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BRIEF DEFINITIVE REPORT

    After acute HIV infection, CD8 +  T cell responses 

contribute to control of viral replication and 

suppress viral loads to an individual set point 

( 1, 2 ). Their ability to delay progression to AIDS 

is strongly associated with speci� c HLA class I 

alleles such as HLA-B57 or -B27 ( 3 ), which are 

known to restrict vigorous immunodominant 

CD8 responses during acute infection against 

speci� c regions of HIV ( 4 ). Escape from these 

CD8 responses is associated with a loss of control 

of viremia, indicating that immune control in 

such cases can be primarily mediated by a single 

dominant response ( 5 – 7 ). In the case of HLA-

B27, viral control has been strongly associated 

with responses against the immunodominant 

KK10 epitope (KRWIILGLNK) in p24 Gag, 

which may exhibit a unique ability to suppress 

viral replication ( 6, 7 ). 

 The strong antiviral activity of KK10-spe-

ci� c CD8 responses might be caused by their 

ability to e� ectively recognize early viral escape 

variants. Viral escape typically develops rapidly in 

the KK10 epitope through a position six L 268 M 

escape mutation ( 7 ). However, de novo variant-

speci� c CD8 responses against the L 268 M escape 

variant are commonly mounted ( 8, 9 ), which 

eventually leads to the subsequent selection of 

the more potent position 2 escape mutation 

(R 264 K) that is associated with the eventual loss 

of viral control late in chronic infection ( 7, 10, 11 ). 

Therefore, variant-speci� c responses may play 

an important role in the control of HIV, en-

abling prolonged recognition of escaped vi-

ruses ( 12, 13 ). Unfortunately, the vast diversity 

of HIV-speci� c CD8 responses in infected sub-

jects, and the progressive viral escape from these 

responses, has made it di�  cult to determine the 
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 After acute HIV infection, CD8 +  T cells are able to control viral replication to a set point. 

This control is often lost after superinfection, although the mechanism behind this remains 

unclear. In this study, we illustrate in an HLA-B27 +  subject that loss of viral control after 

HIV superinfection coincides with rapid recombination events within two narrow regions of 

Gag and Env. Screening for CD8 +  T cell responses revealed that each of these recombination 

sites ( � 50 aa) encompassed distinct regions containing two immunodominant CD8 epitopes 

(B27-KK10 in Gag and Cw1-CL9 in Env). Viral escape and the subsequent development of 

variant-speci� c de novo CD8 +  T cell responses against both epitopes were illustrative of the 

signi� cant immune selection pressures exerted by both responses. Comprehensive analysis 

of the kinetics of CD8 responses and viral evolution indicated that the recombination 

events quickly facilitated viral escape from both dominant WT- and variant-speci� c re-

sponses. These data suggest that the ability of a superinfecting strain of HIV to overcome 

preexisting immune control may be related to its ability to rapidly recombine in critical 

regions under immune selection pressure. These data also support a role for cellular im-

mune pressures in driving the selection of new recombinant forms of HIV. 
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cation after a peak viremia of 468,000 copies/ml ( Fig. 1 ).  As 

early as day 22 after presentation, the dominant CD8 response 

was directed against the KK10 epitope (85 Spot Forming 

Cells/Mio. [SFC/Mio.]) as measured by IFN- �  ELISpot as-

say ( Table I ).  Only six other CD8 responses were detected by 

day 419, with the KK10 response remaining the most immuno-

dominant ( Table I ). Viral sequencing revealed escape in this 

epitope through the stereotypic CTL escape mutation L 268 M, 

which � rst developed at day 419 (T3) coincident with a 

decline in the KK10 WT-speci� c response ( Fig. 2 A  and 

Fig. S1, available at http://www.jem.org/cgi/content/full/jem

.20080281/DC1).  Viral escape coincided with an initial rise 

of viral loads to 14,000 copies/ml ( Fig. 1 ), suggesting that loss 

of this key CD8 response may have partially impaired early 

viral containment. However, longitudinal testing revealed the 

subsequent development of an L 268 M variant-speci� c response, 

which expanded substantially by day 419 ( Fig. 2 A ). These 

data support not only an important contribution of the B27-

KK10 response to early control of HIV, but also a role for 

variant-speci� c CD8 responses in limiting the impact of this 

early escape mutation ( 13 ). 

 Functionality of WT and variant-speci� c CD8 responses 
 Various studies suggest that the polyfunctionality of a CD8 

response may be a critical indicator of vital e� ector functions 

and the ability of CD8 responses to actively impair HIV rep-

lication ( 23 ). Moreover, Almeida et al. have correlated the 

superior control of HIV replication in subjects expressing 

HLA-B27 with the polyfunctional capacity of the KK10-spe-

ci� c response ( 24 ). To further determine the role of the WT- 

and L 268 M-speci� c B27-KK10 CD8 responses, we examined 

the polyfunctionality of these responses by assessing � ve ef-

fector functions, including IFN- � , IL-2, TNF- � , MIP-1 � , 

and CD107a expression by multiparameter � ow cytometry. 

relative importance of particular responses and escape muta-

tions, either singly or collectively, on viral containment and 

disease progression. 

 The ability of the immune system to contain viral replica-

tion is also substantially impacted after HIV superinfection. 

Numerous cases of superinfection have been identi� ed, usu-

ally on the basis of a sudden increase in viral loads ( 14 – 17 ). A 

dramatic shift in the immunodominance patterns of CD8 re-

sponses before and after superinfection has also been observed 

( 14 ); this shift may be related to the transmission of mutations 

within targeted CD8 epitopes. Although new CD8 responses 

arise after superinfection, control over viral replication is of-

ten lost ( 14 – 16 ), and the factors contributing to the inability 

of preexisting immune responses to contain the superinfect-

ing strain have as yet not been identi� ed. 

 HIV superinfection may also enable recombination between 

two di� erent strains ( 17 ), which could facilitate evasion of 

host immune responses. Recent data suggest that circulating 

recombinant forms (CRFs) of HIV may be far more com-

mon than previously observed ( 18 ). New CRFs may have a 

critical impact on vaccine design as they continue to expand 

the extensive global diversity of HIV ( 19 ). Equally problematic 

is that there appears to be little or no pattern to the selection 

of recombination sites within CRFs ( 15, 20 ) and the forces 

governing recombination ( 15, 21 ). 

 In this study, we provide a comprehensive analysis of 

the forces dictating HIV recombination after superinfection, 

which rapidly lead to the dramatic loss of viral containment 

in a subject expressing the otherwise protective MHC class I 

allele HLA-B27. 

  RESULTS AND DISCUSSION  
 Loss of control of viral replication in the setting 
of HLA-B27 
 Control of HIV in the presence of HLA-B27 ( 6, 7, 11, 22 ) 

has been attributed to the early and immunodominant target-

ing of a highly conserved CD8 epitope (KK10; KRWIIL-

GLNK) in Gag. The HLA-B27 +  subject AC160, identi� ed 

during primary HIV infection, rapidly controlled viral repli-

  Figure 1.   Loss of viral control in subject AC160.  Longitudinal as-

sessment of plasma viral loads (red line) and CD4 +  T cell counts (dashed 

blue line) after acute HIV-1 infection. At day 503 (T4), viral loads dramati-

cally increased to 380,000 copies/ml, followed by a steady decline in CD4 +  

T cell counts to  < 300 copies/ � l.   

  Table I.    CD8 +  T cell responses after superinfection and 
recombination 

Epitope Protein Sequence 22 d

(SFC/

Mio.)

419 d

(SFC/

Mio.)

1,160 d a 

(SFC/

Mio.)

B27-KK10 p24 KRWIILGLNK 85 830 250

B27-VL9 Vpr VRHFPRIWL - 550 920

B7-IL9 gp41 IPRRIRQGL - 480 -

A2-AL9 Vpr AIIRILQQL - 310 -

Cw1-CL9 gp120 CAPAGFAIL - 240 180

B27-IK9 p17 IRLRPGGKK - 230 960 

Cw7-RY11 Nef RRQDILDLWIY - 160 70 

A1-YT9 Nef YFPDWQNYT - - 1,440

B7-RL9 Nef RPMTYKAAL - - 1,330 

Cw1-VL8 p24 VIPMFSAL - - 1,200 

B7-TL10 Nef TPGPGVRYPL - - 1,070 

B7-RV9 Nef RPMTYKAAV - - 1,040 

A2-SAV10 gp41 SLLNATAIAV - - 980 

 a 6 of the strongest responses, out of a total of 16 new responses developing after 
superinfection, are shown.
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but is signi� cantly down-regulated in subjects exhibiting 

low viral loads or those under antiretroviral therapy ( 25, 26 ). 

Therefore, because it may also be interpreted as an indirect 

marker of antigen recognition, we assessed the expression of 

PD-1 on tetramer-speci� c CD8 cells for the WT KK10 

and L 268 M-speci� c KK10 responses. Interestingly, both re-

sponses revealed similar levels of T cell exhaustion (median 

� uorescent intensity, WT KK10 530 vs. L 268 M 518; unpub-

lished data). Collectively, these data support that both the 

WT and L 268 M-speci� c CD8 responses are actively recogniz-

ing infected cells, and, in concert, exhibiting immune selec-

tion pressures against both forms of the B27-KK10 epitope. 

More importantly, they suggest that functional variant-speci� c 

After the L 268 M-speci� c CD8 response was � rst detectable 

(day 363), it substantially increased in polyfunctional capac-

ity, reaching a similar polyfunctional pro� le compared with 

the WT KK10 response (day 545). Both the WT and variant-

speci� c responses exhibited comparable polyfunctional capac-

ities over time ( Fig. 2 B ), which were not signi� cantly statistically 

di� erent from one another. To exclude possible cross recogni-

tion between the WT and L 268 M-speci� c responses, we assessed 

their antigen-speci� city in a dual-tetramer staining experiment 

( Fig. 2 C ), con� rming two distinct responses with no detectable 

cross-reactivity. 

 The cell surface marker for exhaustion programmed death-1 

(PD-1) is up-regulated in CD8 +  T cells under high antigen load, 

  Figure 2.     Loss of the immunodominant HLA-B27 – restricted KK10 CD8 response after viral escape, and the development of a variant-spe-
ci� c response.  (A) Longitudinal assessment of the WT (black) and L 268 M variant-speci� c (gray) KK10 CD8 responses by IFN- �  ELISpot. The WT response 

declined at day 419, coincident with development of the L 268 M mutation, after which the L 268 M-speci� c response developed. Decline of both responses 

occurred at day 1,034 after development of the R 264 K anchor mutation. (B) Assessment of CD8 +  T cell polyfunctionality at four different time points. All 

32 possible combinations of the 5 antigen-speci� c functions studied for each epitope are shown on the x axis, and the contributions of each epitope-

speci� c CD8 +  T cell population are indicated as bars (WT, red; L 268 M, blue). Responses are grouped according to the number of functions (1, yellow; 2, 

cyan; 3, green; 4, blue; 5, red) and summarized by pie charts. (C) Dual tetramer staining for the KK10 WT and L 268 M-speci� c response on day 664, illustrat-

ing two distinct non – cross-reacting populations of antigen-speci� c cells.   
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second strain of HIV.  The second strain then dominated 

over the nearly 3 yr of follow up, with no subsequent de-

tection of the original infecting strain (unpublished data). 

The shift within the immunodominance pattern of CD8 

responses over this same time frame supported this change 

in the circulating virus (Fig. S2, available at http://www

.jem.org/cgi/content/full/jem.20080281/DC1). Remarkably, 

� ve of the seven CD8 responses present before superinfection 

subsequently declined, whereas other novel CD8 responses 

became immunodominant. A comparison of viral sequences 

revealed that the superinfecting strain transmitted mutations 

in � ve of the seven initially targeted epitopes (Table S1). 

Similar changes in the patterns of CD8 responses after super-

infection have been previously described ( 14 ), suggestive of a 

 responses may be contributing to the control of viral repli-

cation by tempering the impact of early CTL escape muta-

tions ( 13 ). 

 Superinfection is associated with loss of viral control 
 Development of the R 264 K escape mutation in B27-KK10 

nearly completely abrogates binding of the epitope to HLA-

B27 ( 11 ) and has been correlated to a dramatic loss of con-

trol over viral replication ( 6, 7, 11 ). However, when viral 

loads rapidly increased to 380,000 copies/ml at day 503 

(T4), this speci� c mutation was notably absent. Rather, a 

phylogenetic analysis revealed that the virus present at day 

503, in fact, represented a distinct strain of HIV ( Fig. 3 A  

and Fig. S1), which is indicative of superinfection with a 

  Figure 3.     Superinfection and recombination.  (A) HIV  gag  sequences from subject AC160 and 19 other HIV chronic-infected subjects were compared 

using a neighbor-joining phylogenetic tree. Sequences from subject AC160 derived from the � rst year of infection (days 22, 83, and 419) cluster indepen-

dently from sequences derived later in infection (days 503 and 545). Scale bar indicates the genetic distance along the branches, and bootstrap values 

 > 60 are shown. (B) SimPlot recombination analysis of a full-length HIV sequence derived from day 545 compared with viruses derived from pre-superin-

fection (day 83, green; day 419, red) and the superinfecting strain (day 503, blue) using a window of 100 bp and a step size of 10 bp. Two regions with 

double recombination breakpoints were observed in Gag and Env and Yates-corrected  �  2  values, and P values were calculated for each putative break-

point. Breakpoints in  gag  were detected around positions 690 ( �  = 5.8; P = 0.0165) and 822 ( �  = 50.1; P  <  0.0001), and breakpoints in  env  were detected 

around positions 6,047 ( �  = 50.1; P  <  0.0001) and 6,164 ( �  = 30.1; P  <  0.0001). By day 860 (T8), the breakpoints in  gag  were no longer detectable, sup-

portive of a possible second recombination event in the recombinant strain that restored this region of the original superinfecting strain. (C) Longitudinal 

amino acid alignment of Gag sequences in AC160. Sequences derived from the primary infecting strain (black), the superinfecting strain (red), and the 

new recombinant form (blue) are aligned to clade B consensus. Early viral escape was observed in the B27-KK10 epitope boxed in red. Flanking sequences 

are deleted (//) to illustrate sequence diversity between the two strains. Sequences suggested to be involved in the � rst recombination event are shaded 

gray, whereas those involved in the second recombination event are shaded yellow. (D) Longitudinal amino acid alignment of Env sequences containing 

the Cw1-CL9 epitope are boxed in red .  Sequences suggested to be involved in the third recombination event in Env are shaded gray.   
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stantially impair the recognition of both the WT- and L 268 M-

speci� c responses ( 6, 7 ) and normally requires the speci� c 

compensatory mutation S 173 A ( 11 ). In subject AC160, how-

ever, the S 173 A mutation did not arise, but rather two other 

distinct mutations (T 239 V and N 252 S) accompanied R 264 K. 

As we have previously observed the development of R 264 K in 

conjunction with other rare mutations in its proximity ( 22 ), 

it is likely that one or both of these mutations serve to com-

pensate for the � tness defect of R 264 K. Therefore, develop-

ment of R 264 K through recombination was likely facilitated 

by suitable compensatory mutations developing within the 

backbone sequence of the superinfecting strain rather than 

within the original infecting strain. 

 This development of R 264 K resulted in the impaired recog-

nition of both WT and variant-speci� c responses as indicated 

by their decline by day 1,034 (T9;  Fig. 2 A ). Interestingly, 

although the L 268 M-speci� c response was dominant and of 

higher functional avidity than the WT KK10 response before 

the � rst recombination event, both the WT and L 268 M re-

sponses were co-dominant and of similar functional avidity at 

day 664 (T6) before this second recombination event (1,334 

SFC/Mio. and logIC 50   � 0.04 vs. 1,450 SFC/Mio. and logIC 50  

 � 0.04, respectively;  Fig. 2 A ). Therefore, at the time the 

R 264 K mutation developed in conjunction with a likely second 

recombination event, both the WT and the variant-speci� c re-

sponses were eliciting similar immune selection pressure. 

 Recombination in envelope 
 To determine whether recombination at sites of strong im-

mune selection pressure might represent a more common 

phenomenon to escape potent CD8 responses after superin-

fection, full-length viral genome sequences from nine time 

points over the course of infection were compared. Only one 

other recombination event of  � 40 aa in length was detected 

across the whole viral genome. This small recombination 

event between aa 220 and 260 of envelope arose at day 545 

(T5), at the same time as the � rst recombination event in 

KK10 ( Fig. 3 B ). This region resides outside of the V3 loop of 

the virus, and no switch in the co-receptor tropism was 

detected using the geno2pheno method ( 27 ). Notably, this 

short region of recombination contained one of the other 

six CD8 epitopes targeted before superinfection, namely the 

Cw1-CL9 epitope CAPAGFAIL ( Table I  and  Fig. 4 ).  Similar 

to the KK10 response, this Cw1-restricted response exerted 

immune selection pressure against the virus as indicated by 

early viral escape through an A 217 T mutation developing at 

day 419 (T3) that was shown to impair T cell recognition 

( Fig. 3 D  and not depicted). As superinfection had resulted 

in transmission of the WT form of the Cw1-CL9 epitope, 

the subsequent recombination event at day 545 (T5) rapidly 

replaced this region with a sequence containing the A 217 T 

escape mutation derived from the virus circulating at day 419 

(T3;  Fig. 3 D ). Thus, viral escape in this epitope after su-

perinfection was also accomplished through recombination 

rather than through a single amino acid substitution. Simi-

lar to the KK10 epitope, an A 217 T variant-speci� c response 

potentially critical role for transmitted mutations in the eva-

sion of CD8 responses and enabling outgrowth of the new 

incoming strain. 

 Viral recombination in regions under strong immune 
selection pressure 
 Despite the documented importance of the KK10-speci� c 

CD8 response, unexpectedly, there was no sequence evolu-

tion observed in the KK10 epitope at the time of superinfec-

tion. Rather the same preexisting L 268 M escape mutation was 

present in the superinfecting strain. Surprisingly, however, 

only 2 mo after superinfection (day 545), we observed an un-

characteristic reversion of the L 268 M mutation to the WT se-

quence in addition to other sequence changes surrounding 

KK10 (Fig. S1). Strikingly, the comparison of longitudinal 

sequences revealed a short recombination event in Gag be-

tween the original and superinfecting strain at day 545 (T5; 

 Fig. 3 B ), which resulted in substitution of a narrow region of 

Gag from the original strain between amino acid residues 220 

and 274 within the superinfecting strain ( Fig. 3 C ). This short 

region overlapped with the B27-KK10 epitope and resulted 

in an unusual replacement of the L 268 M mutation with the 

WT form present during acute infection. To evaluate whether 

immune selection pressures might have in� uenced this re-

combination event, we examined the WT and variant-speci� c 

KK10 CD8 responses at the time of superinfection. Longitu-

dinal analysis of IFN- �  ELISpot responses revealed that at 

the time of superinfection the L 268 M-speci� c response was 

actually substantially stronger (1528 SFC/Mio.), and also of 

higher avidity (IC 50   � 0.26  µ g/ml; not depicted), than the WT-

speci� c response (531 SFC/Mio.; IC 50   � 0.88  µ g/ml;  Fig. 2 A ). 

Therefore, in the setting of a substantially stronger L 268 M-

speci� c response at day 503, substitution of this region con-

taining the L 268 M mutation with the WT form of the epitope 

would have facilitated evasion from a stronger L 268 M-speci� c 

response. Supportive of this hypothesis, levels of the L 268 M-

speci� c response subsequently declined by as early as day 664 

(T6;  Fig. 2 A ). These data suggest that a recombination event 

in a narrow region of Gag within 2 mo of superinfection 

facilitated rapid escape from the dominant variant-speci� c 

KK10 response. 

 Transient regain of viral control is lost through development 
of a second recombination event in Gag 
 After recombination to the WT sequence, viral loads de-

clined under the presence of a WT KK10-speci� c CD8 re-

sponse to 20,000 copies/ml by day 762, but then rebounded 

again to 139,000 copies/ml at day 860 (T8;  Fig. 1 ). Viral se-

quences in the KK10 epitope at this later time point illus-

trated development of the R 264 K escape mutation ( Fig. 3 C ). 

Moreover, these sequences revealed the likely occurrence of 

a second recombination event having again substituted a short 

sequence surrounding KK10 and facilitating development of 

the R 264 K mutation ( Fig. 3 C ), although the narrow length of 

this second recombination event precluded a critical analysis 

of breakpoints. The R 264 K mutation has been shown to sub-
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strain to overcome immune control may be related to its ability 

to rapidly recombine in critical regions under immune selec-

tion pressure. These data also support a critical role for cellu-

lar immune pressures in driving the selection of recombination 

break points, thus contributing to the selection of new circu-

lating recombinant forms of HIV. 

  MATERIALS AND METHODS  
 Subjects.   The HLA-B27 +  subject AC160, identi� ed during primary HIV 

infection, and 19 other chronically infected control subjects, were enrolled 

at Massachusetts General Hospital in Boston. The study was approved by the 

institutional review board of the Massachussetts General Hospital. 

 Sequencing of autologous virus.   Population sequences of autologous 

full-length viral genomes were derived from proviral DNA, as previously 

described ( 13 ). In brief, genomic DNA extracted from 5 million PBMCs 

using the QIAamp DNA Blood Mini kit (QIAGEN). Nested PCR proto-

cols with limiting dilution used to amplify full-length HIV genomes using 

EXL DNA Polymerase (Stratagene). The sequences of primary forward and 

reverse PCR primers, respectively, are 5 � -AAATCTCTAGCAGTGGC-

GCCCGAACAG-3 �  and 5 � -TGAGGGATCTCTAGTTACCAGAGTC-3 � , 

whereas the nested forward and reverse primers are 5 � -GCGGAGGC-

TAGAAGGAGAGAGATGG-3 �  and 5 � -GCACTCAAGGCAAGCTTTA-

TTGAGGCTTA-3 � . PCR cycling conditions were as follows: 92 ° C for 

2 min; 10 cycles of 10 s at 92 ° C, 30 s at 60 ° C, or 10 min at 68 ° C; and 20 cycles 

of 10 s at 92 ° C, 30 s at 55 ° C, 10 min at 68 ° C, and a � nal extension of 

10 min at 68 ° C. Five independent PCR products of each sample were 

pooled and puri� ed using the QIAquick PCR Puri� cation kit (QIAGEN) 

and population sequenced bi-directionally on an ABI 3130 automated sequencer 

(Applied Biosystems) using 70 clade B consensus sequencing primers, as pre-

viously described ( 14 ). 

 Autologous clonal  gag  and  env  sequences were derived from plasma 

RNA, as previously described ( 13 ). Viral RNA was isolated from plasma, 

and nested PCR was conducted using a set of described primers speci� c for 

HIV ( 14 ). First round PCR cycling conditions were as follows: 94 ° C for 2 

min, 35 – 50 cycles of 30 s at 94 ° C, 30 s at 56 ° C, 2 min at 72 ° C, and a � nal 

extension of 68 ° C for 20 min, and nested PCR reactions were shortened to 

a 1-min extension time. PCR fragments were then gel puri� ed and se-

quenced directly or cloned (TOPO TA Cloning kit; Invitrogen). Plasmid 

DNA was isolated by miniprep (QIAPrep Turbo Miniprep) and sequenced 

bi-directionally. 

 Sequence data were manually edited using Sequencher 4.6 (Gene Codes 

Corporation). In regions where secondary peaks were observed, the domi-

nant base was called. Nucleotide sequences were conceptually translated and 

aligned using MacVector 7.2.3 (Accelrys). The clade B HIV consensus se-

quence (2002) from Los Alamos National Laboratory HIV Sequence Data-

base was used as the reference sequence to compare with our sequencing 

data. All sequence data were deposited in GenBank under accession nos. 

 EU616639  –  EU616649 . 

 Phylogenetic analysis.    Gag  sequences from subject AC160 were aligned 

and compared with sequences derived from chronically infected subjects 

within a chronic infection cohort in Boston using Phylip3.6 for constructing 

neighbor-joining phylogenetic tree. 

 Recombination.   Recombination break points were determined using 

SimPlot (see Supplemental materials and methods and Fig. S3, available 

at http://www.jem.org/cgi/content/full/jem.20080281/DC1). Full-length 

HIV sequences were analyzed using a 100-bp window and a 10-bp step 

size, and Yates-corrected  �  2  values and P values were calculated for each pu-

tative breakpoint. 

 ELISpot.   Baseline HIV-speci� c CD8 +  T cell responses were quanti� ed on 

freshly isolated PBMCs by IFN- �  ELISpot assay ( 4 ) using 410 overlapping 

developed, peaking at day 545 ( Fig. 4 ; T5, 730 SFC/Mio.), 

with the development of additional mutations in this epit-

ope by day 1,034 ( Fig. 3 D ) observed to completely abrogate 

both the WT and variant-speci� c responses ( Fig. 4 ). Collec-

tively, these data revealed the presence of a third recombina-

tion event associated with evasion of a CD8 response, which 

is strongly indicative of successive attempts by the virus to 

rapidly evade dominant immune selection pressures directly 

through recombination. 

 It has been recently suggested that recombination after 

HIV superinfection occurs more frequently than anticipated 

( 28 ). Understanding the underlying mechanisms of recombi-

nation pertains not only to the impact of greater global HIV 

diversity ( 15 ), but also to the critical events undermining 

successful immune control of HIV infection. The generation 

of HIV recombinants is thought to occur by a copy choice 

mechanism during reverse transcription ( 20 ), with breakpoint 

selection generally being a random event, although it is in� u-

enced by sequence identity ( 20, 21 ). These data indicate that 

recombination enabled rapid evasion from the most immuno-

dominant CD8 response in subject AC160, strongly suggest-

ing that the recombination event was driven by immune 

selective pressures. 

 The current study indicates that speci� c selection forces, 

in this case cellular immune pressures, can strongly in� uence 

recombination. The diversity of HLA class I alleles in the 

population, and the variety of CD8 responses, would explain 

the complex array of recombination breakpoints between 

di� erent HIV strains observed to date ( 19 ) and the inability to 

ascribe a strong predictor of recombination hotspots. In con-

clusion, these data suggest that the ability of a superinfecting 

  Figure 4.     Abrogation of the Cw1-CL9 response after recombina-
tion in Env.  Longitudinal development of the WT (black) and A 217 T vari-

ant-speci� c (gray) CL9 responses as measured by IFN- �  ELISpot. The A 217 T 

variant-speci� c response was not detected before recombination at day 

419 ( ” not present ” ). At the time of superinfection at day 503, the WT re-

sponse exhibited the highest magnitude, suggestive of having driven the 

recombination event to the A 217 T form of CL9. Decline of both the WT and 

the A 217 T -speci� c CL9 response was observed at day 1,034.   
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CD3, CD4, CD8 (BD Biosciences), and PD-1 (provided by G. Freeman, 

Harvard Medical School, Boston, MA) and incubated for 20 min at room 

temperature. Cells were � xed with 1% paraformaldehyde, and events were 

acquired on a LSRII (BD Biosciences). Data were analyzed using FlowJo 

software 8.3.3. 

 Online supplemental material.   Fig. S1 shows longitudinal amino acid 

alignment of Gag sequences. Fig. S2 shows that superinfection and re-

combination is paralleled by a disintegration of the CD8 +  T cell immuno-

dominance patterns. Fig. S3 shows the detection of superinfection using 

the reversible (GTR) model of nucleotide substitution. Table S1 lists the 

viral sequences of the targeted CD8 +  T cell responses before and after super-

infection and recombination, with supplemental materials and methods 

providing a description of the analysis of recombination using clonal gag 

sequences. The online version of this article is available at http://www.jem

.org/cgi/content/full/jem.20080281/DC1. 
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