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The ability to disseminate, invade and successfully colonise other tissues is a critical hallmark of 23 

cancer that involves remodelling of the extracellular matrix (ECM) laid down by fibroblasts 1. 24 

Moreover, Cancer-Associated-Fibroblasts (CAFs) produce key growth factors and cytokines as 25 

components of the ECM that fuel tumour growth, metastasis and chemoresistance, and immune 26 

response 2-4. ECM changes also predict prognosis in pancreatic 5  and colorectal cancers 6,7. Here, 27 

we examine the landscape of ECM-gene dysregulation pan-cancer and find that a subset of ECM 28 

genes is (i) dysregulated specifically in cancer, (ii)  adversely prognostic, (iii) linked to TGF-beta 29 

signalling and transcription in Cancer-Associated-Fibroblasts, (iv)  enriched in immunologically 30 

active cancers, and (v)  predicts responses to Immune checkpoint blockade better than mutation 31 

burden, cytolytic activity, or an interferon signature, thus identifying a novel mechanism of 32 

immune evasion for patient stratification in precision immunotherapy and pharmacological 33 

modulation. 34 

Initially, to study ECM gene dysregulation across cancers, we defined a transcriptional signature to 35 

distinguish malignant (n = 8043) and normal samples (n = 704) accounting for tumour type (n = 15) 36 

from TCGA and tested for enrichment of an ECM-associated gene-set we curated based on gene 37 

ontology terms(Table S1, Figure S1A). This identified 58/239 ECM genes to be cancer-associated 38 

(hereby Cancer-associated-ECM genes/ C-ECM genes) (Table S2), representing significant enrichment 39 

amongst both upregulated (OR = 3.51, p < 3.9e-8) and downregulated (OR = 2.57, p = 3e-5, Fisher’s 40 

Exact Test) genes in malignant tissues (Figure 1A). Upon summarisation using ssGSEA (single sample 41 

Gene Set Enrichment Analysis) scores 8,9, these show broad variation across tumour types (Figure 1B, 42 

Figure S1B-C). We then performed a Cox regression based on quartile-thresholded C-ECM scores 43 

with AJCC stage and tumour-type as strata highlighted to examine the prognostic impact of this 44 

dysregulation, which showed upregulated C-ECM genes to be significantly prognostic (Figure 1C-D, 45 

HR = 1.73, p < 6.3e-7 for top vs bottom quartile) while downregulated genes were not (Figure S1D), 46 

suggesting that the variation we observed in C-ECM gene transcription is clinically relevant.  47 
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Given the previously identified role of distinct stromal cells in determining the composition and 48 

behaviour of the ECM 10, we then attempted to infer the potential cell types driving C-ECM 49 

transcriptional variation to examine if changes in cellular composition, along with cell-type specific 50 

transcriptional changes, could drive C-ECM gene dysregulation using a range of computational 51 

approaches, and found multiple indicators that C-ECM gene dysregulation originated in Cancer 52 

Associated Fibroblasts.   53 

First, tumour purity estimated using ABSOLUTE 11 were inversely correlated for both C-ECM up and 54 

down scores (Figure 2A, S2A). Second, projecting the expression signature onto  microdissected 55 

Ovarian cancer stroma, matched epithelium, and their normal counterparts 12 (GSE40595) resulted 56 

in clustering by sample type with strong stromal expression (Figure 2B). Additionally, probes 57 

differentially expressed between cancer epithelium and stroma, and between cancer and normal 58 

stroma, were significantly enriched for both C-ECM-up and down genes (Figure 2C) for the former, 59 

and C-ECM-up genes for the latter.  Third, deconvolution analysis using MethylCIBERSORT implicated 60 

CAFs, CD8 T-cells, and CD14-monocytes as directly correlated with C-ECM signature scores (Figure 61 

2D). Importantly, upregulated C-ECM genes (ssGSEA scores) showed a positive correlation to the 62 

inferred CAF frequency in most TCGA cancer types (Figure S2B). We also validated these inferences 63 

of cellular association using transcript levels of well-known marker genes (Cytolytic activity 64 

(geometric mean of GZMA, PRF1) and CD8A expression for CD8 T-cells, ACTA2 for CAFs and CD14 for 65 

monocytes, Figure S2C), whereupon we noticed strong, consistent, agreement.  66 

Finally, as an ultimate test of a CAF origin, we examined a dataset of single cell transcriptomes from 67 

head and neck cancers (GSE103322) 13 and found markedly higher expression of C-ECM genes in 68 

CAFs, which clustered together when the signature was projected onto the dataset (Figure 2E).  69 

 70 

 71 
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Indeed, C-ECM up and down ssGSEA scores were significantly elevated in CAFs compared to other 72 

cell types (Figure 2F), which we also independently verified in an additional colorectal cancer single-73 

cell RNAseq dataset (GSE81861, Figure S2D) 14. Therefore, C-ECM profiles appear to be generated 74 

through the modulation of transcriptional profiles in CAFs specifically in malignancy.  75 

Then, given that C-ECM scores correlate with CD8 T-cells and cytolytic activity (CYT)  (Figure 2D and 76 

Figure S2C), and the fact that C-ECM up-scores are adversely prognostic despite the positive 77 

prognostic impact of CYT 15, we postulated that the C-ECM up-score may be enriched in 78 

immunologically ‘hot’ tumours, and our subsequent analyses uncovered robust evidence for this 79 

association using multiple orthogonal approaches. Accordingly, the C-ECM-up score was positively 80 

correlated with mutational burden (Rho = 0.23, p < 2.2e-16) while the down-signature was 81 

negatively correlated (Rho = -0.21, p < 2.2e-16) (Figure 3A) . 82 

Associations between C-ECM scores and Class I neoantigen burden were also concordant (Rho = 0.21 83 

and -0.21, p < 2.2e-16, Figure S3A) and so were associations between C-ECM scores and 84 

Microsatellite Instability, an immunotherapy biomarker per se 16 (Figure S3B). Additionally, we 85 

assessed macrophage polarisation using CIBERSORT 17 and found that the ECM-up signature was 86 

associated with a greater fraction of M1 relative to M2 (immunosuppressive) macrophages (Figure 87 

S3C). Finally, we found that multiple immune checkpoints, including IDO1, B7-H3 and PD-L2 were 88 

overexpressed in samples in the top quartile of the C-ECM up-score distribution relative to bottom 89 

quartile cancers after adjusting for tumour type (2FC, FDR < 0.01), indicating the upregulation of 90 

adaptive resistance mechanisms to immune-cell mediated destruction (Figure S3D). Moreover, these 91 

themes were broadly reinforced by IPA Canonical Pathway Analysis, which identified enrichment for 92 

inflammatory processes and adaptive immune responses enriched in samples in the top quartile of 93 

the C-ECM up-score (Figure 3B). 94 

 95 
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Next, since our data suggest that the C-ECM-up signature was generated by CAFs, and not by normal 96 

stroma, we endeavoured to find putative drivers responsible for this dysregulation. IPA Causal 97 

Network Analysis, after restriction to candidate regulators which by themselves differentially 98 

expressed between C-ECM-up top and bottom quartiles, identified TGF-β as one of the most 99 

activated regulators (Figure S3E) and upstream regulatory analysis further identified multiple SMAD 100 

transcription factors,  AP1 complex members that associate with SMADs 18, and SMARCA4 19 (Figure 101 

S3F), all critical for TGF-β transcriptional responses as activated in c-ECM-up-high cancers.  102 

Moreover, orthogonal analyses using TCGA RPPA (Reverse Phase Protein Array) data (n = 4278), 103 

identified 13 differentially abundant peptides between upper and lower quartiles of the ECM-up 104 

score (FC > 1.3, FDR < 0.01, Figure S3G), most prominently, increased levels of Fibronectin and PAI1, 105 

both ECM components, with most showing associations with TGF-β (see Table S6), reinforcing the 106 

inference of activated TGF-β signalling. Indeed, in our RNA-seq analyses, TGF-β is significantly 107 

overexpressed in upper quartile C-ECM-up cancers along with multiple mediators of ECM deposition 108 

such as FGF family members (FGF1, FGF18), BMPs (BMP1 and BMP8A) and the local sequestrators of 109 

TGF-β, FBP1 and LTBP1. Moreover, in cancer cells in HNSCC single-cell RNAseq data (Figure 3C) it is 110 

overexpressed relative to fibroblasts and T-cells). Finally comparing the expression profiles of TGF-β 111 

treated immortalised ovarian fibroblasts (GSE40266) 12 versus untreated controls revealed marked 112 

enrichment for C-ECM genes amongst DEGs (Figure 3D), further buttressing the notion C-ECM gene 113 

dysregulation is a function of TGF- β signalling in CAFs.   114 

As TGF-β is known to exert both pro-fibrotic and anti-proliferative effects, we decided to examine if 115 

enrichment for the C-ECM-up signature exerted specific adaptive constraints on the evolution of 116 

cancer genomes using TCGA data. Linear modelling implicated multiple genes after controlling for 117 

tumour type with known associations with TGF-β signalling from candidates positively selected in 118 

cancer 20.  119 
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Notable candidates included TP53, SMAD4, BRAF, ACVR1B and NF1/2 (Figure 3E). We also implicated 120 

18/111 significant GISTIC 21 peaks (Figure 3F), most notably MYC amplification (8q24.1) ( See Table 121 

S7 for detailed description of supporting literature), collectively confirming the hypothesized 122 

adaptation for TGF-β activation. 123 

Finally, we tested whether C-ECM dysregulation is an immune evasion mechanism in the context of 124 

PD1/PD-L1 blockade, where immunologically ‘hot’ tumours are associated with responses 22.  In 125 

two/three cohorts of PD-1 blockade 23-25, the C-ECM-up score was significantly higher in progressors 126 

(Figure 4A, p < 0.05, Wilcoxon’s Rank Sum Test). This was also true in pooled logistic regression 127 

accounting for cancer type, cytolytic activity, mutational load, a T-cell inflamed signature 26,  cohort, 128 

antibody and prior anti-CTLA4 treatment (Figure 4B).   129 

Next, comparing prediction performance using logistic regression with 0.632 bootstrapping 27 130 

showed that models with C-ECM ssGSEA scores significantly outperformed those involving cytolytic 131 

activity, a T-cell inflamed signature, and mutation load alone (Figure 4C, S4A). Moreover, the 132 

aggregate score is comparable to a random forest fit with individual C-ECMs. Importantly, TGFB1 133 

expression alone does markedly worse than C-ECM based models, suggesting the presence of CAFs 134 

are required to convert TGFB1 expression to an ICB-resistant phenotype through transcriptional 135 

modulation. Finally, restricted hypothesis testing using limma-trend found 19 C-ECM genes 136 

overexpressed at FDR < 0.1  (Figure 4D) between responders and nonresponders, defining a practical 137 

signature for clinical application (Figure S4B).  138 

Given CAF-depletion per se is paradoxically associated with worse outcomes 28, approaches that seek 139 

to normalise the aberrant transcriptome in fibroblasts, possibly through TGF-β blockade, are likely to 140 

offer a promising route to boosting the efficacy of checkpoint blockade. Consistent with this, recent 141 

preclinical studies have uncovered evidence that simultaneous targeting of both TGF- β and PD-L1 142 

can result in markedly better tumour control in multiple mouse models 29. 143 
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To summarise, we uncover a novel CAF-associated transcriptional pattern fundamentally linked to 144 

malignant transformation that permits immune evasion even in otherwise immunogenic tumours, 145 

explaining why signatures of negative selection in cancer may be so generally weak 20. In the process, 146 

we enhance our understanding of tumour-stromal interactions, and identify a key mediator of 147 

successful responses to PD1-blockade with significant translational implications.  148 
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 214 

Figure legends – throughout, numbers on scatterplots indicate Spearman’s Rho, asterisks indicate 215 

statistical significance. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. On all volcano plots, y axis = -216 

log10 Fold Change, x axis = test statistic/ fold change/ Spearman’s Rho. On volcano plots, all 217 

enrichment statistics are from Fisher’s Exact Tests.  218 
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 219 

Figure 1 : ECM genes are significantly associated with tumourigenesis and are prognostic.  220 

A. Volcano-plot showing fold changes for genes differentially expressed between cancer and normal. 221 

showing ECM gene enrichment for upregulated and downregulated genes. B. Boxplots of C-ECM-up 222 

enrichment scores show variation across tumour types (S1C for downregulated genes). C. Plot of Cox 223 

model coefficients by quartile for C-ECM-up and down scores pan-cancer. D. Unadjusted Kaplan-224 

Meier curves showing survival by C-ECM-up-quartile.  225 
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 226 

Figure 2: C-ECM transcription is associated with stroma, especially CAFs. 227 

A. ABSOLUTE purity estimates are inversely correlated  with C-ECM-up score , suggesting stromal 228 

origin , colours represent cancer types, number shows Spearman’s Rho . B. Heatmaps of C-ECM-up 229 

and down signatures projected onto epithelium and stroma from ovarian cancers. Rows show 230 

expression z-scores, samples are in columns. Annotation bars indicate tissue type.  C. Volcano-plots 231 

show C-ECM genes (upregulated in orange, downregulated in black) in the context of differential 232 

expression between cancer stroma and epithelium, and cancer and normal stroma. D. Volcano-plots 233 

showing Spearman’s correlations between MethylCIBERSORT cell-type fractions and C-ECM scores. 234 
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E. Heatmap of C-ECM genes in single-cell head-and-neck cancer RNAseq data. F. CAFs show the 235 

highest expression of C-ECM genes relative to other cell types in single-cell HNSCC data.  236 

 237 

Figure 3: E-ECM scores are associated with immunologically hot tumours and TGF-β 238 

A. ECM scores are significantly associated with mutational burden across cancer types. B. Canonical 239 

pathway analysis shows activation of inflammatory/adaptive-immune pathways. C. TGFB1 is 240 

significantly overexpressed in cancer cells in the single cell RNA-seq data. D. Volcano-plot showing 241 

enrichment for E-ECM genes in TGF-beta induced transcriptional changes in normal fibroblasts. E 242 
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and F show linear model t-stats candidate mutational and copy-number alterations associated with 243 

ECM-up ssGSEA scores, adjusted for tumour type, on volcano-plots.  244 

 245 

Figure 4: C-ECM scores predict failure of PD1-blockade 246 

 A. Boxplots showing distributions of C-ECM ssGSEA scores across multiple datasets of pretreatment 247 

biopsies from patients treated with PD1-blockade. Responders = CR/PR/SD. P.values from 248 

Wilcoxon’s Rank Sum Test.  B. Coefficients from pooled logistic regression analysis  evaluating 249 

various predictors on PD1-blockade response. C. Boxplots of Cohen’s Kappa from 0.632 250 

bootstrapping (500 resamples), showing ECM-based models outperform other candidate 251 

biomarkers. Asterisks show q-values. D. Heatmap showing C-ECMGs differentially expressed 252 

between ICB responders and nonresponders after controlling for study-specific variation.  253 
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