometry. (A) Examples of hyalinocytes, agranulocytes and granulocytes in hemolymph
smears (HE-stain). (B) Examples of living hyalinocytes, agranulocytes and granulocytes attached onto a glass slide (phase contrast). (C) Flow cytometry (dot
plot of size vs. complexity-granularity) of a representative hemolymph sample indicating the three areas that were chosen for cell sorting, where the three
hemocyte types were predominant. Abbreviations: agr, agranulocytes; gra, granulocytes; hya, hyalinocytes. Scale bars represent 5 μm.

doi:10.1371/journal.pone.0123964.g001

Immune Defenses in Pomacea canaliculata
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granules observed in hyalinocytes under the electron microscope (next section) and may ac-

count for part of the ‘granularity’ observed under phase contrast microscopy.

Ultrastructure of circulating hemocytes. A well developed smooth endoplasmic reticu-

lum (SER) and a varying number of mitochondria (many of them elongated) were common

features of all hemocytes but were more evident in hyalinocytes because of their large cyto-

plasm and scarcity of granules (Figs 3 and 4). Hyalinocytes (Figs 3A and 4A–4C) also showed

an eccentrically located nucleus and flattened and extended cisterns of the rough endoplasmic

reticulum (RER), usually in the vicinity of the nucleus. Free ribosomes were frequently seen.

Membrane-bound granules of moderate electron density (not recognized in HE stained prepa-

rations) were found in most hyalinocytes; they will be referred to as L granules, because of their

similarity to lysosomes. The SER was formed by numerous round or oval small vesicles and

sometimes by larger vacuoles. The Golgi apparatus was only infrequently found. Also, pre-

sumptive glycogen stores (not membrane-bound) were also occasionally seen (Fig 4B).

Agranulocytes (Fig 3B) exhibited a round nucleus and a narrow cytoplasmic band around

it. Otherwise, their cytoplasmic ultrastructural features were similar to those in hyalinocytes ex-

cept that L granules were infrequent.

The large cytoplasm of mature granulocytes could be easily recognized under TEM, because

of the numerous electron-dense granules, which were membrane-bound and elongated (Fig

3C) and may correspond to the eosinophilic granules seen in HE stained preparations, and to

the large granules appearing under phase contrast microscopy. The nuclei of these cells varied

in shape and were always eccentrically located. Early stages of granulocyte differentiation were

characterized by a round nucleus and by small granules of varying electron density (Fig 3D),

which may later coalesce into larger, rod-like ones. The Golgi complex was well developed in

both mature granulocytes and in early granulocyte stages (Figs 3D and 4D). Also, occasional L

granules as those of hyalinocytes were found in mature circulating granulocytes (not shown in

Figs 3 and 4).

Changes of acidic compartments after in vitro exposure of circulating hemocytes to bac-

teria. Most control hemocytes (i.e., not exposed to bacteria) showed small and round acidic

granules (corresponding to L granules, Fig 5A), while cells bearing rod-like granules (corre-

sponding to R granules) were occasionally seen (not shown in Fig 5) and they were not phago-

cytizing cells. Hemocytes exposed to an E. coli suspension behaved differently whether they

had internalized bacteria or not: those without internalized bacteria had lost all acidic granules

Fig 2. Circulating hemocytes (LysoTracker Red-Hoechst 33258). (A) A group of spreading hyalinocytes; small acidic granules (red) are seen in some of
them. (B) A spreading granulocyte (arrowhead) showing numerous rod-shaped, acidic granules; also, there is a group of spreading and round hyalinocytes,
which are essentially devoid of acidic granules. (C) Another spreading granulocyte (arrowhead) showing large and merging acidic granules; also, there are
two spreading hyalinocytes with no acidic granules. Scale bar represents 10 μm.

doi:10.1371/journal.pone.0123964.g002
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while those with internalized bacteria showed intensely labeled phagocytic vesicles with the

shape of the phagocytized bacterium in different stages of digestion (Fig 5B and 5C). Also, un-

labeled vesicles sometimes surround the labeled vesicles (Fig 5B), which may be correlated with

the phagosomes with more than one compartment that are seen under TEM (see next section).

No additional acidic compartments (such as those corresponding to L granules seen in control

hemocytes, Fig 5A) are seen in phagocytic hemocytes, which correlates well with the lack of

Fig 3. Circulating hemocytes (TEM). (A) Hyalinocyte with an eccentric nucleus, numerous SER vesicles, mitochondria and L granules; a few profiles of the
RER are also seen. (B) Agranulocyte with a round central nucleus, SER vesicles and RER cisternae, as well as somemitochondria. (C)Granulocyte,
showing a displaced, bean-shaped nucleus and numerous R granules; some SER vesicles are also seen. (D) Pro-granulocyte, showing a bean-shaped
nucleus, a Golgi complex and numerous immature R granules of varying electron density; some SER vesicles and extended RER cisternae are also seen.
Abbreviations: gol, Golgi complex; Lgr, L granules;mit, mitochondria; n, nucleus; r, immature R granules; Rgr, mature R granules; rer, RER cisternae; ser,
SER vesicles. Scale bars represent 1 μm.

doi:10.1371/journal.pone.0123964.g003
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granules observed in phagocytic hemocytes under TEM (next section). Most non-phagocytic

hemocytes also appeared devoid of acidic compartments in preparations exposed to bacteria.

In vitromicrobial phagocytosis by circulating hemocytes under TEM. Hemocytes were

able to phagocytize yeast cells in spite of their large size, resulting in a marked distortion of the

phagocyte. A microgranular material of low electron density fills the phagosome space sur-

rounding the yeast cell (Fig 6A). Membrane-bound L granules, which were a common feature

of unexposed hyalinocytes, were only rarely seen in phagocytic cells, which would indicate that

Fig 4. Details of circulating hemocytes (TEM). (A) Cytoplasm of a hyalinocyte showing numerous mitochondria and some RER and SER profiles. (B)
Detail of another hyalinocyte showing an extended RER cisterna, SER vesicles and a membrane-unbound zone with presumptive glycogen granules. (C)
Cytoplasm of a hyalinocyte showing numerous SER vesicles, as well as a few L granules and mitochondria. (D) Cytoplasm of a granulocyte showing
numerous R granules around a Golgi complex. Abbreviations: gly, presumptive glycogen granules; other abbreviations as in Fig 3. Scale bars represent
1 μm.

doi:10.1371/journal.pone.0123964.g004
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phagocytosis is accompanied either by degranulation (exocytosis) or by fusion of L granules to

phagosomes (Fig 6A). Phagocytic hemocytes are most likely to be hyalinocytes, but granulo-

cytes may also be phagocytic (see below) though they may not be recognizable after loss of

their characteristic R granules.

S. aureus cells were internalized in individual phagosomes that were seldom interconnected

(Fig 6B). In turn, E. coli cells were internalized in large phagosomes with multiple, frequently

interconnected compartments (Fig 6C, arrows). No phagocytic cells showed R granules, but

some granulocytes showed extensive granular fusion with the resulting formation of gigantic R

granules (Fig 6D).

In vitro phagocytosis of fluorescent beads by sorted and unsorted circulating hemo-

cytes. Incubation of fresh hemolymph with fluorescent beads resulted in 24.8% of hemocytes

showing phagocytosis and the histograms showed there were 4–5 groups with different

amounts of internalized beads (Fig 7A and 7B).

However, when sorted hemocyte populations were exposed to fluorescent beads, all of them

showed some phagocytizing ability, though hyalinocytes showed a significantly higher index

than those of the other populations (Fig 7I, one-way ANOVA, Tukey test) and which was simi-

lar to that of unsorted hemocytes. Hyalinocytes showed 3–4 groups (Fig 7D) with different

numbers of internalized beads, while agranulocytes and granulocytes only showed 2–3 groups

(Fig 7F and 7H, respectively). Phase contrast microscopy of the sorted phagocytizing hemo-

cytes indicated that hyalinocytes and agranulocytes basically retained their morphological

characteristics, but granulocytes were much modified: they became spherical with a degranu-

lated and vacuolated cytoplasm, they frequently emitted long filopodia, and their nuclei were

condensed and smaller (Fig 7J).

Renal hemocyte islets
Morphology (HE stain and TEM). Under low magnification, the kidney is formed by nu-

merous epithelial crypts perpendicular to external surface of the organ, which lies beneath the

mantle (Fig 8A). This organ overlies the renal chamber and the crypts are lined by a cylindrical

epithelium whose vesicular cells contain urinary concretions. The hemocyte islets occupy a sig-

nificant part of the hemocoelic spaces between the crypts and are usually thinner near the

Fig 5. In vitro phagocytosis of E. coli cells by circulating hemocytes (LysoTracker Red-Hoechst 33258). (A) A group of control hyalinocytes, some of
them showing small acidic granules. (B) Hemocytes exposed to E. coli; a phagocyte (upper left) showing a group of internalized red-labeled bacteria, while
another phagocyte (lower right) shows a single internalized bacterium. Small acidic granules are not seen in these hemocytes, whether phagocytic or not.
Bacteria which are free over and around hemocytes are not labeled (arrows). (C) A group of hemocytes, one of them showing several internalized bacteria in
different degrees of digestion. Small acidic granules are not seen in these hyalinocytes. Non internalized bacteria are not labeled by LysoTracker Red
(arrows). Scale bar represents 10 μm.

doi:10.1371/journal.pone.0123964.g005
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mantle surface and more bulky towards the renal chamber (Fig 8A). At higher magnification

the islets are hemocyte packs between neighboring renal crypts and are predominantly com-

posed of hemocytes with no eosinophilic granules (Fig 8B).

Under TEM, most of the outer surface of hemocyte islets seems exposed to the hemolymph

flowing in the hemocoelic spaces that surround them. These superficial hemocytes are more

loosely packed than those at the core, and they emit long pseudopodia (Fig 9A) that may par-

ticipate in trapping foreign particles from the surrounding hemolymph. Less frequently, how-

ever, hemocytes appear lying close to the basal membrane of the renal epithelium and even

Fig 6. In vitromicrobial phagocytosis by circulating hemocytes (TEM). (A) Two yeast cells engulfed by a phagocytic hemocyte; a large L granule is
attached to one of the phagosomes and may be preceding fusion (arrow). (B) Numerous S. aureus cells engulfed by a hemocyte within seldom
interconnected phagosomes. (C) E. coli cells may also be phagocytized in large numbers within complex phagosomes which frequently showmore than one
compartment (arrows). (D)Granulocyte in a preparation exposed to E. coli cells showing extensive R granule fusion and a single L granule.

doi:10.1371/journal.pone.0123964.g006
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some interdigitations of epithelial cells and hemocytes occur (Fig 9B and 9C). So it is possible

that hemocyte islets do not freely float in the hemocoelic spaces but are anchored in some

places to the renal epithelium or to the connective tissue underlying it.

Hyalinocytes are predominant in the islets and their ultrastructure is similar to those in the

circulation (Fig 9B–9D), except that the membrane unbound areas (presumptive glycogen

stores) are larger and more abundant, particularly in those hemocytes in the islet core (Fig 9C–

9E) and the Golgi complex is more developed (Fig 9E). Granulocytes and agranulocytes may

be occasionally found in islets and are similar to those in the circulation (Fig 9A and 9F). Even

Fig 7. In vitro phagocytosis of fluorescent beads by sorted and unsorted circulating hemocytes. (A) Dot plot of cell size vs. complexity-granularity of
unsorted circulating hemocytes exposed to fluorescent beads. In this and in panels C, E and G, red dots indicate phagocytic hemocytes associated to
fluorescent beads, while green dots indicate non phagocytic ones. (B) Histograms of the sample shown in A: in this and in panels D, F and H, red and green
lines show the distribution of phagocytic and non-phagocytic hemocytes, respectively. The red histogram indicates the existence of 4–5 hemocyte
populations associated to different amounts of fluorescent beads. (C) Dot plot of size vs. complexity-granularity of sorted hyalinocytes exposed to fluorescent
beads. (D) Histograms of the hyalinocyte sample shown in C: the red histogram indicates the existence of 3–4 hyalinocytes populations associated to
different amounts of fluorescent beads. (E) Dot plot of size vs. complexity-granularity of sorted agranulocytes exposed to fluorescent beads. (F) Histograms
of the agranulocyte sample shown in E: the red histogram indicates the existence of 2–3 agranulocyte populations associated to different amounts of
fluorescent beads. (G) Dot plot of size vs. complexity-granularity of sorted granulocytes exposed to fluorescent beads. (H) Histograms of the granulocyte
sample shown in E: the red histogram indicates the existence of 2–3 granulocyte populations associated to different amounts of fluorescent beads. (I)
Phagocytosis index of unsorted circulating hemocytes and of sorted hyalinocytes, agranulocytes and granulocytes (means ± SE; N = 6; different letters
indicate statistically significant differences, one-way ANOVA, Tukey test). (J) Phase contrast micrographs of sorted phagocytic hemocytes. Abbreviations:
agr, agranulocytes; gra, granulocytes; hya, hyalinocytes. Scale bar represents 10 μm.

doi:10.1371/journal.pone.0123964.g007
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Fig 8. Renal hemocyte islets (HE-stain). (A) Kidney section perpendicular to the pallial surface of the
organ. The mantle separates the kidney from the extrapallial space and is covered by the pigmented pallial
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though hemocytes appear tightly packed in light microscopy sections of the kidney (Fig 8B), an

intercellular labyrinthic space surrounds individual cells in the core of the islet (Fig 9C, 9D and

9F). Numerous pseudopodia are intermingled in this space, which probably hold the hemo-

cytes together and maintain the architecture of the islet. Membrane remnants and a microgra-

nular material are also seen in the intercellular space (Fig 9D and 9F).

In vivomicrobial phagocytosis by kidney hemocytes under TEM. Phagocytosis by these

hemocytes occurs after injection of microorganisms in the foot. The phagosomes formed are

similar to those seen after in vitro phagocytosis, i.e., large phagosomes containing S. cerevisiae

cells (Fig 10A), small and usually separate phagosomes containing S. aureus cells (Fig 10B) and

complex phagosomes with several compartments containing E. coli cells (Fig 10C). Multivesi-

cular bodies are frequently seen (Fig 10A and 10B).

In vitro phagocytosis of fluorescent beads by renal hemocytes. Dispersed hemocytes

were obtained after collagen digestion of the kidney and they were separated from epithelial

renal cells and urinary concretions (S1 Fig). These hemocytes showed a continuum of size and

complexity-granularity (Fig 11A). Attempts for further sorting of hemocyte subpopulations

were unsuccessful since cell destruction and aggregation occurred. Therefore, the entire hemo-

cyte population obtained was exposed to fluorescent beads and the normalized phagocytic

index was 19.3%, i.e., similar to that of circulating hyalinocytes. Also similarly, the histograms

showed 3–4 groups internalizing different amounts of fluorescent beads (Fig 11B). Under

phase contrast, most these renal hemocytes are similar to circulating hyalinocytes. Fig 11C

shows two of them with no internalized beads (upper row) and two that had internalized fluo-

rescent bead/s (lower row).

Discussion

Circulating hemocytes and their changes after in vitro phagocytosis
The properties of the different hemocyte types found in the circulation are summarized in

Table 2. Hemocyte populations in which the expected circulating types (hyalinocytes, agranu-

locytes and granulocytes, [18–20]) were predominant could be separated by flow cytometry

and cell sorting of hemolymph withdrawn from the heart. The most prevalent morphs in each

of the hemocyte populations could be confirmed after fixation and HE staining and under

phase contrast, and their phagocytic activity could be determined. Accorsi et al. [19] could only

recognize two regions by flow cytometry (regions I and II, probably corresponding to agranulo-

cytes and hyalinocytes), while they could not recognize the granulocyte region (Fig 1B) because

of the high background of their hemolymph samples. This high background may have been

caused by their hemolymph collection after inducing a defensive behavior in which the snail

fully retracts the head-foot mass and expels hemolymph through a hemal pore [38]. Hemo-

lymph thus obtained may be contaminated with the excreta that the snail also expels. In fact,

Accorsi et al. [19] have observed hemocytes phagocytizing bacteria in their samples, which is

indicative of contamination (hemolymph obtained from the heart is free of bacteria in P. cana-

liculata [20]).

Generalized features of circulating control hemocytes were frequent mitochondria and a

well developed endoplasmic reticulum, with numerous vesicles of varying sizes. L granules

epithelium. Renal hemocyte islets are seen as elongated basophilic masses between the cortical renal
crypts, while they appear transversally sectioned in the region overlying the renal chamber. (B) Section of a
hemocyte islet mostly composed of hyalinocytes and delimited by the renal epithelium. Abbreviations: eps,
extrapallial space; ppe, pigmented pallial epithelium; rcc, renal cell concretion; rch, renal chamber; rcn, renal
cell nucleus, rhi, renal hemocyte islet.

doi:10.1371/journal.pone.0123964.g008
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were predominant in hyalinocytes, even though they also occurred in granulocytes, where R

granules predominated. L granules were interpreted as lysosomes, which is also supported by

the finding of acidic granules of similar size, shape and cytoplasmic distribution when Lyso-

Tracker Red labeling was used. However, even though L granules occur in most hyalinocytes

under TEM, acidic granules are only found in some of these cells, suggesting that not all L gran-

ules are acidic. Neither Shozawa & Suto [18] nor Accorsi et al. [19] reported L granules in their

electron microscopy observations. However, micrographs from Shozawa & Suto [18] were not

clear enough, and the failure of Accorsi et al. [19] to observe L granules was probably due to in-

sufficient magnification and/or to degranulation in response to the bacterial contamination of

their samples.

‘Electron dense granules’ were also observed by Shozawa & Suto [18] and Accorsi et al. [19]

and they should correspond to R granules. Granules of similar size, shape and cytoplasmic dis-

tribution were intensely labeled with LysoTracker Red in circulating hemocytes in the current

study and should also correspond to R granules. These granules appeared merging in some

cells (both under TEM and when using LysoTracker Red), a process that was more intense

after microbial exposure (see below). Labeling of acidic compartments with neutral red by

Accorsi et al. [19] also showed large acidic granules compatible with the R ones.

Membrane-unbound areas containing irregular small clumps were also found in circulating

hemocytes, and similar areas were previously found in multicellular spheroidal aggregates of

hemocytes in vitro [20] and they have been interpreted as presumptive glycogen deposits,

Fig 9. Renal hemocyte islets (TEM). (A) An agranulocyte and two hyalinocytes appear loosely attached to the surface region of a renal islet. (B) Detail of
the larger hyalinocyte on the preceding panel, showing R granules, SER vesicles and numerous mitochondria. The intercellular space contains a
microgranular material and membrane remnants. (C) Numerous hyalinocytes and two tangential sections of granulocytes at the core of a renal islet.
Membrane-unbound areas with presumptive glycogen granules appear in most cells and are larger than those in circulating hemocytes. (D) Detail of a cell
from the preceding panel, showing a Golgi stack, areas of presumptive glycogen granules, SER vesicles, R granules and mitochondria. The intercellular
space is also occupied by a microgranular material and membrane remnants. (E) Detail of the Golgi stack and an area of presumptive glycogen granules;
numerous SER vesicles and free ribosomes are also seen. (F) A granulocyte in a renal islet, showing SER vesicles, some RER profiles and numerous R
granules of different sizes (some of them appear merging); a single L granule is also seen. Again, a microgranular material and membrane remnants are
found in the intercellular space. Abbreviations: agr, agranulocyte; gly, presumptive glycogen granules; gol, Golgi stack; gra, granulocyte; hya, hyalinocyte;
Lgr, L granule; Rgr, R granule. Scale bars in A and B panels represent 5 μm, while those in other panels represent 1 μm.

doi:10.1371/journal.pone.0123964.g009

Fig 10. In vivomicrobial phagocytosis by renal hemocytes (TEM). (A) Partly digested yeast cell engulfed by a phagocytic hyalinocyte; a small
multivesicular body is seen close to the phagosome; (B) Several S. aureus cells engulfed by a hyalinocyte within individual phagosomes; multivesicular
bodies of different sizes are also seen; arrow indicates a basal interdigitation of a renal epithelial cell, surrounded by the basal membrane (arrow); (C) E. coli
cells in different stages of digestion are contained within complex phagosomes; the basal membrane of the renal epithelium is indicated by arrows.
Abbreviation:mvb, multivesicular body. Scale bar represents 1 μm.

doi:10.1371/journal.pone.0123964.g010
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following the ultrastructural criteria of Revel et al. [39] and the histochemical determinations

in other gastropods [40, 41]. Similar electron lucent ‘granules’ (in fact, membrane-unbound

areas) were also reported by Shozawa & Suto [18] in circulating hemocytes. These presumptive

Fig 11. In vitro phagocytosis of fluorescent beads by dispersed renal hemocytes. (A) Dot plot of cell size vs. complexity-granularity of dispersed renal
hemocytes exposed to fluorescent beads. Red dots indicate phagocytic hemocytes associated to fluorescent beads, while green dots indicate non
phagocytic ones. (B) Histograms of the sample shown in A: the red and green lines show the distribution of phagocytic and non-phagocytic hemocytes,
respectively. The red histogram indicates the existence of 3–4 hemocyte populations associated to different amounts of fluorescent beads. (C) Phase
contrast micrographs of sorted hemocytes exposed to fluorescent beads: those in the upper row are not phagocytic while those in the lower row show
internalized bead/s. Scale bar represents 10 μm.

doi:10.1371/journal.pone.0123964.g011

Table 2. Properties of circulating hemocyte types in Pomacea canaliculata.

Normal control
hemocytes

Hyalinocytes Agranulocytes Granulocytes

HE stain Nucleus/cytoplasm ratio Low High Low

Nuclear location and
shape

Eccentric, variable shape Central, round Eccentric, variable shape

Cytoplasmic staining Basophilic or chromophobic Basophilic Large eosinophilic granules (likely R
granules)

% of total hemocytes 63 ± 4 28 ± 2 9 ± 3

LysoTracker Red Acidic granules Small and round (likely L granules) None Large and rod-shaped (likely R
granules)

TEM SER and mitochondria Abundant Scarce Scarce

Golgi complex Unfrequently found Not observed Well developed

Cytoplasmic granules L granules Occasional L
granules

Abundant R granules and
occasional L granules

‘Glycogen’ areas Occasionally seen None None

Flow cytometry Relative size Large Small Large

Relative complexity/
granularity

Low Low Large

Phagocytizing
hemocytes

LysoTracker Red Acidic granules Loss of small round granules Not determined R granules tend to fuse and are
occasionally retained;

Phagosomes Only the inner part of the complex
phagosomes is acidic

Not determined Not determined

TEM Degranulation Loss of L granules Not determined R granules’ fusion may precede
degranulation

Phagosome morphology Varies according to the phagocytized
microbe

Not determined Not determined

Flow cytometry Phagocytic index (%) after
cell sorting

20 ± 4 9 ± 2 10 ± 3

doi:10.1371/journal.pone.0123964.t002
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glycogen deposits are larger and more frequent in hemocytes in renal islets and may suggest a

role in the circulation and storage of this metabolically valuable molecule.

When circulating phagocytes were exposed to S. aureus, E. coli or S. cerevisiae cells, L gran-

ules (and the corresponding small and round granules in LysoTracker Red preparations) disap-

peared from the cytoplasm, probably indicating either exocytosis or lysosomal/phagosomal

fusion. Yeast cells were engulfed singly, but bacterial cells were engulfed either singly or in

groups. S. aureus cells were usually contained within individual phagosomes while E. coli cells

were within complex phagosomes showing several compartments under TEM. In the latter

case, only the compartment in close contact with bacterial cells was acidic (i.e., intensely labeled

with LysoTracker Red). Structures resembling L granules were sometimes seen attached to pha-

gosomes under TEM (e.g., Fig 6A) which may be indicative of early lysosomal/phagosomal fu-

sion. Some non phagocytizing granulocytes showed gigantic granules of high electron density

which were probably the result of R granules’ fusion. It is likely that these merging granules

were participating in a kind of ‘compound exocytosis’ [42] resulting in granulocyte degranula-

tion, as it has been shown in bivalves (e.g., [43, 44–47]) and has been related to the release of ly-

sozyme and other hydrolytic enzymes that may kill bacteria, either in the circulation or in

tissue. Release of lyzozyme immunoreactive molecules was increased in serum of an hetero-

branch gastropod after bacterial challenge [48]. Also, the presence of several bioactive peptides

has been shown in hemocytes of Viviparus ater, an architaenioglossan gastropod [49].

Significance of hemocytes in renal islets and their in vivo and in vitro
phagocytizing ability
The existence of renal hemocyte islets has passed unnoticed in early studies on P. canaliculata

[28, 50]. Even though isolated hemocytes and/or occasional hemocyte aggregations may be

seen in the connective tissue of P. canaliculata, the renal islets are the only large hemocyte ag-

gregates that are regularly seen in this species (unpublished observations).

The position of the kidney in the circulation of this snail will ensure hemocytes in renal is-

lets to become in contact with microbes or antigenic molecules in the hemolymph drained

from the head-foot mass and to a lesser extent from the visceral hump [28] and hence, renal is-

lets may constitute an important immune barrier. In vivo phagocytosis of different microor-

ganisms has been shown here after the injection of microbial suspensions in the foot. Also,

dispersed renal hemocytes have shown phagocytic activity when exposed in vitro to fluorescent

beads. Furthermore, spheroidal hemocyte aggregates are formed between the renal crypts after

microbial challenge [27] which also support the role of the kidney as an immune barrier.

The lung is another organ that may act as an immune barrier, receiving hemolymph drained

from the mantle cavity and the viscera [28]. Both the kidney and the lung may participate in

the reaction to Angiostrongylus cantonensis, the causative agent of eosinophilic meningitis, a se-

rious zoonotic disease [51] which utilizes the invading P. canaliculata as the most frequent in-

termediate host in China, i.e., in the native range of the parasite [52]. Experimental infection

with parasitic larvae has been obtained in another ampullariid snail,Marisa cornuarietis, and

hemocyte aggregates have also been reported in the lung of infected snails [53]. Even though

the lung of uninfected P. canaliculata does not show hemocyte aggregates similar to those in

the kidney, it does form hemocyte aggregates after immune challenges [27]. These aspects are

important, because the parasite has recently spread to the native range of Pomacea species

[54, 55].
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Supporting Information

S1 Fig. Obtention of dispersed hemocytes from collagenase-treated kidney tissue. (A) Dot

plot of cell size vs. complexity-granularity of dispersed cells and urinary concretions after colla-

genase digestion. (B) Dot plot of cell size vs. fluorescence emission (Comp-PI-A); the framed

region was sorted and used to test for phagocytic activity. (C) Dot plot of cell size vs. complexi-

ty-granularity of cells contained within the region framed in B; which were predominantly he-

mocytes (phase contrast microscopy, not shown in the figure).

(TIF)
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