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 aBstRact  To investigate immune escape during breast tumor progression, we analyzed the 

composition of leukocytes in normal breast tissues, ductal carcinoma  in situ  (DCIS), 

and invasive ductal carcinomas (IDC). We found signifi cant tissue and tumor subtype-specifi c differ-

ences in multiple cell types including T cells and neutrophils. Gene expression profi ling of CD45 + CD3 +

T cells demonstrated a decrease in CD8 +  signatures in IDCs. Immunofl uorescence analysis showed 

fewer activated GZMB + CD8 +  T cells in IDC than in DCIS, including in matched DCIS and recurrent IDC. 

T-cell receptor clonotype diversity was signifi cantly higher in DCIS than in IDCs. Immune checkpoint 

protein TIGIT-expressing T cells were more frequent in DCIS, whereas high PD-L1 expression and 

amplifi cation of  CD274  (encoding PD-L1) was only detected in triple-negative IDCs. Coamplifi cation 

of a 17q12 chemokine cluster with  ERBB2  subdivided HER2 +  breast tumors into immunologically and 

clinically distinct subtypes. Our results show coevolution of cancer cells and the immune microenviron-

ment during tumor progression. 

  SIGNIFICANCE:  The design of effective cancer immunotherapies requires the understanding of mecha-

nisms underlying immune escape during tumor progression. Here we demonstrate a switch to a less 

active tumor immune environment during the  in situ  to invasive breast carcinoma transition, and 

identify immune regulators and genomic alterations that shape tumor evolution.  Cancer Discov; 7(10); 

1098–115. ©2017 AACR.    

See related commentary by Speiser and Verdeil, p. 1062.    
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  iNtRODUctiON 

 The importance of tissue-infi ltrating leukocytes in breast 
tumor development and therapeutic responses is widely 
accepted, but the mechanisms underlying their effects and 
alterations of leukocyte composition during tumor progres-
sion are still poorly understood ( 1 ). Leukocytes are one of 
the most dynamic cell populations present within tumors 
and they also play a role in normal breast tissue remodeling 
during pregnancy and involution ( 2, 3 ). Tumor-associated 
macrophages (TAM) are known to facilitate angiogenesis, 
extracellular matrix (ECM) degradation, and tumor invasion, 
and high frequency of TAMs is associated with poor clini-
cal outcome ( 3, 4 ). In contrast, higher frequency of tumor-
infi ltrating lymphocytes (TIL) and especially more CD8 +  and 
fewer FOXP3 +  regulatory T cells within tumors is associated 
with better outcome ( 1 ). The numbers and composition of 

TILs within tumors seem to be especially relevant in HER2 +

and triple-negative breast cancer (TNBC) where tumors with 
higher TIL fractions have better response to HER2-targeted 
therapies and chemotherapy, respectively ( 1 ). 

 In DCIS, high leukocyte density has been observed in a 
subset of tumors with enrichment of leukocytes at sites of 
focal myoepithelial cell layer disruptions ( 5 ), suggesting that 
they might play a role in invasive progression. In DCIS, cancer 
cells are still physically separated from the stroma and direct 
leukocyte–cancer cell contact is rarely detected. With invasive 
progression, cancer cells and leukocytes are intermingled, 
and only cancer cells that can survive and proliferate in this 
environment will contribute to disease progression. Thus, the 
transition from  in situ  to invasive carcinoma might be a criti-
cal tumor progression step for immune escape in breast can-
cer, and deciphering its mechanism would aid the design of 
immunotherapies for both advanced and early-stage  disease. 
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Most prior analyses of leukocytes in breast tumors, especially 
in DCIS, have been limited to inferring leukocyte composition 
from gene expression profiles of bulk tumors (6–10) and to 
the testing of a handful of markers in archived tissue samples 
(11–16). Thus, our understanding of immune-related changes 
in early stages of breast tumorigenesis is still rather limited.

Here we used a combination of global profiling and single-
cell methods for the cellular and molecular characterization 
of tissue-infiltrating leukocytes, with particular emphasis 
on T cells, in normal breast tissues, pure DCIS (no histo-
logic evidence of invasion), and in HER2+ and triple-negative 
(TN) invasive ductal breast carcinomas. We also characterized 
genetic alterations in cancer cells that might affect the tumor 
immune microenvironment and disease progression. Our 
goal was to gain insights into the coevolution of tumor and 
immune cell compartments during the in situ to invasive car-
cinoma transition. We focused on HER2+ and triple-negative 
tumor subtypes, as these DCIS have a higher risk of invasive 
recurrence and the resulting invasive tumors are also more 
likely to progress to metastatic disease.

ResUlts

Leukocyte Composition of Human Breast Tissues

We first characterized the composition of tissue-infiltrat-
ing leukocytes in normal and neoplastic breast tissues using a 
polychromatic FACS, which allows for the quantitative assess-
ment of all major leukocyte cell populations (ref. 14; Fig. 1A; 
Supplementary Fig. S1A). Quantification based on FACS was 
reproducible and accurate as confirmed by the analysis of the 
same tumor stained and profiled separately and by compar-
ing it to histologic examination of tissue slides (Supplemen-
tary Fig. S1B and S1C). We analyzed normal breast tissues 
from nulliparous and parous women, including BRCA1 and 
BRCA2 mutation carriers, as well as DCIS and invasive ductal 
carcinomas (IDC) of different subtypes (Supplementary 
Table S1). In normal breast tissues, we analyzed epithelial and 
stromal fractions separately to detect potential differences 
between intraepithelial and stromal leukocytes. We found 
that DCIS and IDC contained significantly (P = 0.0015 and 
P < 0.0001, respectively) higher numbers of leukocytes, com-
pared with normal breast, whereas in normal tissues, more 
leukocytes were in the stromal than in the epithelial fraction 
(Fig. 1B). We also observed significant differences in the 
relative frequencies of several CD45+ cell types, including 
increased neutrophils and decreased CD8+/CD4+ T-cell ratios 
in tumors compared with normal stroma (Fig. 1A and C; Sup-
plementary Table S2). The relative fraction of CD8+ and CD4+ 
T cells showed significant inverse correlation in normal breast 

tissues and DCIS, and in DCIS higher fractions of CD8+ T 
cells were associated with significantly higher frequency of 
macrophages (Supplementary Fig. S1D). The frequencies of 
dendritic cells and T cells showed significant inverse correla-
tion in TN IDCs (Supplementary Fig. S1D), whereas the rela-
tive proportion of γδ T cells was significantly higher in IDCs 
compared with normal breast tissues (P = 0.008) and DCIS  
(P = 0.0476; Supplementary Fig. S1E). This latter result is 
potentially interesting in light of recent findings in animal 
models showing that γδ T cells promote breast cancer metas-
tasis via their recruitment of neutrophils (17). Corroborat-
ing this, we detected higher fraction of neutrophils in IDCs 
compared with normal breast tissues (Fig. 1C). However, the 
clinical relevance of γδ T cells in human breast tumors is incon-
clusive; some studies suggest that their frequency is associated 
with good prognosis (18), whereas others show that their 
higher frequency indicates poor outcome (19). Overall, these 
changes in leukocyte composition imply a switch to a more 
immunosuppressive and metastasis-promoting environment 
during breast tumor progression. We focused our subsequent 
analyses on T cells due their central role in immune responses 
and being the most dominant CD45+ cell population in both 
normal and cancerous breast tissues.

Next, we performed multicolor immunofluorescence for 
CD45 pan-leukocyte and CD3 T-cell markers to assess the 
spatial distribution of leukocytes within normal and neoplas-
tic breast tissues. We also stained for smooth muscle actin 
(SMA) to mark myoepithelial cells surrounding the ducts; 
intact myoepithelial cell layer and basement membrane are 
detected in normal breast and in DCIS but lost in inva-
sive breast carcinomas. In normal breast tissues there were 
relatively few T cells, with the exception of mastitis or other 
benign inflammation, and minor differences were observed 
between nulliparous and parous women (Fig. 1D; Supple-
mentary Fig. S1F and S1G). In DCIS, we found significantly 
higher fraction of T cells in high-grade compared with low-
grade DCIS (P < 0.0001), and HER2+ compared with HER2− 
DCIS (P < 0.0001), and DCIS adjacent to IDC also contained 
significantly (P = 0.0002) higher frequency of T cells than 
pure DCIS (Fig. 1E and F). However, the spatial distribu-
tion of T cells was highly variable in DCIS; some areas of the 
tumor had very high leukocyte and T-cell density, whereas 
others contained almost none (Fig. 1E). In several DCIS, we 
even detected probable tertiary lymphoid structures (TLS; ref. 
20) characterized by tight clusters of B cells surrounded by 
T cells and the presence of peripheral-node addressin-positive 
(PNAd+) endothelial venules (Fig. 1G; Supplementary Fig. 
S1H). In normal breast tissues, T cells surrounded the ducts 
and intraepithelial T cells were frequently detected despite 

Figure 1.  Leukocyte populations in normal and neoplastic breast tissues. In all panels, NP and P indicate normal breast of nulliparous and parous 
women, respectively. Data are represented as mean ± SEM and P values are calculated using paired two-tailed t test. A, Summary of polychromatic 
FACS analyses of leukocyte populations in normal breast tissues and breast tumors. Results are shown as a percent of total CD45+ cells. B, Percentage 
of leukocytes in normal breast tissues and breast tumors relative to all cells. C, Ratio of CD8+/CD4+ T cells, and relative fraction of macrophages and 
neutrophils shown as percentage of total CD45+ cells. D and E, Immunofluorescence staining for CD45 pan-leukocyte, CD3 T-cell, and smooth muscle 
actin (SMA) myoepithelial cell markers, and DAPI to denote nuclei of normal breast tissues (D) and DCIS and IDC (E). Images are a montage of nine fields 
captured from one area of the tissue. Yellow boxes on montage images magnify regions where leukocytes are located in the myoepithelium. White and 
yellow arrows indicate CD3+ cells and myoepithelial cell layer, respectively. Scale bars, 50 µm. F, Frequencies of T-cell populations in pure DCIS and in 
DCIS regions of invasive cancers quantified on the basis of immunofluorescence images. G, Examples of potential tertiary lymphoid structures in DCIS. 
Scale bars, 150 µm.
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their numbers being relatively low (Fig. 1D), in contrast to 
DCIS where T cells were rarely detected within the ducts but 
rather localized in the stroma and at sites of focal myoepi-
thelial cell layer disruption (Fig. 1E). These findings suggest 
that in DCIS there is limited interaction between T cells and 
cancer cells; thus, immune escape is most likely to occur dur-
ing in situ to invasive carcinoma transition.

Gene Expression Profiles of CD3+ T Cells

To begin dissecting the properties of T cells infiltrating 
normal and neoplastic breast tissues, we performed RNA 
sequencing (RNA-seq) on purified CD45+CD3+ T cells from 
normal breast tissues (n = 12), DCIS (n = 11), and IDC  
(n = 12), focusing on HER2+ (n = 5), and TN (n = 6) IDC cases 
(Supplementary Table S1). In normal breast tissues, parity 
and BRCA status did not appear to influence T-cell gene 
expression profiles; thus, we considered all normal samples as 
one group. Principal component analysis (PCA) of T-cell gene 
expression profiles demonstrated separation of normal sam-
ples from DCIS. Although the HER2+ IDCs were more similar 
to normal cases, TN IDCs clustered with DCIS (Fig. 2A and 
B). Unsupervised hierarchical clustering of the samples using 
differentially expressed immune-related genes showed a clear 
separation of T cells from normal breast, DCIS, and HER2+ 
and TN IDC, indicating that these groups have largely dis-
tinct T-cell expression profiles (Fig. 2B; Supplementary Table 
S3). The most abundantly expressed genes were related to 
T-cell receptor (TCR) signaling (e.g., NFATC1, NFKB1) and 
antigen presentation (e.g., HLA-A, HLA-C), which appeared to 
be more highly expressed in normal samples. Transcriptional 
regulators of T cells (e.g., TBX21, GATA3) were somewhat 
consistently expressed among samples with the exception of 
EOMES, which had low expression in T cells from TN IDC, 
and FOXP3, which was more abundant in T cells from IDCs 
(both HER2+ and TN cases). IL18R1, CXCL13, CXCL1, and 
CTLA4 were also more abundant in T cells from IDCs than in 
DCIS, whereas the expression of ILF3 and NFKBIA and several 
interleukin receptors (e.g., IL2RA, IL10RA) was higher in T 
cells in DCIS and normal breast than in IDCs. TNFRSF25 
and other TNF receptors were more highly expressed in 
DCIS-associated T cells compared with normal breast and 
IDCs, whereas LCK kinase, which is involved in T-cell develop-
ment and TCR signaling, showed the opposite pattern; these 
results were also confirmed by immunofluorescence analysis 
(Supplementary Fig. S2A).

Gene set enrichment analysis (GSEA) using the canoni-
cal gene set compendium (21) showed that, as expected, 
immune-related gene sets were enriched in our list of sig-
nificantly differentially expressed genes (Supplementary Fig. 
S2B; Supplementary Table S4). This included a downregula-

tion of genes in the IL4 signaling pathway in IDC and normal 
samples compared with DCIS. Furthermore, the Th1Th2 
and CTLA4 signaling pathways were upregulated in IDC 
compared with DCIS, and the complement pathway was 
higher in normal compared with DCIS samples. Differences 
between HER2+ and TN IDC included the upregulation of 
pathways signaling through IL6, IL7, CTLA4, and antigen 
presentation by MHC I in TN cases (Supplementary Table 
S4). Also enriched were gene sets corresponding to cell signal-
ing pathways, transcription and translation, and cell cycle in 
the HER2+/TN IDC comparison, suggesting potential T-cell 
expansion. Overall, these results suggest a more inflamma-
tory and more immunosuppressive environment in IDCs 
compared with DCIS, especially in TN tumors.

To obtain a more detailed view of the specific activities of T 
cells, GSEA was conducted using ImmuneSigDB (21), a com-
pendium of gene signatures summarizing differences between 
two given groups of immune cells. First, we summarized 
enriched gene sets according to the frequency of a particular 
immune lineage and compared with the overall frequency of 
that given cell type appearing in the compendium (Fig. 2C).  
Gene sets relating to thymocytes were not as common as 
expected when comparing DCIS with IDC and HER2+ to 
TN IDC samples. In addition, gene sets relating to CD8+  
T cells were enriched when comparing HER2+ with TN IDCs, 
and natural killer T (NKT) cells when comparing both DCIS 
and IDC with normal cases (proportionality test, Benjamini–
Hochberg adjusted P < 0.05), suggesting that differences 
between these groups are driven by their activation state rather 
than lineage (Fig. 2C). Enriched gene sets from ImmuneSigDB 
were collapsed into network diagrams to highlight the direc-
tionality within each comparison (Fig. 2D). When comparing 
T cells from DCIS with normal cases, multiple enriched gene 
sets suggest that the expression profiles of T cells from DCIS 
samples are more similar to CD4+ regulatory T cells (Treg) or 
an undifferentiated CD4+ T-cell state. In contrast, the expres-
sion profile of T cells from normal samples was more varied. 
Comparison with IDC samples showed that DCIS T cells 
had a CD8+ or CD4+Th17 phenotype, whereas IDC samples 
were more similar to Tregs, suggesting even stronger immu-
nosuppression in IDC compared with DCIS. Comparison 
between HER2+ and TN IDCs suggested activation of Th cells, 
including Th17 and Tregs in TN IDCs, whereas T cells from 
HER2+ IDCs were enriched for Th1 and Th2 cells (Fig. 2D; 
Supplementary Fig. S2C). As T cells from HER2+ and TN IDC 
showed very distinct profiles (Fig. 2A), we compared T cells 
from DCIS to those of HER2+ IDC alone (Fig. 2D). T cells 
from HER2+ IDC showed a higher enrichment of Th1, Th2, 
and Tregs compared to undifferentiated CD4+ T-cell gene 
sets. Conversely, DCIS T cells more closely resembled CD8+ 

Figure 2.  Gene expression profiles of T cells. In all panels, NP and P indicate normal breast of nulliparous and parous women, respectively. A, 3-D 
 Principal Component Analysis plot of RNA-seq data. B, Heat map depicting clustering of samples based on the expression of top differentially expressed 
immune-related genes with highest variance defined by both edgeR and DESeq2. C, Frequency of enrichment of a particular cell type following GSEA 
using the Immune c7 compendium. Significance was determined using proportionality test with multiple testing correction. *, P < 0.05 after correcting 
for multiple hypothesis testing. D, Network of enriched immune c7 cell type–specific gene sets. Node size is reflective of number of times a T-cell type 
appears as significantly enriched, and arrow thickness is reflective of number of significant gene sets involved in a particular comparison. E, Frequency 
of T-cell populations calculated using CIBERSORT based on RNA-seq expression data from bulk T-cell samples, with difference in populations computed 
using ANOVA. 
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T cells when compared with Treg or CD4+ T cells. Deconvo-
lution of the composition of T-cell populations within each 
sample using CIBERSORT (22) supported this trend, with 
samples having the greatest CD8 or CD4 naïve content being 
in normal or DCIS. Differences in γδ T cells, Tregs, and CD4+ 
memory-activated T cells were noted among the different 
groups, with higher proportions of activated CD4+ memory 
cells and γδ T cells in HER2+ IDC and lower proportions of 
Tregs in normal samples (Fig. 2E). Overall, these data sug-
gest that compared with normal tissues, both DCIS and IDC 
have more Tregs, and T cells in DCIS are enriched for cyto-
toxic CD8+ and undifferentiated/naïve CD4+ T-cell signatures, 
whereas IDCs have lower proportion of CD8+ T cells but more 
activated CD4+ Th cells and Tregs. Although inference of cel-
lular composition based on deconvolution of RNA-seq data 
has limitations and ideally it would be best to characterize 
each T-cell subpopulation by single-cell RNA-seq, it provides 
estimates that agree well with FACS profiles for more frequent 
cell types (Supplementary Fig. S2D). Nevertheless, further 
experimental validation of these predictions is needed.

Activation of CD8+ T Cells in DCIS

The enrichment of DCIS T-cell expression profiles for 
CD8+ T-cell signatures and the predicted higher frequency 
of CD4+ memory–activated T cells in HER2+ IDC suggest 
potential activation and clonal expansion of T cells in DCIS 
and HER2+ IDCs. In line with this observation, the expres-
sion of MKI67, a proliferation marker, in our RNA-seq data 
was highly variable across samples. All HER2+ IDCs and a 
subset of DCIS displayed high MKI67 levels, suggesting T-cell 
expansion in these cases (Supplementary Fig. S3A and S3B). 
The expression of granzyme B (GZMB), a marker of activated 
CD8+ T cells, was also high in MKI67 hi T cells in DCIS (Sup-
plementary Fig. S3B). Moreover, gene signatures specific for 
naïve and cytotoxic T cells showed a positive correlation in 
MKI67lo T cells but not in MKI67hi T cells (Supplementary 
Fig. S3C; Supplementary Table S5), suggesting that MKI67hi 
T cells reflect expansion of activated CD8+ T cells. Immuno-
fluorescence analysis of markers of activated and effector T 
cells, including CD8, GZMB, Ki67, and IFNγ, in an independ-
ent cohort (Supplementary Table S1) confirmed the predic-
tions of the RNA-seq data, as we detected significantly higher 
fractions of GZMB+, Ki67+, and IFNγ+ CD8+ T cells in DCIS 
than in IDC in both HER2+ and TN subtypes (Fig. 3A–D; 
Supplementary Fig. S3D). Furthermore, the relative fractions 
of Ki67+CD8+ and GZMB+CD8+ T cells showed significant 
positive correlation in both DCIS and IDCs (Supplementary 
Fig. S3E). Importantly, analysis of matched DCIS and IDC 
samples in a cohort of patients who were diagnosed with pure 
DCIS and underwent lumpectomy, but years later recurred 
locally with IDC, demonstrated the same results (Fig. 3E–H), 
confirming that a decrease in activated CD8+ T cells is a fea-
ture of in situ to invasive breast carcinoma progression.

To further explore the potential clonal expansion of T cells 
in DCIS, we aligned our RNA-seq data to a library of known 
variable human complementarity determining regions (CDR) 
to determine the frequency of unique TCR segments in 
each sample (23). Samples were normalized on the basis 
of the relative fraction of T cells. The TCR is rearranged 
during T-cell maturation, and a population of T cells that 

have the same unique TCR sequence is defined as a TCR 
clonotype. TCR clonotype repertoire can be quantitatively 
assessed using the Shannon index of diversity (24). DCIS 
cases overall appeared to have more clonally expanded T cells 
than IDCs (Supplementary Fig. S4A), and TCR clonotype 
diversity measured by the Shannon index was significantly  
(P = 0.03) higher in DCIS compared with IDCs (Fig. 3I). The 
correlation between MKI67 read counts and the Shannon index  
of TCR clonotype diversity was the highest in TN IDCs, imply-
ing the expansion of multiple T-cell clones in these tumors 
(Supplementary Fig. S4B). Similar positive correlation was 
observed in TN IDCs between the expression of T-cell activa-
tion markers (e.g., GZMB, PRF1, and CCL4) and TCR clono-
type diversity (Supplementary Fig. S4C), further implying 
the presence of polyclonal activated T cells. In contrast, 
the generally lower TCR clonotype diversity in HER2+ cases 
might reflect expansion of a limited set of T-cell clones. As an 
alternative method to assess the TCR repertoire in DCIS, we 
performed immunoSEQ that defines TCR clonotype diver-
sity based on DNA sequence (25). ImmunoSEQ also showed 
polyclonality in all DCIS, although a few dominant clones 
were also detected, and the top 10 most abundant clones in 
each case revealed differences among samples (Supplemen-
tary Fig. S4D and S4E). Similarly, clustering of samples based 
on normalized frequencies of TCR v and j genes highlighted 
several similarities and differences among samples (Supple-
mentary Fig. S4F and S4G). The two samples for which we 
had both RNA-seq and immunoSEQ data (DCIS15 and 
DCIS17) appeared to have the highest fraction of expanded 
clones based on TCR and were also highly MKI67 + and 
GZMB +. Interestingly, we found a few TCR clones that were 
shared (at the amino acid level) among different tumors and 
represented relatively more abundant clones (Supplementary 
Fig. S4H). For one of these TCRs, we were able to predict the 
putative antigen as EBNA3, an Epstein–Barr virus protein 
based on prior TCR repertoire analyses (26). The presence of 
shared, relatively prominent clones, in combination with our 
RNA-seq data, support the possibility of an adaptive immune 
response in a subset of DCIS and a potential decline of this 
after progression to IDC.

Immune Checkpoint Proteins

Our observation that IDCs, particularly TN IDCs, con-
tained relatively more TILs but fewer in the activated state 
than DCIS implied potential exhaustion and immunosup-
pression in IDCs. To investigate this hypothesis, we ana-
lyzed our RNA-seq data for genes characteristic of exhausted 
state, including genes encoding for immune checkpoint pro-
teins (e.g., CTLA4, PD-1, TIGIT; Supplementary Table S5). We 
found a positive correlation between exhausted and cytotoxic 
gene signatures in both MKI67 hi and MKI67 lo T cells, which 
was expected as these markers are commonly coexpressed 
in the same T-cell population and exhaustion is usually due 
to chronic activation. On the other hand, the expression 
of inhibitory and activating immune checkpoint proteins 
showed positive correlation only in MKI67 hi T cells (Sup-
plementary Fig. S5A and S5B). Similarly, the expression of 
T-cell activation and dysfunction-related genes (27) was sig-
nificantly different in tumor-associated MKI67 hi and MKI67 lo 
T cells (Supplementary Fig. S5C).
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Figure 3.  Activation status of CD8+ T cells. Dotted lines indicate clusters of tumor epithelial cells, yellow arrows mark double-positive T cells, and 
white stars mark epithelial cells positive for the marker of interest. A–D, Immunofluorescence analysis of granzyme B (A) and Ki67 (C) expression in CD8+ 
T cells. SMA staining was used to mark the myoepithelial cell layer in DCIS. Images are a montage of nine fields captured from one area of the tissue. 
Graphs depict the frequencies of GZMB+ (B) and Ki67+ (D) CD8+ T cells in multiple regions of ten samples per group. Error bars, SEM. Scale bars, 50 µm. 
P values are calculated using two-tailed t test. E–H, Immunofluorescence analysis of GZMB (E) and Ki67 (G) expression in CD8+ T cells in matched DCIS 
and locally recurrent IDC samples. Graphs depict the frequencies of GZMB+ (F) and Ki67+ (H) CD8+ T cells in multiple regions. Error bars, SEM. Scale bars, 
50 µm. P values are calculated using paired two-tailed t test. I, Box plot depicting the Shannon index of TCR clonotype diversity in normal breast tissues, 
DCIS, and IDC. Significance of the difference between tissue types was calculated using Wilcoxon rank sum test.
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To explore the expression of immune checkpoint proteins in 
further detail, we performed immunofluorescence analysis for 
TIGIT, PD-1, and PD-L1 in DCIS and IDCs, as these proteins 
have been previously implicated in breast cancer with clinical 
trials targeting them currently ongoing (Fig. 4A–C). TIGIT was 
expressed mostly in CD3+ T cells but also in other leukocyte 
populations (Fig. 4A; Supplementary Fig. S5D). In contrast, 
PD-L1 expression was more widespread with high expression 
in various immune cells and in a subset of tumor epithelial 
cells (Fig. 4B; Supplementary Fig. S5E). In a luminal A IDC 
with an extensive in situ region, PD-L1 was highly expressed 
in DCIS-associated myoepithelial cells but not in tumor cells, 
whereas in the invasive areas, the tumor epithelial cells were 
highly PD-L1–positive (Supplementary Fig. S5F). This find-
ing implies that in DCIS, myoepithelial cells might play a role  
in immune suppression and tumor epithelial cells that gain 
this phenotype have a selective advantage during invasive pro-
gression. TIGIT and PD-1 were also frequently coexpressed 
in CD8+ T cells in both DCIS and IDCs (Fig. 4C), similar to 
what was described in melanoma (28). Quantification of the 
signal revealed slightly but significantly more TIGIT+CD3+ T 
cells in DCIS compared with IDCs in both HER2+ and TN 
cases (Fig. 4D), whereas the relative fraction of PD-1+CD3+  
T cells was not significantly different among tumors (Supple-
mentary Fig. S5G). In a few cases, we analyzed the expression 
of TIGIT by both FACS and immunofluorescence to confirm 
our results, and we detected similar TIGIT levels by both tech-
niques (Supplementary Fig. S5H). We also analyzed the spatial 
distribution of TIGIT+ or PD-1+ CD3+ T cells to see potential 
differences associated with histology or tumor subtype. For 
this, we digitized the immunofluorescence images by record-
ing spatial coordinates and marking tumor cells and T cells 
positive or negative for TIGIT or PD-1 and assessed the rela-
tive distribution of the various cell types (Supplementary Fig. 
S6A). We found that the fraction of T cells invading the tumor 
cells was significantly higher in IDC compared with DCIS 
only in TN cases (P = 0.19 in HER2+ and 0.006 in TN based on  
t test), implying that there is more intermixing between T cells 
and cancer cells in the TN but not in the HER2+ cases (Sup-
plementary Fig. S6B). Interestingly, we also found that in TN 
DCIS adjacent to IDC, PD-1+CD3+ T cells can commonly be 
observed within the ducts in the epithelial compartment, 
whereas intraepithelial T cells were rarely present in HER2+ 
DCIS adjacent to IDC (Fig. 4B). These results imply potential 
differences in the microenvironment such as the extracellular 
matrix (ECM) or differences in local myeloid complexity of 
HER2+ and TNBCs that could influence the ability of T cells 
to invade tumors and enter the ducts. Correlating with this 
finding, collagen trichrome staining showed some differences 
between HER2+ and TNBCs, especially in DCIS, with HER2+ 

DCIS displaying a denser fibrous ECM potentially forming a 
physical barrier (Supplementary Fig. S6C).

The high expression of PD-L1 in tumor epithelial cells in 
TN IDCs (Fig. 4B) raised the possibility of specific upregula-
tion of PD-L1 in these tumors due to copy-number gain, as 
we and others previously described that a 9p24 amplicon 
including CD274 (encoding for PD-L1), PDCD1LG2 (encod-
ing PD-L2), and JAK2 occurs only in basal-like breast tumors 
where approximately 30% of cases have a high copy-number 
gain of this region (29, 30). To investigate this hypothesis in 
more detail, we examined the frequency of gains and losses 
of the CD274 locus in The Cancer Genome Atlas (TCGA) 
cohort composed of invasive breast cancers, and found an 
enrichment of gains in the basal subtype of approximately 40%  
(P < 0.001 χ2 test, Fig. 4E; Supplementary Fig. S7A–S7C). 9p24 
copy-number gain was not associated with any differences in 
cytotoxic T-cell gene signatures, probably due to the expression 
of PD-L1 by many stromal cell types besides tumor epithelial 
cells (Supplementary Fig. S7D). 9p24 gain was also independ-
ent of neoantigen load and estimated immune content, but 
was associated with overall copy-number aberration (CNA) sta-
tus only in TN cases (Supplementary Table S6). Similar com-
parisons in the Oslo cohort (9) that included both DCIS and 
IDCs reported a higher frequency of CD274 and PDCD1LG2 

gain in IDC samples (6/12 patients) compared with DCIS (2/9 
patients), which had basal-like expression profiles (Fig. 4E). 
To confirm the preferential gain of CD274 and overexpression 
of PD-L1 in TN IDCs compared with DCIS, we developed an 
immuno-FISH protocol that allows for the combined analysis 
of PD-L1 protein levels and CD274 copy-number status at the 
single-cell level in archived samples. Testing of 10 TN IDCs 
revealed CD274 copy-number gain and PD-L1 overexpression 
in 3 of 10 cases, whereas none of the 10 TN DCIS showed 
gain of this locus and had relatively low expression of PD-L1 
(Fig. 4F). These results suggest a possible mechanism for the  
in situ to invasive breast carcinoma transition in TNBC through 
the selection for tumor cells with higher expression of PD-L1 
due to increased copy number for CD274. The clinical relevance 
of these findings as they relate to the likelihood of response to 
PD-L1 blockade remains to be determined.

17q12 Chemokine Amplicon

To explore whether other genomic regions encoding for 
genes involved in immune regulation may also display dif-
ferential copy-number gain between DCIS and IDCs, we 
analyzed known breast cancer amplicons for the presence of 
such genes. We found that the 17q12 chromosomal region 
that contains a cluster of genes encoding chemokines is 
located proximal to the ERBB2 amplicon, making it prone to 
possible coamplification (Fig. 5A). Interestingly, in the TCGA 

Figure 4.  Expression patterns of immune checkpoint proteins in breast tumors. A–C, Immunofluorescence analysis of the expression of TIGIT, CD3, 
and SMA (A), PD-L1, CD3, and PD-1 (B), and TIGIT, PD-1, and CD8 combined (C). White rectangles indicate selected areas enlarged in the adjacent panels. 
Yellow arrows mark T cells positive for both TIGIT and CD3. Dotted lines demarcate clusters of tumor epithelial cells. Scale bars, 50 µm. D, Quantification 
of TIGIT+CD3+ T cells. Multiple regions of ten samples per group were quantified. Error bars, SEM. P values are calculated using two-tailed t test. E, Copy- 
number gain for 9p24 amplicon genes in basal-like breast tumors in the TCGA and Oslo cohorts. F, Immuno-FISH analysis of PD-L1 protein levels and 
CD274 (encoding PD-L1) copy number in triple-negative DCIS and IDC. CEP9 probe was used as control and nuclei were stained with DAPI. Scale bars,  
20 µm. Insets are approximately 20 × 20 µm. The images are a montage of nine fields captured from one area of the tissue.
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Figure 5.  Leukocytes and tumor cell heterogeneity. A, Chemokine cluster (CC) on 17q12. Genes within amplicon encoding chemokines and their receptors 
and responsive cell populations. B, Copy-number gain for 17q12 CC genes and ERBB2 in HER2+ breast tumors. C, Expression of immune activation (yellow), 
cytotoxic (red), inhibitory and exhaustion (blue) related genes in HER2+ breast tumors with CC copy-number gain (yellow) or loss (black). D, Multicolor FISH 
for ERBB2, CEP17, and 17q12 CC in DCIS and IDC. Scale bars, 20 µm. E, Proportion of cells with chemokine cluster amplification stratified by HER2 status 
(+/−) in each region of each patient from DCIS (top) and DCIS/IDC (bottom) cohorts. Cells with ERBB2 amplification have overall significantly higher propor-
tion of chemokine cluster amplification (Supplementary Table S7). The magnitudes of elevation of probability of chemokine cluster amplification in HER2+ 
cells vary from patient to patient. F, Plot depicting correlation between 17q12 CC copy-number gain and frequency of GZMB+CD8+ T cells.
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cohort, chemokine cluster (CC) gain was associated with 
ERBB2 amplicon status independent of immune content and 
overall CNA but was negatively associated with neoantigen 
load, suggesting coamplification as an alternate mechanism 
for immune activation (Supplementary Table S6). An enrich-
ment of CC gains was observed in HER2+ tumors defined 
either by PAM50 classification or ERBB2 amplification (50% 
compared with 2%, P < 0.001 χ2 test; Supplementary Fig. 
S7E). Interestingly, these HER2+ tumors can roughly be 
divided into two groups: those which are HER2+ER+ luminal-
like and display evidence of coamplification, and those which 
are HER2+ER− as defined by PAM50, which do not exhibit 
coamplification and in fact suggest loss of this locus (Fig. 5B). 
To assess whether the copy-number gain of this locus is asso-
ciated with changes in leukocyte composition, we analyzed 
the expression of immune activation and exhaustion-related 
genes in these samples and found higher expression of both 
activation and inhibition-related genes in tumors that lack 
CC gain (Fig. 5C). Cytotoxic gene scores were associated with 
CC gain particularly in HER2+ER− tumors (Supplementary 
Table S6). These results suggest that HER2+ER− tumors with 
loss of the CC region are more likely to have T-cell infiltrates 
than HER2+ER+ tumors with gain of the CC region.

Next, we developed a multicolor FISH assay to evaluate 
both the 17q12 CC and ERBB2 copy-number gain in HER2+ 
IDCs and DCIS at the single-cell level (Fig. 5D; Supplemen-
tary Table S7). Adjacent slides were used for immunofluo-
rescence to assess T-cell frequency and activation. We found 
that cancer cells with ERBB2 gain had significantly higher 
chance of gaining the CC locus, especially in pure DCIS 
cases (Fig. 5E; Supplementary Table S7). Analysis of the 
intratumor spatial distribution of cells with or without CC 
gain did not reveal any specific pattern in DCIS nor in IDC 
(Supplementary Fig. S7F and S7G). The Shannon index of 
diversity for CC and ERBB2 copy numbers did not display 
significant correlation with frequencies of CD3+ T cells and  
CD45+ leukocytes, neither in pure DCIS nor in DCIS/IDC 

cases (Supplementary Fig. S7H). However, CC amplification 
showed significant inverse correlation with the frequency of 
GZMB+CD8+ T cells within tumors (Fig. 5F). Moreover, we 
found a relatively strong positive correlation between the 
Shannon index and patient age at diagnosis in HER2+ IDC 
cases but not in pure DCIS (Supplementary Fig. S7I). To 
investigate whether the decreased T-cell activation in tumors 
with CC gain might be due to higher frequencies of myeloid-
derived suppressor cells (MDSC), we stained adjacent slides 
for CD68, CD33, and HLA-DRB1 that allow for the detection 
of macrophages (CD68+HLA-DRB1+CD33+), and monocytic 
(CD68+HLA-DRB1−CD33+) and granulocytic (CD68−HLA-
DRB1−CD33+) MDSCs (Supplementary Fig. S7J). However, 
the numbers of macrophages and MDSCs did not correlate 
with CC copy number or fraction of GZMB+CD8+ T cells 
(Supplementary Fig. S7K and S7L), suggesting other mecha-
nisms underlying the “immune cold” status of these tumors. 
Finally, a generalized linear model predicting CC coamplifi-
cation (Supplementary Table S7) suggested an association 
between ERBB2 and ER, consistent with our findings from 
the TCGA cohort (Fig. 5B). These results imply potential 
selection for cancer cells that have lost the 17q12 CC ampli-
con during DCIS to IDC progression only in HER2+ER− 
tumors, but retention of coamplification in HER2+ER+ IDCs, 
and some of this selection might influence the immune 
microenvironment of the tumors.

DiscUssiON

Evasion of immune surveillance is a necessary step in 
tumor evolution. Despite its importance, our understanding 
of mechanisms of immune escape in human tumors is rather 
limited. In DCIS, the tumor cells are relatively protected from 
the immune system due to an intact myoepithelial cell layer 
and basement membrane, and intraductal T cells are rarely 
detected (Fig. 6). In contrast, in invasive disease, cancer and 
immune cells are intermingled. Thus, the in situ to invasive 

Figure 6.  Schematic model. Major changes in cell types and their activity during DCIS to IDC progression.
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carcinoma transition might be a particularly important bot-
tleneck for immune escape and tumor evolution, and the 
analysis of this could identify novel targets for immuno-
therapies, which has had limited success so far in patients 
with breast cancer (1, 31). One reason for this limited success 
might be that different tumors evade the immune system via 
different mechanisms, and thus the identification and char-
acterization of immune escape mechanisms is critical for the 
design of novel and more effective immunotherapies.

Here, we investigated potential mechanisms of immune 
escape in breast cancer by analyzing the composition and 
molecular profiles of leukocytes, with special emphasis on T 
cells, in normal breast tissues, DCIS, and IDC. Using clini-
cal samples from normal and neoplastic breast tissues, we 
performed FACS analyses and RNA-seq on sorted T cells. As 
tissue dissociation can influence the number of viable cells 
recovered and may also affect the detection of some antigens 
(the relatively high fraction of Lin− cells in our FACS may be 
due to this), we also tested selected genes by immunofluo-
rescence on intact tissue sections. Using these approaches, 
we determined that T cells in DCIS are enriched in activated 
effector CD8+ T cells characterized by the expression of GZMB 
and MKI67, but the frequencies of these cells decreases in 
invasive disease. This was particularly evident in DCIS cases 
that recurred locally as IDC, implying that decreased immune 
activity may be necessary for invasive progression. Currently 
there are no clinically useful biomarkers that would predict 
the risk of invasive progression of DCIS, and considering that 
approximately 40,000 women are diagnosed annually with 
DCIS in the United States alone, this is an important clinical 
problem. Our data suggest that the frequency of activated 
CD8+ T cells may predict which DCIS is likely to progress to 
invasive disease. Analysis of the TCR repertoire also displayed 
significantly higher clonotype diversity in DCIS compared 
with IDCs, and we identified several more prominent shared 
clones among cases. Interestingly, one of these TCRs was pre-
dicted to react to an epitope in EBNA3, an Epstein–Barr virus 
protein. This finding does not necessarily imply a casual role 
for the Epstein–Barr virus in breast cancer, but it is consistent 
with a hypothesis that some T cells reactive to commensal 
microflora and common infectious agents may cross-react 
with some tumor neoantigens (32). However, further studies 
are required to test this hypothesis.

Several immune checkpoint proteins displayed significant 
differences between DCIS and IDC, particularly in TN cases. 
TIGIT+ T cells were more common in DCIS than in IDC, 
especially in the TN subtype, whereas the expression of PD-L1 
was almost undetectable in DCIS tumor epithelial cells but 
increased to higher levels in IDC with the amplification of the 
CD274 locus encoding PD-L1 in a subset (∼30%) of the cases. 
In Hodgkin lymphoma, the presence of this same 9p24.1 
amplicon is highly predictive of response to PD-1 blockade 
(33), raising the possibility that this might also be the case 
in TNBCs, but this remains to be explored. The expression of 
CTLA4 was also higher in T cells from IDCs compared with 
DCIS, further supporting the development of a suppressive 
immune microenvironment during invasive progression. The 
changes in the expression of these immune checkpoint pro-
teins during DCIS to IDC transition suggest that the applica-
tion of immunotherapies can be and may actually be more 

effective at earlier stages compared with metastatic disease. 
This hypothesis is supported by findings in animal models 
showing that the most efficient antitumor immune response 
was achieved when primary tumor and draining lymph nodes 
were still present (34, 35). Thus, it would be useful to test 
whether immunotherapy could be more effective in breast 
cancer when applied in the neoadjuvant phase in combina-
tion with chemotherapy.

Most prior studies analyzing leukocytes and the prognos-
tic value of TILs in breast cancer have focused on invasive 
tumors, whereas DCIS and premalignant lesions have been 
relatively neglected. This is in part due to difficulties with 
obtaining fresh tissue samples from these small preinvasive 
lesions that are required for comprehensive profiling stud-
ies, and also due to the focus on advanced-stage disease that 
is subject to systemic therapies including immunotherapy. 
Previous genomic characterization of DCIS cases has iden-
tified gene expression signatures implying the presence of 
activated T cells in a subset of tumors (8), but this was not 
confirmed by any other method. Prior studies have also 
shown that the frequencies of Tregs increased during tumor 
progression, suggesting that this could be used to predict 
risk of invasive progression (13). However, in our experience 
the frequency of FOXP3+ T cells is very low in DCIS (<10% 
of T cells) and their topologic distribution is highly variable 
within tumors, making their assessment inaccurate in thin 
tissue sections (see Supplementary Methods). In contrast, 
activated GZMB+CD8+ and Ki67+CD8+ T cells were very com-
mon within DCIS, implying that they could potentially be 
better biomarkers for predicting risk of invasive progression. 
Our observation that the frequency of these cells is decreased 
in local invasive recurrence of DCIS supports this hypothesis, 
but further testing in large, uniformly treated cohorts with 
long-term follow-up would be required to determine this. It 
would also be useful to analyze each T-cell subset in detail in 
both DCIS and IDC, possibly by single-cell RNA-seq, as infer-
ring the composition of T cells based on expression profiles 
has limitations.

We have also found evidence for coevolution of cancer cells 
and leukocytes as exemplified by the negative association 
between the coamplification of the 17q12 chemokine cluster 
with ERBB2 in HER2+ breast tumors and the presence of acti-
vated T cells within tumors. This coamplification was more 
common in PAM50 luminal HER2+ IDCs compared with  
the PAM50 HER2-enriched subset, which may reflect differ-
ent evolutionary paths for luminal, commonly ER+, and non-
luminal ER−HER2+ tumors. Interestingly, the copy-number 
gain was relatively low in a subset of luminal HER2+ tumors 
for both ERBB2 and the CC locus, which could imply higher 
intratumor heterogeneity in these tumors that can contrib-
ute to their lower response rate to HER2-targeted therapies. 
The lower frequency of TILs and particularly fewer activated 
GZMB+CD8+ T cells in these luminal HER2+ IDCs could 
further increase the probability of treatment resistance, as 
the presence of these cells is associated with better response 
to both chemotherapy and HER2-targeted therapies. Because 
of the high number of chemokines in this 17q12 cluster and 
their diverse function, dissecting the mechanism by which 
coamplification of this locus affects T-cell activity would 
require more detailed functional studies in the future.
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Immunoediting is a key step in tumor evolution that can 
be divided into elimination, equilibrium, and escape phases 
(36). Our data suggest that in DCIS, due to a mostly intact 
basement membrane and myoepithelial cell layer, relatively 
few cancer cells are exposed to immune cells and these can 
be mostly eliminated, keeping the tumor in the intraductal 
“equilibrium” stage. Because of subsequent selection for can-
cer cells that have lost (or never had) neoepitopes and/or 
upregulated immunosuppressive mechanisms, tumor cells 
escape from immune surveillance, and invasive and subse-
quent metastatic progression occurs. Therefore, the in situ to 
invasive breast carcinoma transition appears to be the most 
critical tumor progression step from both clinical and immu-
nology standpoints. A better understanding of cellular and 
molecular changes that occur during DCIS to IDC transition 
could improve the design of immunotherapies for the treat-
ment of both early-stage and advanced-stage disease. At the 
same time, our results also suggest that assessing the frequen-
cies of activated CD8+ T cells in DCIS may identify patients 
with high risk of invasive progression.

MethODs

Human Tissues and FACS

Fresh and archival formalin-fixed, paraffin-embedded (FFPE) tissue 

samples were obtained from Brigham and Women’s Hospital/Dana-

Farber/Harvard Cancer Center, Sutter Health, Washington University 

(St. Louis, MO), Yonsei University Medical College Gangnam Sever-

ance Hospital (Seoul, Korea), and Seoul National University Bundang 

Hospital (Seoul, Korea). Samples were deidentified prior to transfer to 

the laboratory. All Institutional Review Boards approved the protocol 

and waived the informed consent requirement. Fresh human normal 

and neoplastic breast tissues were dissociated as described previously 

(37). Polychromatic FACS was performed essentially as described pre-

viously (14). Briefly, single-cell suspensions were blocked in PBS with 

0.5% BSA and 2 mmol/L EDTA and stained at 4°C for 30 minutes with 

antibodies listed in Supplementary Table S8. Live-Dead Aqua (Invit-

rogen) was used to eliminate dead cells from the analysis, and isotype 

control antibodies and unstained cells were used as negative controls. 

Single-antibody staining was used for gating controls. Cells were ana-

lyzed and sorted using BD LSR Fortessa cell analyzer and BD FACSAria 

II SORP UV (Becton Dickinson), respectively. For RNA-seq, EpCAM+ 

cells were gated out to avoid epithelial contamination, and CD45+CD3+ 

double-positive cells were sorted into PBS or lysis buffer (1% 2-mercap-

toethanol in RLT plus buffer, Qiagen). Associations between different 

cell populations was computed using Spearman correlation.

Histology and Immunofluorescence Analyses

Histology and multicolor immunofluorescence analyses were 

performed using 5-µm sections of FFPE tissues essentially as 

described previously (38). Briefly, slides were deparaffinized in 

xylene and hydrated in a series of descending ethanol concentra-

tions. After heat-induced antigen retrieval in either citrate (pH = 

6) or TRIS-EDTA (pH = 9) buffer, the samples were permeabilized 

with 0.5% TritonX-100, blocked with 5% goat serum PBS, and 

sequentially costained with antibodies as indicated in Supple-

mentary Table S8. For TIGIT and CD33 staining, TSA indirect kit 

was used following the manufacturer’s instructions (PerkinElmer). 

Image analysis was performed on 3 × 3 montage images acquired by 

Nikon Ti microscope attached to a Yokogawa spinning-disk confo-

cal unit, 40 × Plan Apo objective, and OrcaER camera controlled by 

the Andor iQ software. Masson trichrome staining was performed 

as indicated by the manufacturer (American MasterTech). Myeloid 

suppressor cell classification and staining was performed as recom-

mended by Bronte and colleagues (39).

Multicolor FISH and Immuno-FISH

FISH to analyze ERBB2 and 17q12 chemokine cluster was per-

formed using whole sections of FFPE breast tumor samples as 

described previously (38). Briefly, 5 µm FFPE tissue sections on 

silylated glass slides were baked overnight at 70°C, dewaxed in xylene 

(Leica Microsystems), washed in 100%, 70%, and 50% ethanol (Leica 

Microsystems), rinsed with H2O, and air-dried for 1 hour. Tissue 

digestion was performed by treating the samples with 0.08% Pepsin 

in PBS (DAKO) at 37°C for 15–22 minutes. Afterward, the slides 

were washed in H2O, dehydrated in increasing concentrations of 

ethanol (50%, 70%, 85%, 100%), and air-dried. A FISH probe mix, 

containing ERBB2 BAC probe (RP11-94L15, provided by Drs. Hege 

Russness and Inga Rye, Oslo, Norway; labeled with  SpectrumOrange 

dUTP by Nick Translation Kit; Abbott Molecular, according to 

the manufacturer’s recommendations), CEP17Aqua probe (Abbott 

Molecular), and 17q12 chemokine cluster BAC probes (equal con-

centration of RP11-791G14 and RP11-278F22 cDNA; labeled with 

 SpectrumGreen by Nick Translation Kit), was then applied to the 

slides, covered with coverslip, and sealed with rubber cement. Hybrid-

ization was performed for 7 minutes at 75°C followed by overnight 

incubation at 37°C in a humid chamber. Next, the slides were washed 

in 0.4× SSC with 0.3% NP-40 for 2 minutes at room temperature, in 

0.4× SSC with 0.3% NP-40 for 2 minutes at 74°C, then in 2× SSC 

with 0.1% NP-40, in 2× SSC, and in PBS. Nuclear counterstaining 

was performed by 10-minute incubation at room temperature with 

1 µmol/L To-Pro-3 in PBS (Molecular Probes, Life Technologies). 

After two additional washes in PBS and one in H2O, the slides were 

dried and mounted with Vectashield Mounting Medium (Vector 

Laboratories), covered with coverslips, and stored overnight to 3 days 

at −20°C. Different immunofluorescence images from multiple areas 

of each sample were acquired with a Nikon Ti microscope attached to 

a Yokogawa spinning-disk confocal unit, 40× plan apo objective, and 

OrcaER camera controlled by Andor iQ software.

For the detection of CD274 gene (encoding PD-L1) and PD-L1 

protein, slides were deparaffinized and digested with Proteinase K for 

20 minutes at 37°C before staining with PD-L1 antibody as described 

previously. Coordinates of imaged areas were recorded. After imag-

ing, the same procedure as used for multicolor FISH was followed 

using CEP9 probe (Abbott Molecular) and BAC probe 599H20 (Life 

Technologies) labeled with SpectrumOrange dUTP by Nick Transla-

tion Kit (Abbott Molecular). After hybridization and washes, slides 

were mounted using Vectashield with DAPI (Vector Laboratories) 

and imaged using the set of coordinates from the first round of 

imaging. Images were then overlaid using R to compute overlaps and 

crop images.

RNA-seq and Data Analysis

RNA was isolated from purified CD45+CD3+ cells by cell sorting 

using the antibodies described above. After approximately 2,000 

cells were sorted into 96-well plates with 2.5 µL PBS [containing 0.5 

µL RNaseOut (Life Technologies) and 0.5 µL dithiothreitol (DTT; 

Life Technologies)], cytoplasmic RNA was isolated as described pre-

viously (40). Briefly, 2.5 µL of 2 × selected cytoplasm lysis buffer 

(SCLB) was added and the cells were lysed by pipetting. Lysates were 

centrifuged at 8,000 rpm for 5 minutes at 4°C. Supernatants (∼5 µL)  

containing the total cytoplasmic RNA were transferred to PCR 

tubes. 5′-phosphorylated oligo-GdT24 (pGdT24) primer was used 

for reverse transcription by Superscript Reverse Transcriptase III (Life 

Technologies) followed by second-strand synthesis. cDNAs were puri-

fied with Genomic DNA Clean & Concentrator Kit (Zymo Research) 

followed by DNA blunt ending, 5′-end phosphorylation and ligation 

with End-It DNA End-Repair Kit (Epicentre) and T4 DNA ligase 
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(Epicentre). Products were directly amplified using REPLI-g Ultra-

Fast Mini Kit (Qiagen) and purified using Genomic DNA Clean & 

Concentrator Kit (Zymo Research Corp). Products were fragmented 

to 200–500 bp by a Bioruptor Sonicator (Diagenode). Fragment sizes 

were validated using High Sensitivity DNA Kit (Agilent Technologies) 

and Agilent 2100 Bioanalyzer. Functional concentrations were deter-

mined by qPCR with standards for Illumina sequencing libraries.

RNA-seq libraries were (single-end) sequenced using the Illumina 

NextSeq 500 Next Gen Sequencer. Datasets were aligned to the human 

reference GRCh37/hg19 genome using the STAR RNA-seq aligner 

(version STAR_2.5.1b; ref. 41). Two-pass mapping was performed 

using the following modified parameters: –outSAMstrandField 

intronMotif, –outFilterMultimapNmax 20, –alignSJoverhangMin 8, 

–alignSJDBoverhangMin 1, –outFilterMismatchNmax 999, –outFil-

terMismatchNoverLmax 0.1, –alignIntronMin 20, –alignIntronMax 

1000000, –alignMatesGapMax 1000000, –outFilterType BySJout,  

–outFilterScoreMinOverLread 0.33, –outFilterMatchNminOverLread 

0.33, –limitSjdbInsertNsj 1200000, –chimSegmentMin 15, –chim-

JunctionOverhangMin 15, –twopassMode Basic. The read counts for 

individual genes were generated using the htseq-count script of the 

HTSeq framework (version 0.6.1p1; ref. 42) using modified param-

eters (–stranded no) and the hg19 refGene annotation file available at 

the UCSC Genome Browser. Genes were filtered to retain only those 

with at least 45 counts across all samples. Differential gene expression 

analysis was performed with both edgeR (43) and DESeq2 (44) using 

design models which take into account batch effects. For PCA and 

heat-map visualizations, counts were converted to log2(counts per 

million) and batch adjusted using limma (45). Heat-map visualization 

was performed using the intersect of genes defined as differentially 

expressed using both edgeR and DESeq2, which also appear in the 

ImmPort database of immune-related genes (46). Estimation of the 

relative proportions of different T cells was performed using CIBER-

SORT (22), using the author’s gene signatures for members of the 

T-cell lineage and 100 permutations. Testing for significant differ-

ences among groups was performed using ANOVA.

GSEA

GSEA (47) was performed using the HTSAnalyzeR package (48) 

using a Benjamini–Hochberg corrected P value cutoff of 0.05 to define 

significant gene sets. Two gene set collections from MSigDB were 

assessed: (i) curated canonical pathways (c2) to determine whether 

immune-related gene sets were differentially expressed and (ii) immu-

nologic signatures (c7) reflecting genetic perturbations or differences 

in cell states (21). The c7 compendium contains 389 curated studies 

comparing differences in gene expression between cells of different 

lineages, or cells before and after treatment with specific chemokines. 

Thus, the multiple appearance of a gene set (e.g., Treg vs. CD4+ T cell) 

in independent studies would strongly support a difference in phe-

notype. Enriched gene sets were summarized by: (i) the frequency of 

specific immune cell types (e.g., CD4+, CD8+, thymocytes) appearing 

as differentially expressed, with significance calculated using propor-

tionality testing with correction for multiple hypothesis testing, and 

(ii) the corresponding directionality of these enriched gene sets in 

network diagrams. Node sizes in network diagrams were determined 

by the frequency of a given cell lineage appearing in the list of enriched 

gene sets. Edge weights were computed by the net number of gene sets 

supporting a link between cell types. For each network link, arrows are 

colored to highlight which group the test sample is more similar to 

(e.g., pink arrow in direction of CD4 T-cell suggests DCIS T cells are 

more similar to this phenotype)

Immune signatures. A list of genes characteristic of T-cell activa-

tion, checkpoint inhibition, exhaustion, naïve T cells, activation-

specific and dysfunction-specific were manually curated from the 

literature (refs. 23, 27, 49; Supplementary Table S4). A score for cyto-

toxicity, exhaustion, naïve, checkpoint activation, and checkpoint 

inhibition was obtained for each sample by computing the mean 

logCPM value. To take into account differences in cell cycle, patients 

were grouped into “high” and “low” categories using a logCPM Ki67 

threshold of −0.5.

TCR Alignment and Identification of Clonotypic  
T-cell Repertoires

The clonotypic repertoires of T cells have been identified by align-

ing the RNA-seq reads to the human CDR regions using MiXCR 

(default parameters), a tool specific for immunoglobulin (IG) and 

T-cell receptor profiling (50). Only clonotypes with at least 2 reads 

were retained for further analyses. The clonotypes were then normal-

ized using the number of sorted CD45+CD3+ T cells used for the 

RNA-seq. The diversity of individual samples based on the number 

and abundance of different clonotypes is represented using the 

Shannon index (24). The significance of the difference between DCIS, 

IDC, and normal samples based on clonotype diversity was calculated 

using the Wilcoxon rank sum test. For a comparison of the Shannon 

index of individual samples and also their subtypes to the expression 

of selected cytotoxic genes, the raw read counts of the genes have 

been normalized on the basis of library size using DESeq2 (44).

Copy-Number Analyses

Copy-number log2 ratios were obtained from publicly availa-

ble data from TCGA (51) and from the Oslo cohort (9) using 

Affymetrix SNP6 arrays with logR ratios adjusted for ploidy and 

tumor percentage using the allele-specific copy-number analysis for 

tumors (ASCAT) algorithm (52). Copy-number data was truncated 

to lie within a [−2, 2] range. To allow for intratumor heterogeneity, 

a relaxed log2 ratio of ±0.3 was used to define gains and losses. In 

the TCGA cohort, HER2+ patients were defined as positive either by 

PAM50 classification or by ERBB2 log2 ratio of at least 0.3. In both 

cohorts, triple-negative patients were defined using PAM50 Basal 

classification. Significance was determined using χ2 test.

Generalized linear models. Associations in copy-number gain 

were estimated using a linear model taking into account param-

eters including PAM50 subtype, neoantigen load (53), overall copy- 

number aberration, immune content (54), and patient age.

Spatial, Diversity, and Statistical Analyses

Association between DCIS/IDC cell type, ERBB2, and chemokine 

cluster amplification. The association between the probability of a 

cell carrying the 17q12 CC amplification and ERBB2 amplification 

[together with the cell type (DCIS or IDC cells) in the DCIS/IDC 

cohorts] was estimated using logistic hierarchical model (or logistic 

mixed effects regression; ref. 55) to account for the correlation of 

cells within each sample and of samples within each patient. In addi-

tion, we adjusted for important clinical covariates collected in this 

study, including patients’ ages, ER status, and others. The selection 

of covariates from those collected was justified using the Akaike 

Information Criterion (AIC; ref. 56). The models with the lowest AIC 

in both cohorts (AIC = 4412.2 in pure DCIS and 10909.7 in DCIS/

IDC) were selected as the final model to interpret (Supplementary 

Table S5).

Diversity estimation from single-cell FISH data. To compute the 

diversity from the multicolor FISH data, we first categorized each 

cell into the following four types based on copy number for ERBB2 

and the CC: ERBB2+CC+, ERBB2+CC−, ERBB2−CC+, and ERBB2−CC−. 

Next, the number of cells belonging to each category was determined 

and the Shannon’s entropy (24) was thereby calculated for each 

sample of each patient. The association between the diversity and 
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patients’ age was evaluated for both the pure DCIS and DCIS-IDC 

cohorts (Supplementary Fig. S7I). Interestingly, in the DCIS-IDC 

cohort, diversity was significantly associated with patients’ age (P = 

0.0183 for DCIS cell type and P = 0.0146 for IDC cell type), whereas 

there was no such association supported by statistical significance 

in the pure DCIS cohort. Furthermore, we also studied the asso-

ciation between diversity and CD3 and CD45 counts, and found no 

significant correlation between these two factors in both cohorts 

(Supplementary Fig. S7H).

Spatial analyses. We then considered another layer of informa-

tion contained in the immuno-FISH images describing the spatial 

distribution of single cells. We sought to investigate the observed 

patterns relative to the null hypothesis—complete spatial random-

ness. Such analysis can help inform future evolutionary modeling 

of tumor development and intratumor heterogeneity. Here our 

definition of complete spatial randomness closely follows (57): (i) 

regardless of the type of cells, the cells are randomly localized on 

the 2-D slice of a tumor by a spatial uniform Poisson process with 

an intensity parameter estimated from all cells on the image; (ii) for 

each single cell, we randomly assign one of the four mutation types 

defined in the previous section based on the relative frequency of 

each mutation type, again estimated from the image. This approach 

is also called marked spatial Poisson process (58). To test such com-

plete spatial randomness, we first used Monte Carlo simulation to 

generate a number of simulated samples under the null hypothesis, 

and calculated the so-called “cross” K function (a function of the 

radius of the neighborhood of each cell; ref. 57) using both the 

simulated samples and the patient sample. With a collection of 

simulated samples, we then constructed a 95% confidence band of 

the K function and determined if the K function computed from 

the patient data lies within the 95% confidence band under complete 

spatial randomness, to investigate whether the spatial distribution 

of different cell types in 2-D deviates from the null hypothesis. 

Supplementary Figure S7F shows that most of the patient samples 

do not significantly deviate from the complete spatial randomness, 

demonstrated by the K function of the data (black curve) lying 

within the 95% confidence band of the K function of the simulated 

datasets (gray area).

Analysis of invasiveness of tumor cells and T cells. Because of the 

relatively small number of cells subdivided by the TIGIT or PD-1 

expression levels, we considered only the comparison between tumor 

cell populations and T-cell populations in the image. In Supplemen-

tary Fig. S6A, we used different colors to distinguish T cells (black for 

TIGIT+ or PD-1+, red for TIGIT− or PD-1−) and tumor cells (green for 

TIGIT+ or PD-1+, gold for TIGIT− or PD-1−). We use k-means cluster-

ing (k = 2) to classify the cells on the image into two clusters based 

only on their coordinate information (or spatial distribution on the 

image) with an unsupervised approach. We then computed the per-

centages of T cells (or equivalently the tumor cells) classified into the 

two clusters and chose the lower value as the “invasive percentage,” 

because intuitively, the more invasive the T cells are into the tumor 

cells, the closer the percentage of T cells belonging to the two clus-

ters should be to 50%, and hence there should be a higher “invasive 

percentage.” Consistent with our expectation (Supplementary Fig. 

S6B), in the “TIGIT” images (left), we observed a higher invasive 

percentage in “HER2+ IDC” than in “HER2+ DCIS” (P = 0.047) and 

also a higher invasive percentage in “TN IDC” than in “TN DCIS” 

(P = 0.003). However, the differences in “HER2+ IDC” and “HER2+ 

DCIS” are relatively weak. Similarly, in the “PD-1” images (right), 

we observed a higher invasive percentage in “TN IDC” than in “TN 

DCIS” (P = 0.039), but no significant difference between “HER2+ IDC” 

and “HER2+ DCIS” (P = 0.52).

All code for transcriptomic, spatial, and statistical analysis can be 

found at github.com/polyak-lab/LeukocyteDCISIDC

Accession Codes

Gene Expression Omnibus: RNA-seq datasets have been deposited 

to GEO with accession number GSE87517 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE87517).
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