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Immunoglobin G4-related disease (IgG4-RD) is one of the newly discovered autoimmune
diseases characterized by elevated serum IgG4 concentrations and multi-organ fibrosis.
Despite considerable research and recent advances in the identification of underlying
immunological processes, the etiology of this disease is still not clear. Adaptive immune
cells, including different types of T and B cells, and cytokines secreted by these cells play a
vital role in the pathogenesis of IgG4-RD. Antigen-presenting cells are stimulated by
pathogens and, thus, contribute to the activation of naïve T cells and differentiation of
different T cell subtypes, including helper T cells (Th1 and Th2), regulatory T cells, and T
follicular helper cells. B cells are activated and transformed to plasma cells by T cell-
secreted cytokines. Moreover, macrophages, and some important factors (TGF-b, etc.)
promote target organ fibrosis. Understanding the role of these cells and cytokines
implicated in the pathogenesis of IgG4-RD will aid in developing strategies for future
disease treatment and drug development. Here, we review the most recent insights on
IgG4-RD, focusing on immune dysregulation involved in the pathogenesis of this
autoimmune condition.
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INTRODUCTION

Immunoglobin G4-related disease (IgG4-RD) is a group of autoimmune diseases involving fibrosis
and inflammation of multiple organs and systems. This disease has three major characteristics: (i)
remarkable elevated serum concentrations of IgG4; (ii) multiple IgG4

+ plasma cells in the lesion
regions; and (iii) good response to corticosteroid treatment (1, 2).

Autoimmune pancreatitis (AIP) was the first IgG4-RD to be described in 2001 by Japanese
scientists Hamano et al. (3) In 2003, Kamisawa et al. (4) observed infiltration of IgG4-secreting
plasma cells in extra-pancreatic organs and proposed a new clinicopathological entity that linked
AIP and systemic IgG4-RD. Since then, an increasing number of IgG4-RDs have been discovered in
different organs, such as the liver (5–7), kidneys (8–11), and lungs (12–14). With the deepening of
research on IgG4-RD, an article in Autoimmunity Reviews (15) officially confirmed the existence of
org September 2021 | Volume 12 | Article 7385401
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this disease in 2010. Soon afterward, the first international
consensus guideline on the management and treatment was
published in Arthritis & Rheumatology (16) in 2015. To date,
the pathogenesis of IgG4-RD remains unclear and is thought to
involve multiple factors, including adaptive and innate immunity
and autoantigens. Herein, we present the most up-to-date
information on immune dysregulation in IgG4-RD.
ADAPTIVE IMMUNITY

IgG4
Among the four IgG subtypes, namely IgG1, IgG2, IgG3, and IgG4,
IgG4 has the lowest concentration in normal human serum,
accounting for only 5% of the total IgG levels (17). Antibodies
are immunoglobin (Ig) molecules composed of two heavy (H)
and two light (L) chains, both having a constant region (CH or CL)
identical for all antibodies of the same isotype and a variable
region (VH or VL) that recognizes and binds a specific antigen.
Antibodies comprise two antigen-binding fragments (Fab) that
bind to antigens and one constant fragment (Fc) that binds to the
cell surface and allows phagocytosis. Most immunoglobin (Ig) G
antibodies have these characteristics: (i) they have two identical
antigen-binding sites; (ii) they do not change their structure after
being secreted by plasma cells. However, Aalberse et al. (17)
described IgG4 as an “odd antibody” because of its unique
properties different from other Igs. First, it cannot cross-link
identical antigens (“functional monovalency”) (18, 19). Instead,
the exchange of half-molecules, also called “Fab-arm exchange”
(Figure 1), contributes to bispecific IgG4 antibodies. Second,
unlike other Igs, which are proinflammatory, IgG4 has a lower
affinity for C1q (the q fragment, a part of complement C1, is the
site where Igs first bind) and Fc receptor (18). These properties
Frontiers in Immunology | www.frontiersin.org 2
suggest that IgG4 may have anti-inflammatory activities.
Remarkably increased serum IgG4 levels and multiple IgG4

+

plasma cell infiltration are important features of IgG4-RD.
Nevertheless, its function is still unknown in the pathogenesis
of IgG4-RD: whether it plays a protective role in IgG4-RD by
participating in the anti-inflammatory process, acts as a
pathogenic factor mediating the occurrence of IgG4-RD, or is
merely a manifestation induced by inflammatory stimulation, has
not been determined yet. In 2015, Shiokawa et al. (20) reported an
interesting finding that pancreatic injury could be induced in
neonatal male Balb/c mice by injecting patient IgG1 or IgG4, and
the injury caused by IgG1 was more serious. However, the
pathogenic activity of IgG1 and the severity of pancreatic injury
were substantially inhibited by simultaneously injecting IgG4.
Moreover, rituximab, a monoclonal antibody, specifically binds
to cluster of differentiation 20 (CD20), a biomarker of pre-B and
mature B cells, and exerts cytotoxic, anti-proliferative, and
apoptotic effects. A prospective, open-label trial by Carruthers
et al. (21) discovered that rituximab could relieve the symptoms
of IgG4-RD. However, after rituximab treatment for 12 months,
19 patients with elevated baseline IgG4 levels showed a marked
decrease in IgG4, but only 42% achieved normal IgG4 levels. This
finding showed that rituximab might not work by decreasing
serum IgG4 levels but by depleting activated B cells; thus, IgG4

might not have a considerable role in IgG4-RD. Similarly, Gauiran
et al. (22) examined two cases of IgG4 myeloma, of which both
showed high serum IgG4 levels, but neither of them manifested
typical IgG4-RD presentations.

B-Lymphocytes
IgG4-RD is characterized by remarkably elevated serum IgG4

levels and expansion of lymphoid follicles. However, a wide range
of IgG4 concentrations have been observed in patients with IgG4-
A B

C

FIGURE 1 | Bispecific IgG4 antibodies are produced through Fab-arm exchange. (A) Most IgGs do not change their structure, (B) Fab-arm exchange of IgG4
antibodies, (C) IgG4 is functional monovalency while other IgGs are not.
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RD, with some reaching levels 30 times over the upper limit, but
up to 40% of patients show normal IgG4 levels (23). Next-
generation sequencing examinations have led to the
identification of a large number of circulating, antigen-specific
plasmablasts in the peripheral blood of patients with IgG4-RD
(24). Flow cytometry studies have confirmed a substantial
increase in the number of plasmablasts in the blood of IgG4-
RD patients (24). Over 95% of B-lymphocytes (except
plasmablasts and plasma cells) express CD20, which makes
rituximab, an anti-CD20 drug, effective in eliminating B cells
from patients with IgG4-RD (25). CD19 has a broader expression
than CD20 and is found in all B cell lines except plasma cells (26).
B cell depletion leads to a decrease in serum IgG4 concentrations,
indicating the preponderance of short-lived plasmablasts and
plasma cells in regulating serum IgG4 levels. However, the
depletion of B cells does not cause a complete normalization of
IgG4 concentration, which suggests that long-lived plasma cells
might maintain the production of antibodies. Mattoo et al. (24)
examined 84 patients diagnosed with IgG4-RD and found that the
number of plasmablasts was higher than the control group even
in patients with normal serum IgG4 concentration. Besides,
patients who undergo a relapse after rituximab treatment
exhibit an increase in the number of plasmablasts and stronger
somatic hypermutation. Therefore, peripheral plasmablasts might
be considered as a biomarker for IgG4-RD (27).

B-lymphocytes are also involved in the fibrosis of diseased
tissues. Della-Torre et al. (28) cultured naïve B cells, CD19+ B-
lymphocytes, memory B cells, or plasmablasts from IgG4-RD
with human fibroblasts and observed that the B cells and plasma
cells from IgG4-RD patients can promote collagen synthesis in
fibroblasts by secreting the pro-fibrotic molecules of platelet-
derived growth factor B. They also observed those cells could
induce the remodeling of the extracellular matrix (ECM) by
producing ECM-crosslinking enzymes, such as lysyl oxidase-like
2, and chemotactic factors CCL-4, CCL-5, and CCL-11. This
finding suggests that B cells might be directly involved in tissue
fibrosis in IgG4-RD.

T Lymphocytes
T cells are formed in the bone marrow but mature in the thymus.
They are involved in cell-mediated immunity and have three
major types: helper T cells (Th), cytotoxic T cells (Tc), and
regulatory T cells (Treg). Th cells can be subdivided into
mutually exclusive Th1 and Th2 subsets. The Th1/Th2 balance
has been confirmed to participate in autoimmune and allergic
diseases (29, 30).

Th2 Cells
Th2 cells primarily secrete interleukin-4 (IL-4), IL-5, and IL-13
that participate in a plenty of pathogenic phenomena, such as
allergic reaction, hypersensitivity, and IgE and IgG class
switching (31). Because extremely high levels of IgG4 are
observed in nearly all patients with IgG4-RD, it is one of the
key diagnostic criteria for this disease. In 2005, Schmitz et al. (32)
reported that IL-33 activates NF-kB and MAP kinases via IL-1
receptor ST-2 and thus promotes the production of cytokines
from Th2 cells. In 2007, Miyake et al. (33) observed a disrupted
Frontiers in Immunology | www.frontiersin.org 3
balance between Th1/Th2 cells and increased peripheral Th2
levels in a patient with Mikulicz syndrome. In 2010, Akitake (34)
and Suzuki (35) discovered that the number of Th2 cells and the
levels of cytokines produced by them (IL-4, IL-5, and IL-13) were
higher than normal in diseased tissues. In 2012, Tanaka et al. (36)
examined 15 patients with Mikulicz disease and discovered that
Th2-mediated adaptive immunity was essential in IgG4-RD. In
2013, GATA3+ Th2 cells are proved to be present in IgG4-related
sclerosing cholangitis and type 1 autoimmune pancreatitis. Zen
et al. (37) found the ratio of GATA3+/T-bet+ cell is shifted
towards Th2, which may result in the recruitment of
lymphocytes in patients with IgG4-RD.

However, a recent study questioned this conclusion. Maehara
et al. (38) found that IL-4 mRNA levels were markedly high,
whereas CD4+GATA3+ Th2 cells and GATA3 mRNA levels were
low in patients with IgG4-RD, and that CD4+GATA3+ Th2 cells
primarily exist in patients with allergic reaction. They explained
that increased IL-4 levels might be produced by non-Th2 cells.
Another puzzling finding, as reported by Okazaki et al. (39), was
that instead of IL-4 levels, interferon (IFN)-g levels were
increased, and Th1-mediated immune response seems involved
in IgG4-RD AIP. Another study, however, examined 44 patients
with chronic periaortitis, one of the subtypes of IgG4-RD, and
demonstrated the elevated level of CXCL12 and dominant
infiltration of GATA3+ Th2 cells. This novel finding indicates
CXCL12 might drive fibrocytes accumulation and Th2
differentiation (40).

Th1 Cells
In 1986, the two types of helper T cells, Th1 and Th2, were first
described by Mosmann (41). Since then, various Th subsets with
different functions have been discovered and reported. Th1 cells
express CD4 and are activated by IL-12 and IFN-g.

Recently, some researchers found elevated Th1 levels in IgG4-
RD and speculated that Th1 cells might participate in the
progression of IgG4-RD. Ohta et al. (42) observed a
considerable increase in the population of Th1, but not Th2
cells in patients with IgG4-related sclerosing sialadenitis. Besides,
the peripheral serum level of IFN-g was substantially elevated.

CD4+ CTLs and CD8+ CTLs
However, multi-color immunofluorescence proved that high
IFN-g levels were derived from novel CD4+ cytotoxic T cell
(43). Granzyme B (GZMB), one of the effector molecules of
CD4+ T cells, was also present in the peripheral blood, whereas
CD4+GZMA−IFN-g+ Th1 cells were rare in diseased tissue. CD4+

CTLs are widely distributed in humans (44, 45) and mice (46, 47).
They recognize antigenic peptides and target cells through MHC
class II (MHC-II)- and HLA-II-dependent antigen-specific
pathways, respectively (45), and perform their killing functions
by secreting GZMB and perforin. Their accumulation has also
been seen in some autoimmune diseases, and their severity
positively correlated with the number of CD4+ CTLs (48).
Mattoo et al. (43) reported that proinflammatory factors, such
as transforming growth factor (TGF)-b, IL-1b, and IFN-g, were
increased in peripheral blood, suggesting the potential role of
CD4+ CTLs in tissue fibrosis. Recently, a hypothesis in the
September 2021 | Volume 12 | Article 738540

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Pathogenesis of IgG4-RD
mechanism of fibrosis and inflammation in IgG4-RD suggests
that self-reactive cytotoxic CD4 T cells might be activated by T
cells and induce cell programmed death, thus causing tissue
fibrosis and inflammation (49).

Perugino et al. (50) observed CD27loCD28loCD57hi cells are
dominant effector subset among circulating CD4+ CTLs in IgG4-
RD, showing significant clonal expansion and different gene
expression. Besides, they found marked infiltration of
granzyme A-expressing CD8+ CTLs in diseased tissue and
expansion of effector/memory CD8+ T cells in blood samples.
Tissue studies also proved that apoptosis was common in
diseased tissue, with a high proportion of nonimmune,
nonendothelial mesenchymal cells.

In IgG4-related disease, presumably self-reactive cytotoxic
CD4 T cells infiltrate tissues, are reactivated by T cells and induce
apoptotic death. Molecules secreted by activated B cells and by
CD4+ CTLs drive an exaggerated wound healing response
resulting in fibrosis and compromised tissue function.

Treg Cells
Regulatory T cells (Treg) are CD4+CD25+ T cells that primarily
secrete the anti-inflammatory factor IL-10 (51) and the
fibrogenic factor TGF-b to maintain immune tolerance and
immune homeostasis in vivo. Treg cells can be divided into
two broad subsets: thymus-derived CD4+CD25+ forkhead box
protein 3 (FOXP3)+ natural Treg cells and periphery-generated
induced Treg (iTreg) cells. There are three main subtypes of
iTreg cells: (i) CD4+FOXP3+ iTreg cells, (ii) CD4+FOXP3- IL-10-
producing type I Treg (Tr1) cells, and (iii) TGF-b-expressing
TH3 cells.

In 2018, Lin et al. (52) observed that IL-10 does not affect IL-
4-induced IgE production but causes a 20-fold increase in IgG4

production in B cell cultures, whereas the production of both IgE
and IgG4 was promoted by IL-10 in peripheral blood
mononuclear cell (PBMC) cultures. Furthermore, they
observed that IL-10 could diminish IL-4-induced IgE
production without affecting the production of IgG4. Similarly,
Punnonen et al. (53) proved that IL-10 decreases IgE production
by IL-4-stimulated PBMCs. Another study reported that the
blockage of IL-10 receptors in CD4+CD25+ Treg cells caused a
decrease in their IgE-suppressing and IgG4-inducing effects (31).

TGF-b, a regulatory cytokine, is involved in the suppression
of immune reactions. It can induce fibroblast transformation
into myoblasts, increase type I collagen synthesis, and inhibit
collagenase synthesis by Smad signaling pathways, thus
promoting tissue fibrosis (54–56).

It is believed that Treg cells play an important role in the
pathogenesis of IgG4-RD (57). Plenty of histological examinations
have shown that an increased number of Treg cells are associated
with different IgG4-RDs, including, but not limited to, AIP (58),
IgG4-related sclerosing cholangitis (59), and Mikulicz’s syndrome
(36). Therefore, it can be believed that most target organs in IgG4-
RD have Treg cell infiltration. Besides, the level of Treg cells is
elevated not only in the diseased tissue but also in peripheral
blood (60). Miyoshi et al. (61) analyzed circulating Tregs in AIP
and found CD4+CD25+ Tregs markedly elevated in AIP patients
Frontiers in Immunology | www.frontiersin.org 4
while naïve Tregs decreased, which indicates changes of Tregs
might affect IgG4 production and disease progression.

Further studies showed that the levels of IL-4, IL-10, and
Foxp3 were positively correlated with IgG4/IgG, suggesting that
Treg-mediated immune response could promote IgG4

production and IgG4-RD progression.

Th17 Cells
Upon activation with TGF-b, IL-6, and IL-23, CD4+ Th cells can
differentiate into Th17 cells. Some researchers discovered that
IL-17, an inflammatory cytokine, has a strong effect on resting
stromal cells and might be involved in fibrosis (62–64). Feng
et al. (65) reported that IL-17 could promote the synthesis and
secretion of collagen through the TGF-b signaling pathway and
regulate the infiltration of fibroblasts. Ohta et al. (42) observed a
correlation between the expression of IL-17 and elevated number
of Th1 and Tc1 cells in IgG4-related sclerosing sialadenitis. They
subsequently proposed a hypothesis that IL-17, with Th1 and
Tc1 cells, could cause elevated serum levels of IgG4 and IL-17
and numbers of Th1 and Tc1 cells, but not Th2 and Tc2 cells.
However, the exact role of IL-17 in the pathogenesis of IgG4-RD
is still a mystery.

T Follicular Helper (Tfh) Cells
Tfh cells are specialized CD4+ T cells involved in the formation
of a germinal center (GC), where B cells development and
selection of antibodies occur (66). A GC contains a dark zone
where B cells proliferate, and a light zone, where Tfh and B cells
interact (67). A large number of ectopic GCs can be found in the
pathological tissues of IgG4-RD. A study reported that nearly
70% of CD4+ T cells in the lesion of IgG4-related salivary gland
are Tfh cells (68), and they play an important role in driving
plasma cell and plasmablast differentiation via Tfh cytokine IL-
21 (69). Besides, IL-4 has been proved to be involved in IgG4
class-switching in IgG4-RD both in vitro (70) and in vivo (71). A
functional analysis suggested that IL-4-secreting Tfh cells
assisted in antibody class-switch (72), whereas IL-21-secreting
Tfh cells were essential for somatic hypermutation of B cells (73).
Moreover, GCs exist even without Th2-related genes (74) but
disappear without both IL-4 and IL-21 receptors (69). Zaidan
et al. (75) observed Tfh cell infiltration of the GC light zone,
which was unique to IgG4-RD. In 2011, Maehara et al. (76)
examined the ectopic formation of GC and the expression of IL-
21, Th2-, Th17-, and Tfh-related cytokines in 12 patients with
Mikulicz’s syndrome and found that IL-4-expressing Tfh cells
were primarily located outside of the ectopic GCs, whereas IL-
21-expressing Tfh cells were located inside. Similarly, the
upregulated expression of IL-21 mRNA was associated with
the formation of ectopic GCs (76, 77). Thus, GC formation, B
cell selection, and IgG4 antibody class-switch via different Tfh
cell-produced cytokines are basic pathological events in the
progression of IgG4-RD.

Based on the different expression levels of chemokine
receptors CXCR3 (chemokine (C-X-C motif) receptor 3) and
CCR6 (chemokine (C-C motif) receptor 6), Tfh cells can be
divided into three subsets: Tfh1 (CXCR3+ CCR6-), Tfh2
(CXCR3- CCR6-), and Tfh17 (CXCR3- CCR6+) (78). Recently,
September 2021 | Volume 12 | Article 738540
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several studies confirmed the expansion of circulating
plasmablasts (24, 27, 79, 80) and the Tfh2 cells (81, 82) in
IgG4-RD. Moreover, the number of Tfh2 cells positively
correlated with the serum IgG4 concentration (81, 82) and
proportion of IgG4

+ plasma cells in diseased tissues (83). In
vitro studies have shown that Tfh2 cells promote the
differentiation of plasmablasts (81). Interestingly, Akiyama
et al. (81) observed that the glucocorticoid therapy decreased
the number of activated Tfh2 cells, which increased again during
disease relapse, suggesting that activated Tfh2 cells might be used
as a biomarker for IgG4-RD.

Another finding showed Tfh1 cells were activated in IgG4-RD
but did not affect the production of IgG4 antibody (81). Therefore,
the effect of Tfh1 cells remains to be further elucidated.

T cell immunoreceptor with immunoglobulin and ITIM
domain (TIGIT), a co-inhibitory receptor discovered recently
(84), was thought to be a novel Tfh marker. Akiyama et al. (85)
analyzed the expression of TIGIT in peripheral CD4+T cell
subsets and found that peripheral Tfh cells have higher
expression of TIGIT than Th cells. They also observed that
TIGIT+ Tfh cells secretes more IL-21 than TIGIT- Tfh cells,
which could be used to trace the progression of IgG4-RD.

Tfh 17 cells do not appear to be involved in IgG4-RD because
their numbers do not vary with serum IgG4 levels (81).
Moreover, IL-17, a marker of Tfh17 cells, was rarely expressed
in diseased tissues (76).
INNATE IMMUNITY

In the past few years, innate immunity in IgG4-RD has gradually
attracted researchers’ attention. Toll-like receptor (TLR), a key
receptor that belongs to the pattern recognition receptor family,
can bind to pathogen-associated molecular patterns (PAMPs),
and activate inflammatory factors through the NF-kB and
MAPK pathways. Other receptors, such as nucleotide-binding
oligomerization domain (NOD)-like receptor (NLR) and C-type
lectin receptor, can identify PAMPs and induce immune reactions.

Macrophages
Macrophages are relatively long-lived phagocytic cells of
mammalian tissues derived from blood monocytes. Based on
their phenotype and function, activated macrophages can be
divided into two main categories, classically activated M1
macrophages and alternatively activated M2 macrophages,
which are further divided into pro-allergic M2a, immune-
regulatory M2b, and M2c types (86, 87).

When cultured with GM-CSF, monocytes can differentiate
into M1 macrophages (88). Some important factors, including
bacterial lipopolysaccharide (LPS) (89), monosodium urate
monohydrate (90), inflammatory biomarker C-reactive protein
(CRP) (91), and Th1 cytokines IFN-g and tumor necrosis factor-a
(TNF-a), promote the production of M1 macrophages. Activated
M1 macrophages secrete proinflammatory factors and mediate
adaptive immunity, thus eliminating the pathogens that damage
normal host tissues. Hong et al. (92) observed markedly increased
Frontiers in Immunology | www.frontiersin.org 5
levels of TNF-a in submandibular glands of patients with IgG4-
related sialadenitis (IgG4-RS). Besides, TNF-a treatment showed
a consistent redistribution of the transcription factor EB in
patients with IgG4-RS. This finding suggests that TNF-a
suppresses autophagic flux and lysosomal dysfunction and
causes injury of acinar cells through the ERK1/2 pathway. To
sum up, M1 macrophages might participate in the formation and
progression of IgG4-RS.

Interestingly, the anti-inflammatory M2 macrophages also
participate in the IgG4-mediated immune response. Usually,
M2 macrophages become polarized by the stimulation of Th2-
derived IL-4 and IL-13 (93). IL-33, a member of the IL-1 family,
can amplify IL-13-induced M2 macrophage polarization (94).
However, inflammatory monocytes can differentiate into M2
macrophages via basophil-derived IL-4 during an allergic
reaction (95). Watanabe et al. (96) showed that the TLR
signaling pathway could enhance immune dysregulation in
IgG4-RD. Besides, Ishiguro et al. (97) observed that TLR-7-,
TLR-8-, and TLR-9-related genes were overexpressed in IgG4-
RD. Chang et al. (98) reported that in vitro stimulation with
TLR-7 agonist could increase IL-33 production by alveolar
macrophages in virus-infected lung tissues. Baenziger et al. (99)
proved that, besides being involved in antiviral infection, TLR-7 is
involved in acquired immunity. Mice experiments confirmed that
the activation of TLR-7-expressing plasmacytoid dendritic cells
could lead to arthritis and lupus nephritis (100). These interesting
findings suggest that virus infection and/or endogenous RNAs
could initiate the formation of IgG4-RD. Pathogens activate IL-
33-secreting M2 macrophages via TLR-7 and thus promote the
production of Th2 cytokines, leading to tissue fibrosis and IgG4

class switching. Bianchini et al. (101) further examined the
phenotype of M2 macrophages and found that pro-allergic M2a
macrophages could be converted into immune-regulatory M2b
macrophages by IgG4 to maintain a tolerogenic state.

Another crucial macrophage involved in IgG4-RD is CCL-18-
producing M2 macrophages. CCL-18, produced from activated
M2 macrophages, plays an critical rule in the formation of
collagen (102). DNA microarray analysis also proved that
CCL-18 was upregulated in IgG4-RD (103). Furukawa et al.
(104) examined 7 patients with IgG4-related dacryoadenitis and
sialoadenitis and found the level of CD163, one of the markers of
M2 macrophage, was significantly higher than that in Sjögren’s
syndrome and healthy subjects. Similarly, Takanashi et al. (105)
observed massive infiltration of CD163+ M2 macrophages in the
diseased tissue. CD163 is also co-localized with IL-10 and CCL-
18 in the fibrotic region, which indicates CCL-18-secreting M2
macrophages might be involved in the development of fibrosis in
IgG4-RD. Thus, CCL-18 might be a useful biomarker for tracing
the severity of IgG4-RD (106).

Human IgG antibodies bind to different members of the Fcg
receptors (FcgRs) family, which have a low affinity for IgG and
thus bind merely to immune complexes (IC) (107). It is widely
believed that the interaction between IgG and FcgRs stimulates
the immune system by triggering the phosphorylation of
immunoreceptor tyrosine-based activation motif (ITAM) of
FcgR (108) and inhibition of signaling pathway by coupling
September 2021 | Volume 12 | Article 738540
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with FcgR IIB (109) and IgG4 is commonly thought to be not
compatible with FcgR (57, 110). However, Bianchini et al. (101)
reported that IgG4 might bind to FcgRIIb on M2a macrophages
and cause M2b subtype conversion, leading to IL-10 and CCL1
secretion. IL-10 further contributes to class switching of IgG4-
secreting B cells, whereas CCL1 recruits CCR8+Foxp3+ Tregs
from the periphery. Growing evidence indicates that ITAM-
containing FcgR also has an inhibitory intrinsic ability (111).
Boekhoudt et al. (112) reported that IFN-g signaling pathways
are inhibited by IC-mediated signaling through FcgR I and M2-
like macrophages can be induced by IgG4 through FcgR I (101).

The fate of organs in inflammation and injury is controlled by
the balance of M1/M2 macrophages. When the infection or
inflammation caused by those pathogens is severe enough to
affect the target organ, macrophages are activated and
differentiated to the M1 subtype to antagonize the stimulation
by Th1 cytokines. However, if M1 macrophage-mediated
immune responses continue, it could cause pathological
damage to the tissue. Therefore, M2 macrophages express IL-
10 and TGF-b and trigger Th2-mediated reaction to suppress the
immune response and promote damaged tissue repair.

Basophils and Eosinophils
During parasitic infections, allergic reactions, and autoimmune
diseases, basophil cells are recruited into tissues where they
produce Th2 cytokines and participate in the immune
response of Th2 cells as antigen-presenting cells (APCs) (113).
APCs and T cells secrete Th2 cytokines IL-4, IL-10, and IL-13 to
induce IgG4 production. Several studies show that a combination
of basophils and microbial antigens induces the production of
Th2 cytokines (114, 115). Therefore, exogenous stimulation may
facilitate the occurrence of IgG4-RD through the activation of
TLRs in basophils. Watanabe et al. (96) proved that microbial
antigens activate TLRs and NLRs in monocytes to induce IgG4

secretion by activating of B cell-activated factor (BAFF)-
mediated pathways. They also examined IgG4 and cytokine
responses to various NLR and TLR ligands and found that the
activation of TLRs in basophils promotes the secretion of IgG4,
BAFF, and IL-13 and thus leads to the progression of IgG4-RD
(116). This finding suggests that TLR-mediated basophil
activation could facilitate disease development through the
BAFF signaling pathway.

Eosinophils are involved in the pathogenesis of inflammation
(117). They secrete various cytokines and affect T cell expansion
and Th1/Th2 cell polarization (118). Some reports have shown a
connection between eosinophils and IgG4-RD (119–121). Some
researchers also observed that patients with type I AIP, a typical
presentation of IgG4-RD, have a long history of allergies (122,
123). Peripheral eosinophils and serum IgE were elevated in
these patients. However, when they tried to determine the
allergen by skin prick test or specific IgE quantitation, the
allergen sensitization profile failed to reveal the culprit.
Furthermore, they tested the mean IgE levels and eosinophil
counts and found no connection between those data and the
atopic state of patients. This finding suggests that elevated
peripheral eosinophil counts and IgE levels are the intrinsic
characteristics of IgG4-RD. TGF-b, one of the major cytokines
Frontiers in Immunology | www.frontiersin.org 6
secreted by eosinophils (118), participates in the formation of
tissue fibrosis. Moriyama et al. (123) observed a positive
correlation between peripheral eosinophil counts and
treatment-free disease duration in IgG4-RD, which indicated
that eosinophils might promote the end-stage development of
the disease and participate in the pathogenesis of fibrosis.

Eotaxin-3, or CCL-26, is recently considered to be a potent
chemoattractant for eosinophils (124). To date, Eotaxin-3 is
thought to have eosinotactic activity both in vitro and in vivo.
IL-4 and IL-13 are potent co-inducers of Eotaxins in epithelial
and endothelial cells, consistent with Th2 responses in allergic
and eosinophilic diseases (125). Eotaxin-3 could also attract
eosinophils, basophils, and killer T cells via receptor CCR3 and
CX3CR1. Consequently, increased local expression of Eotaxins
has been described in various eosinophilic diseases. In 2021,
Takanashi et al. (126) analyzed proteins overexpressed in
patients with IgG4-RD with lymphadenopathy and discovered
that this disease was linked with eosinophilia and Eotaxin-3
could be thought to be a potent biomarker.

Lymphadenopathy in IgG4-RD represents a phenotype
associated with high disease activities, eosinophilia and
relapsing disease. Eotaxin-3 is a novel biomarker related to
IgG4-RD with lymphadenopathy.

Complement Activation System
The complement system participates in developing IgG4-RD. It
contains a cascade of proteins that lead to the lysis of
microorganism-infected cells. The complement system can be
activated by three pathways: the classic, alternative, and lectin
pathways. These three pathways converge on the production of
C3 convertase, an enzyme that triggers the cleavage of C3 into an
enzymatically active C3b and an anaphylatoxin C3a that could
mediate inflammatory responses. Saeki et al. (127) examined 10
patients with hypocomplementemia of unknown etiology and
found six to have high serum IgG4 levels. Kawano et al. (128)
identified 22 patients (53.7%) with hypocomplementemia among
41 IgG4-related kidney disease (IgG4-RKD) patients. Besides, 16
showed lower levels of C3, C4, and CH50. IgG4-RKD is now
considered as a complement-triggered inflammatory disease
(129). A native renal biopsy showed that ethnic factors might
contribute to different incidence rates of IgG4-RKD (Table 1).
Besides, renal interstitial tissue fibrosis is now recognized as an
inevitable process of end-stage renal disease. Wang et al. (135)
examined serum C3 and C4 levels and found that these levels
were negatively correlated with the number of infiltrated IgG4-
secreting plasma cells in the kidney. However, the role of IgG4 in
TABLE 1 | Five studies from America, South Korea, Japan, Australia, and India
show the involvement of a potential ethnic factor in the morbidity of IgG4-RD.

Country Kidney biopsy IgG4-RKD IgG4-RKD/kidney
biopsy (%)

America (130) 4492 2 0.04
South Korea (131) 5174 12 0.23
Japan (132) 6978 47 0.67
Australia (133) 1238 12 0.97
India (134) 4000 11 0.28
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complement activation remains unclear. In 2006, Muraki et al.
(136) found that IgG1 levels were considerably increased, whereas
C3 and C4 levels were reduced in AIP, which indicated that IgG1,
instead of IgG4, was involved in the activation of the classic
pathway. In 2007, Kolfschoten et al. (18) speculated that IgG4

might be a protective (anti-inflammatory) antibody because of its
unique “Fab-arm exchange” property. In contrast, in 2016,
Sugimoto et al. (137) observed that in IgG4-RD patients with
hypocomplementemia, IgG4 might participate in the activation of
the complement system.

Further exploration on the function of the complement
system in IgG4-RD is necessary.
AUTOANTIGENS

Antigens that induce an immune response in patients with IgG4-
RD have not been identified to date. However, four potential
autoantigens have been discovered: prohibitin, annexin A11,
laminin 511-E8, and galectin-3.

In 2015, Du et al. (138) examined the sera of 89 patients with
IgG4-RD and found that 73% were reactive with prohibitin,
whereas only 1.4% of the healthy control group were positive.
Prohibitin participates in the progression of many diseases (139,
140) and may function as a tumor suppressor and promote anti-
proliferative activity by inhibiting cell cycle and DNA synthesis.
ELISA showed that the levels of anti-prohibitin in the sera of
IgG4-RD patients were substantially higher than those in the
control group, suggesting that anti-prohibitin antibodies might
contribute to the enlargement of diseased organs in IgG4-RD.
Zhou et al. (141) found that the expression of prohibitin was
markedly lower in the renal tissue of rats with unilateral ureteral
obstruction and renal tubule interstitial fibrosis. This finding
suggests that prohibitin may be involved in tissue fibrosis.
Another study showed low levels of prohibitin in inflammatory
bowel disease and may be conducive to reduce pain (142).
Subsequently, Hubers et al. (143) found a novel autoantigen
annexin A11 in IgG4-RD and thought IgG4 might perform its
anti-inflammatory function by blocking the binding of IgG1 to
annexin A11. Annexin A11 is a calcium-dependent phospholipid-
binding protein abundant in the nucleus. When cell damage
occurs, exposed annexins are recognized as autoantigens,
resulting in autoimmune diseases (144, 145). Shiokawa et al.
(146) also found another auto-antibody anti-laminin 511-E8 in
the serum of patients with IgG4-related pancreatitis. An ELISA
showed this antibody was present in 26 of 51 AIP patients, but
only in two of 122 healthy controls. Besides, mice immunization
by injecting laminin 511-E8 can induce symptoms like IgG4-
associated pancreatitis. However, Liu et al. (147) reported that
anti-laminin 511-E8 was present in only 7% of Caucasian patients
with IgG4-RD, which indicated that ethnic factors might play an
important role in the formation of autoantigens. In 2019,
Perugino et al. (148) examined the Ig gene sequence from
single-cell clones in IgG4-RD using mass spectrometry and
identified galectin-3 as an antigen recognized by IgG4 and IgE.
The anti-galectin-3 autoantibodies were primarily IgG4 (28%) and
IgE (11%) isotypes. Galectin-3 is expressed in various cells,
Frontiers in Immunology | www.frontiersin.org 7
including macrophages, tumor cells, eosinophils, and
myofibroblasts, among which activated macrophages are the
primary source. Galectin-3 has a variety of biological functions.
Besides promoting cell proliferation, inhibiting apoptosis,
mediating cell adhesion, and participating in the inflammatory
response, it is involved in the fibrosis of the liver, kidney, lung, and
other organs (149). Salah et al. (150) reported increased serum
levels of galectin-3 in IgG4-associated pancreatitis, suggesting that
galectin-3 might participate in target organ fibrosis.

However, in 2020, a large, clinically diverse cohort study of
patients with IgG4-RD presented an interesting finding. The
antibody response frequency for the autoantigens prohibitin,
annexin A11, laminin 511-E8, and galectin-3 were 10%, 12%, 7%
and 28%, respectively (147). Further studies are needed to
identify the dominant autoantigen in IgG4-RD.

A recent study investigated another autoantibody, anti-IL-1
receptor antagonist (IL-1RA), by sequencing plasmablast
antibody repertoires. Compared with the control group,
patients with IgG4-RD showed an increased level of plasma
responses to IL-1RA, which neutralized the activity of IL-1RA
and thus caused inflammation and fibrosis. This finding
indicated a novel immunologic mechanism in IgG4-RD (151).
MICROBIAL SPECIES

Gut microbes are essential for the development and activity of the
immune system. Microbial antigens are recognized by the CD4+

T cells via MHC II molecules. Gut bacterial strains stimulate the
expansion of a variety of immune cell populations and provide
signaling molecules for anti- and pro-inflammatory responses
locally and systemically. Therefore, disorders of gut microbes are
linked to a variety of diseases.

In 2009, an Italian research observed 90% of IgG4-related
pancreatitis could detect peptide AIP(1-7), which shows
homology with plasminogen-binding protein (PBP) of
Helicobacter pylori and with ubiquitin-protein ligase E3
component n-recognin 2 (UBR2) of acinar cells in the
pancreas. Besides, anti-PBP antibodies were detected in 95% of
AIP patients (152). So, Helicobacter pylori infection may induce
IgG4-RD through molecular mimicry or antibody cross-reaction.
However, a prospective UK cohort questioned this finding: they
tested 69 patients with IgG4-RD and found there was no
difference in the exposure to H. pylori, cytokine response, and
immunological memory to PBP. Therefore, whetherHelicobacter
pylori is involved in the formation of IgG4-RD remains to be
studied (153).

In 2021, A recent unique microbial species using
metagenomics shows reduction of normal flora and expansion
of potential pathogenic bacteria: some species such as Alistipes,
Bacteroides, and butyrate-producing bacterial were depleted
while pathogenic Clostridium and typical oral Streptococcus
were significantly overabundant. Another interesting finding is
that the level of Eggerthella lenta, a Th17-activating strains, was
increased in IgG4-RD. This finding indicates that rare
autoimmune diseases, such as IgG4-RD, could be induced by
microbiome-driven immune cell types differentiation (154).
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CONCLUSIONS

With AIP as the first case of IgG4-RD, as reported by Sarles et al.
in 1961, the understanding of the diagnosis and treatment of
IgG4-RD has gradually deepened. This article reviews the studies
on synergic regulation between B and T cells, cross-interaction of
innate and adaptive immunity, IgG4 class switching, and the role
of complement system in the progression of IgG4-RD (Figure 2).
However, the knowledge regarding its pathogenesis is still
limited. Further exploration of the mechanism of IgG4-RD will
help find potential therapeutic targets and provide innovative
ideas for the diagnosis and treatment of and drug development in
IgG4-RD.
Frontiers in Immunology | www.frontiersin.org 8
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145. Salle V, Mazière JC, Smail A, Cévallos R, Mazière C, Fuentes V, et al. Anti-
Annexin II Antibodies in Systemic Autoimmune Diseases and
Antiphospholipid Syndrome. J Clin Immunol (2008) 28(4):291–7.
doi: 10.1007/s10875-008-9188-1

146. Shiokawa M, Kodama Y, Sekiguchi K, Kuwada T, Tomono T, Kuriyama K,
et al. Laminin 511 Is a Target Antigen in Autoimmune Pancreatitis. Sci
Transl Med (2018) 10(453):eaaq0997. doi: 10.1126/scitranslmed.aaq0997

147. Liu H, Perugino CA, Ghebremichael M, Wallace ZS, Montesi SB, Stone JH,
et al. Disease Severity Linked to Increase in Autoantibody Diversity in IgG4-
Related Disease. Arthritis Rheumatol (2020) 72(4):687–93. doi: 10.1002/
art.41140

148. Perugino CA, AlSalem SB, Mattoo H, Della-Torre E, Mahajan V, Ganesh G,
et al. Identification of Galectin-3 as an Autoantigen in Patients With IgG4-
Related Disease. J Allergy Clin Immunol (2019) 143(2):736–745.e6.
doi: 10.1016/j.jaci.2018.05.011

149. Li LC, Li J, Gao J. Functions of Galectin-3 and Its Role in Fibrotic Diseases.
J Pharmacol Exp Ther (2014) 351(2):336–43. doi: 10.1124/jpet.114.218370

150. Salah A, Yoshifuji H, Ito S, Kitagori K, Kiso K, Yamada N, et al. High
Expression of Galectin-3 in Patients With IgG4-Related Disease: A
Proteomic Approach. Patholog Res Int (2017) 2017:9312142. doi: 10.1155/
2017/9312142

151. Jarrell JA, Baker MC, Perugino CA, Liu H, Bloom MS, Maehara T, et al.
Neutralizing Anti-IL-1 Receptor Antagonist Autoantibodies Induce
Inflammatory and Fibrotic Mediators in IgG4-Related Disease. J Allergy
Clin Immunol (2021) 8:S0091–6749(21)00729-6. doi: 10.1016/j.jaci.
2021.05.002

152. Frulloni L, Lunardi C, Simone R, Dolcino M, Scattolini C, Falconi M, et al.
Identification of a Novel Antibody Associated With Autoimmune
Pancreatitis. N Engl J Med (2009) 361(22):2135–42. doi: 10.1056/
NEJMoa0903068

153. Culver EL, Smit WL, Evans C, Sadler R, Cargill T, Makuch M, et al. No
Evidence to Support a Role for Helicobacter Pylori Infection and
Plasminogen Binding Protein in Autoimmune Pancreatitis and IgG4-
Related Disease in a UK Cohort. Pancreatology (2017) 17(3):395–402.
doi: 10.1016/j.pan.2017.04.002

154. Plichta DR, Somani J, Pichaud M, Wallace ZS, Fernandes AD, Perugino CA,
et al. Congruent Microbiome Signatures in Fibrosis-Prone Autoimmune
Diseases: IgG4-Related Disease and Systemic Sclerosis. Genome Med (2021)
13(1):35. doi: 10.1186/s13073-021-00853-7

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Liu, Yin, Westerberg, Lee, Gong, Chen, Dong and Liu. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
September 2021 | Volume 12 | Article 738540

https://doi.org/10.1016/j.jaut.2013.07.007
https://doi.org/10.1016/j.biocel.2005.06.010
https://doi.org/10.1016/j.biocel.2005.06.010
https://doi.org/10.1016/j.cellimm.2003.10.001
https://doi.org/10.1016/j.cellimm.2003.10.001
https://doi.org/10.1093/rheumatology/keaa648
https://doi.org/10.1007/s00296-009-0925-4
https://doi.org/10.1007/s10157-011-0521-2
https://doi.org/10.1007/s00005-013-0254-x
https://doi.org/10.1681/ASN.2011010062
https://doi.org/10.5414/cn107117
https://doi.org/10.1007/s10157-016-1260-1
https://doi.org/10.1007/s10157-016-1260-1
https://doi.org/10.1136/jclinpath-2016-203905
https://doi.org/10.1136/jclinpath-2016-203905
https://doi.org/10.1111/1756-185X.12675
https://doi.org/10.1016/j.humpath.2018.07.008
https://doi.org/10.1097/01.mpa.0000188308.75043.e4
https://doi.org/10.3109/14397595.2015.1076924
https://doi.org/10.1371/journal.pone.0125331
https://doi.org/10.1177/1535370217703976
https://doi.org/10.1177/1535370220908257
https://doi.org/10.1111/j.1440-1797.2011.01522.x
https://doi.org/10.1016/j.molmed.2005.02.004
https://doi.org/10.1136/gutjnl-2017-314548
https://doi.org/10.1042/CS20160732
https://doi.org/10.1007/s10875-008-9188-1
https://doi.org/10.1126/scitranslmed.aaq0997
https://doi.org/10.1002/art.41140
https://doi.org/10.1002/art.41140
https://doi.org/10.1016/j.jaci.2018.05.011
https://doi.org/10.1124/jpet.114.218370
https://doi.org/10.1155/2017/9312142
https://doi.org/10.1155/2017/9312142
https://doi.org/10.1016/j.jaci.2021.05.002
https://doi.org/10.1016/j.jaci.2021.05.002
https://doi.org/10.1056/NEJMoa0903068
https://doi.org/10.1056/NEJMoa0903068
https://doi.org/10.1016/j.pan.2017.04.002
https://doi.org/10.1186/s13073-021-00853-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Immune Dysregulation in IgG4-Related Disease
	Introduction
	Adaptive Immunity
	IgG4
	B-Lymphocytes
	T Lymphocytes
	Th2 Cells
	Th1 Cells
	CD4+ CTLs and CD8+ CTLs
	Treg Cells
	Th17 Cells
	T Follicular Helper (Tfh) Cells


	Innate Immunity
	Macrophages
	Basophils and Eosinophils
	Complement Activation System

	Autoantigens
	Microbial Species
	Conclusions
	Author Contributions
	Funding
	References


